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ABSTRACT

The integration of multi-omics data can greatly facili-
tate the advancement of research in Life Sciences by
highlighting new interactions. However, there is cur-
rently no widespread procedure for meaningful multi-
omics data integration. Here, we present a robust
framework, called InterTADs, for integrating multi-
omics data derived from the same sample, and con-
sidering the chromatin configuration of the genome,
i.e. the topologically associating domains (TADs).
Following the integration process, statistical analy-
sis highlights the differences between the groups of
interest (normal versus cancer cells) relating to (i) in-
dependent and (ii) integrated events through TADs.
Finally, enrichment analysis using KEGG database,
Gene Ontology and transcription factor binding sites
and visualization approaches are available. We ap-
plied InterTADs to multi-omics datasets from 135 pa-
tients with chronic lymphocytic leukemia (CLL) and
found that the integration through TADs resulted in a
dramatic reduction of heterogeneity compared to in-
dividual events. Significant differences for individual
events and on TADs level were identified between pa-
tients differing in the somatic hypermutation status
of the clonotypic immunoglobulin genes, the core bi-
ological stratifier in CLL, attesting to the biomedical
relevance of InterTADs. In conclusion, our approach
suggests a new perspective towards analyzing multi-
omics data, by offering reasonable execution time,
biological benchmarking and potentially contribut-
ing to pattern discovery through TADs.

INTRODUCTION

The study of the molecular mechanisms that lead to cancer
was revolutionized by the advent of Next Generation Se-
quencing (NGS) (1,2). NGS extends from studies of whole
genomes (whole-genome sequencing), to smaller regions of
the genome (exome sequencing), the transcriptome (RNA-
seq), the DNA methylome (bisulfite-seq) and the map-
ping of protein–DNA binding sites (ChIP-seq) (3). Using
NGS to sequence the entire human genome can produce
>100GB of raw data (4), thus leading to a whole new cadre
of analytical challenges. From a computational perspec-
tive, the raw NGS-data are analyzed by established and
widely accepted bioinformatics tools (e.g. bwa, TrimGalore,
HISAT2, MACS2, R) (5), usually leading to a tabular rep-
resentation of the captured information, with the different
cases listed as columns and the locations on the genome in
which the examined event occurred (e.g. mutation, gene ex-
pression etc.) as rows.

The integration of several types of data that originate
from the same physical source (e.g. patient) yet investigate
different ‘layers’ of cellular biology (e.g. the genome or the
transcriptome, to name but two) remains a promising field,
since there are no widely accepted methods to this end. The
most common approaches for integrating different omics
data tend to fall under two main categories: (i) comparing
the gene list produced at the end of each individual anal-
ysis, with the working assumption that overlapping genes
were influenced by mechanisms and processes operating in
distinct ‘layers’ (6,7) or (ii) checking the correlation of two
events that are associated with the same gene, using statisti-
cal methods such as spearman or Pearson correlation test
(8,9), in order to infer the presence of a common mech-
anism. However, as interactions in biological systems are
generally nonlinear, methods such as Singular Value De-
composition (SVD), Bayesian or non-Bayesian network-
based were applied as extended data integration approaches
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(10). Although these methods are promising, they show in-
stability and tend to over-fit the given dataset. Moreover,
there are several existing tools that integrate different kinds
of omics data but constrain the analysis only at the gene
level (e.g. CNAmet, iGC, PLRS, Oncodrive-CIS), or focus
on sample classification based on the driving clinical per-
spective (e.g. iClusterPlus and mixOmics) (10,11). More-
over, many existing tools consider pathway databases as a
potential source for the extraction of a biological meaning
across multiple independent omics datasets (12,13).

Going to a level of organization further than the sim-
ple chromosomal position, the introduction of NGS meth-
ods, like Hi-C, provides insight into chromatin organiza-
tion such as the topologically associated domains (TADs).
TADs represent segments of chromatin domains that are
conserved in mammals (14,15) and are characterized by
frequent interactions within themselves. Since the human
genome is organized across all three dimensions in space,
with gene regulation being driven also by the local folding
of the chromosomes, multi-omics data integration requires
information about the 3D chromatin structure. Moreover,
recent studies have shown that integrating multi-omics data
that also include TAD information, can offer novel insights
into the regulation of genes implicated in tumor develop-
ment (16–18). However, there is no complete framework
published except from CESAM (17) which associates so-
matic copy-number alterations breakpoints with expression
levels.

We developed an R-based framework, called InterTADs,
for end-to-end analysis integrating multi-omics data while
taking into account the 3D organization of the genome. The
first step of the tool is the integration of the tabular output
of multiple different types of NGS workflows (such as ta-
bles with expression values, mutations and DNA methyla-
tion values) into a single file. The tool then combines the
joined representation of the multiple experiments, with the
3D organization of the genome, the TADs. It is important
to highlight that the tool itself supports any type of genome
segmentation, however, we consider that TADs (when avail-
able) can offer more insights towards the study of the effect,
following the modern literature of 3D organization (19).
Statistical analysis is performed according to predefined
groups of interest (e.g. normal cells vs cancer cells), and
the events related to multi-omics data (CpG site––CpGs,
transcript, mutation, histone marker, etc.) which are con-
sequently divided into the associated TADs based on the
overlap of the chromosomal locations. Finally, enrichment
analysis using KEGG database (20,60–62), gene ontology
(GO) (21,59) and transcription factor binding sites (TFBS),
as well as the relevant visualization options, are available for
the statistically significant results. Our approach was tested
on different omics datasets from 135 patients with chronic
lymphocytic leukemia (CLL) (22), publicly available and re-
trieved from the Primary Cancer Cell Encyclopedia (PaCE)
database.

CLL is a malignancy of mature B cell, the most com-
mon adult leukemia in Western countries (23), character-
ized by clinical and biological heterogeneity (24–26). Al-
though the precise implicated mechanisms remain to be elu-
cidated, the consensus is that CLL development and pro-
gression reflects an interplay between external (microenvi-

ronmental) drive, genetics and epigenetics (27,28). Two ma-
jor molecular subtypes of CLL are recognized based on the
molecular configuration of the B cell receptor immunoglob-
ulin (BcR IG), more particularly the somatic hypermuta-
tion (SHM) status of the IGHV genes: cases with no or min-
imal SHM (‘IG-unmutated’ CLL, U-CLL) follow consid-
erably more aggressive clinical courses compared to those
with a significant SHM load (‘IG-mutated’ CLL, M-CLL)
(29–31). Regarding genetics, recurrent gene mutations and
chromosomal abnormalities are detected in the great ma-
jority of CLL patients with subgroups of patients display-
ing different landscapes of genomic aberrations exhibiting
distinct clinical behavior and response to treatment (32–34).
Concerning the former, mutations in the TP53, NOTCH1,
SF3B1, ATM and BIRC3 genes occur at a frequency of
∼2–10% in general cohorts of untreated patients, whereas
their frequency increases among patients with progressive
or high-risk disease (33–35). Concerning the latter, the