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Introduction

Phytochemicals are natural plant products produ
ced as secondary metabolites of which some possess 
anti-microbial effects (Wink 2004), and therefore, may 
present a promising alternative strategy to antibiotics 
especially against antibiotic-resistant bacteria (Wong 
et al. 2006; Marcus et al. 2019) as well as pathogenic 
bacteria (Jayalakshmi et al. 2011; Rajamanickam et al. 
2019). Several studies have investigated the anti- 
bacterial properties of a number of phytochemicals, 
but their mechanisms of action remain ill-defined. 
The interaction between phytochemicals and bac- 
teria at the cellular level is due to the hydrophobic 
nature of phytochemicals which enables their entry 
into the lipid bilayer of the cytoplasmic membrane, 
to act as a  membrane destabilizing agent that indu- 
ces structural changes modifying the functionality of 
the lipid membrane and associated proteins (Sikkema 
et al. 1995; Luz et al. 2014; Yuan et al. 2019). Thus, 
the effects are pleiotropic and include: altering sur-
face charge of the bacterial membrane (Cristani et al. 
2007), ion (H+ and K+) transport (Ultee et al. 2002), 
stress responses (Richter et al. 2010; Di Pasqua et al. 
2013), conjugation (Skalicka-Woźniak et al. 2018), motil-
ity and quorum sensing (Monte et al. 2014), amongst 
other effects.

Carvacrol and oregano exhibit anti-microbial activi-
ties against pathogenic microorganisms whether bac-
teria or fungi, irrespective of origin from the plant, 
animal or human sources (Baricevic and Bartol 2002; 
Mathlouthi et al. 2012). Given the focus of this study 
is on E. coli, previous studies have shown that oregano 
oil containing carvacrol and thymol is effective against 
E. coli in a dose-dependent manner (Friedman et al. 
2002; Al-Mnaser 2019; Alvarez et al. 2019). Another 
study has shown that exposing E. coli to sub-lethal con-
centrations of carvacrol leads to changes in the ratio of 
unsaturated and saturated fatty acid components of the 
cell membrane (Di Pasqua et al. 2006) suggesting that 
E. coli develops an adaptive response upon exposure. To 
interrogate the many target sites of the E. coli cell, which 
could be affected by carvacrol and oregano, an approach 
used here was to grow and continuously expose E. coli 
cells for 60 days at sub-MIC level of phytochemicals 
(carvacrol and oregano) in growth medium, to generate 
derivatives that have reduced sensitivity (an increased 
resistance). This approach will select both temporary 
adaptations as well as mutational events. Focusing on 
the latter should identify the genes encoding cellular 
functions involved in response to the stress of carvac-
rol and oregano. Therefore, this work aimed at similar 
investigations into the anti-bacterial role of carvacrol 
and oregano at the genetic level.
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Experimental

Materials and Methods

E. coli strain and growth conditions. One E. coli 
strain, designated C1, of poultry origin and previously 
characterized as harboring five virulence determinants 
(fim1, csgA, crl, astA, and hlyA) (Al-Mnaser 2019) and, 
therefore, potentially an APEC strain (Johnson et al. 
2008), and being resistant to five antibiotics (cefota
xime, nalidixic acid, cefotaxime, ampicillin, and tetra
cycline) (Al-Mnaser 2019) was selected as a  suitable 
poultry isolate for this study. Strain C1 was shown to 
have a MIC of 0.3 µg/ml against aqueous carvacrol and 
oregano. The E. coli strain was grown overnight in Luria-
Bertani (LB) broth (inoculation was from a pure stock 
culture preserved in a cryotube at –80°C) at 37°C to 
yield approximately 109 CFU/ml (OD600 = 1.00) of which 
100 µl was used to inoculate each of three sets of tubes 
(total volume of 10 ml) supplemented with 0.2 µg/ml 
aqueous carvacrol, with 0.2 µg/ml aqueous oregano, 
and without any supplement as a control. Re-inocula-
tion by transfer of 100 µl to freshly prepared media was 
done every 48 h over a period of 60 days after which 
the bacteria were diluted and spread on non-selective 
LB agar to generate single well-defined colonies. Two 
derivative E. coli strains were chosen randomly and 
were designated as 22M and 26M; carvacrol-derivative 
strain and oregano derivative strain, respectively.

Determination of MIC values of the derivative 
E. coli strains against aqueous phytochemicals. The 
two derivative E. coli strains (22M and 26M) were used 
to determine their MIC values against aqueous carvac-
rol and oregano using a quasi-microdilution method. 
96-well plates with LB supplemented with a dilution 
series of oregano and carvacrol were inoculated with 
22M and 26M and the OD600 was measured spectro-
photometrically every 1 h for 24 h under aerobic condi-
tions and at a temperature of 37°C (Fluostar Omega). 
The OD600 readings were used to plot the relationship 
between time and OD. Plots were used to calculate bac-
terial growth to determine the MIC value of carvacrol 
or oregano against the E. coli strains. The same proce-
dure was done after two weeks of storage in cryotubes 
containing non-selective medium at –80°C, to ensure 
that the increase in MIC values was stable and not 
a result of an adaptative change.

WGS of the derivative E. coli strains. Strains 22M 
and 26M with their original wild-type strain C1 were sent 
to MicrobesNG at the University of Birmingham for 
WGS. In silico serotyping analysis using Serotype Finder 
1.1 website (https://cge.cbs.dtu.dk/services/Serotype-
Finder/) (Joensen et al. 2015) and MLST analysis using 
MLST 2.0 software (https://pubmlst.org/) (Sepehri et al. 
2009) were performed prior to full genome analysis.

Results and Discussion

In this study, we have investigated the antibacte-
rial properties of two phytochemicals; carvacrol (the 
active ingredient of oregano) and oregano using wild-
type E. coli strain of poultry origin as a starter strain, 
which to our knowledge, this has not been done before. 
This initial in vitro study aimed at increasing our under-
standing of the mechanism of action of these phyto-
chemicals to control APEC strain (the causative agent 
of colibacillosis disease in poultry) with multiple anti-
biotic-resistance, which will enable us to evaluate their 
anti-bacterial properties as possible feed additives in 
the poultry industry instead of antibiotics.

The continuous exposure of E. coli cells to sub-lethal 
concentrations of carvacrol and oregano resulted in an 
increased resistance (reduced sensitivity) to these phy-
tochemicals, and this was demonstrated by increased 
MIC values from 0.3 µg/ml to 0.6 µg/ml to both carvac-
rol and oregano. This step was repeated twice in order 
to confirm that the elevated MIC was stable. After that, 
the identity of the derivative strains was confirmed by 
extracting data from the WGS to ensure that the deriva-
tive E. coli strains 22M and 26M were true derivatives 
of the E. coli strain C1. WGS data analysis revealed that 
the three strains shared the same in silico serotype and 
multi-locus sequence typing (MLST) profiles, O23:H52 
and ST-373, respectively.

The next objective was to search for the genomic 
variations in the derivatives compared with the pro-
genitor strain, as this might give us information on the 
evolution of these derivatives (Tenaillon et al. 2001; 
Bryant et al. 2012). WGS data analysis showed that 
there were missense mutations detected in two chromo-
somal genes; cadC which encodes for a transcriptional 
activator of the cad operon (Küper and Jung 2005) and 
marR which encodes for a repressor of mar operon 
(Cohen et al. 1993). These two mutations were found 
in the carvacrol-derivative strain (22M). However, 
the oregano-derivative strain (26M) contained only one 
missense mutation, which was in cadC.

The cad operon is one of the survival mechanism 
systems in E. coli that is triggered in response to unfa-
vorable acidic conditions (Tetsch et al. 2011). This sys-
tem is composed of three genes; cadA (encodes a cyto-
plasmic CadA protein responsible for decarboxylation 
of lysine), cadB (encodes a transmembrane CadB pro-
tein responsible for excretion of the end products of 
lysine decarboxylation), and cadC (located upstream 
of the cadBA operon and encodes a transmembrane 
protein CadC) (Watson et al. 1992; Küper and Jung 
2005). CadC has a dual function as a transcriptional 
activator of the cad operon in E. coli (Küper and Jung 
2005) and as a sensor to external changes in pH in the 
environment (Tetsch et al. 2011). The missense muta-
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tion detected in cadC gene resulted in an amino acid 
substitution from tyrosine to histidine at position 504 
of the CadC protein, caused by a transition substitu-
tion from T to C at the genome position 280821. The 
visualization of the mutation location in the carvacrol-
derivative strain (22M), when compared with the wild-
type strain (APEC O23:H52), is shown in Fig. 1. The 
increased phenotypic resistance to phytochemicals in 
the derivative strains 22M and 26M can be explained 
by two possible scenarios, assuming these mutations 
are not silent: 1) the substitution in cadC might effect 
on the expression of the Cad system, leading its over-
expression of the CadC activator/sensor (Tetsch et al. 
2008) to compensate for the constant presence of phy-
tochemicals, 2) the substitution in cadC might affect 
the Cad system leading to over-expression of the speF-
potE operon (another survival mechanism in E. coli) 
to replace the function of cadBA operon (Soksawat-
maekhin et al. 2004). These options could be further 
investigated by Real-Time-PCR mRNA expression and/
or complementation studies in order to get a clearer 
picture. These results suggest that carvacrol/oregano 
can trigger stress responses in multiple antibiotic-
resistant APEC strain when used at sub-lethal concen-
tration. Similar findings were documented when using 
sub-lethal concentrations of carvacrol which led to 
a missense mutation in soxR, which is another oxidative 
stress defence in E. coli (Chueca et al. 2018).

The mar operon is responsible for chromosome-
mediated multiple antibiotic resistance as a protective 
mechanism in response to environmental stresses such 
as the presence of antibiotics and oxidative stress (Ariza 
et al. 1994). This operon, which is short for multiple anti-
biotic resistance, consists of four genes; marA (encoding 
an activator protein of mar operon), marR (encoding 
a repressor protein of mar operon) (Cohen et al. 1993), 

marB and marC (with unknown function) (Alekshun 
and Levy 2004). The mar operon is responsible for the 
increased low level resistance in E. coli strains to differ-
ent classes of antibiotics including tetracycline, chlor
amphenicol, β-lactams, and fluoroquinolones by efflux 
mechanisms (George and Levy 1983). Interestingly, the 
MarR repressor in E. coli found in the gut of animal 
hosts has another function which is detecting phenolic 
compounds of plant products (Sulavik et al. 1995), fur-
ther supporting the role of MarR in carvacrol/oregano 
resistance. The missense mutation detected in marR 
gene was an amino acid substitution from arginine to 
histidine at position 94 of the protein MarR, caused by 
a transition substitution from C to T at the genome posi-
tion 13346. The visualization of the mutation location in 
the carvacrol-derivative strain (22M), when compared 
with the wild-type strain (APEC O23:H52), is shown 
in Fig. 2. Given the increased resistance phenotype of 
the E. coli strains, this substitution is probably a non-
silent mutation resulting in an increased activity of the 
mar efflux system due to the repressor failing to repress 
the mar operon, and therefore increased its resistance 
as was recently discovered (Chueca et al. 2018). Simi-
lar findings were demonstrated by previous work from 
our laboratory (AlKhandari 2017), which showed that 
thymol-derivative strain showed non-sense mutations 
in marR and acrR, genes encoding repressors involving 
in efflux pump systems were responsible for the reduced 
susceptibility to phytochemicals. These findings suggest 
that carvacrol can act as an efflux pump inhibitor when 
used at high concentrations as proposed in this study 
(Miladi et al. 2016).

This study might indicate the importance of giving 
carvacrol, oregano or thymol as a feed additive instead 
of antibiotics as a feed additive to chicken and what 
might happen after a long period of time use. However, 

Fig. 1.  A diagram showing the presence of T at 280821 in the genome of the C1 strain (APEC O23:H52) that is substituted by C
at position 280821 in the genome of the carvacrol-derivative strain (22M). This graph was generated using the Geneious Prime 2019.1.1

(https://www.geneious.com).
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this work was performed only once but the body of 
data from this current study supports the findings of 
previously mentioned studies which have suggested 
that exposure to phytochemicals (carvacrol, oregano, 
and thymol) select for mutants in different genes but 
each responsible for increased resistance phenotype. 
To confirm the effect of gene mutations on resist-
ance, further studies could include: 1)  gene comple-
mentation to show phenotype reversion and 2) use of 
mutant E. coli strains from the Keio library to study 
cadC and marR mutants in specific, and to study all 
the possible mechanisms of actions. In conclusion, the 
possible mechanisms of action of carvacrol/oregano 
against E. coli seem to be associated with missense 
mutations in the genes responsible for survival mecha-
nisms under unfavorable conditions (cadC) and multi-
ple antibiotic resistance (marR).
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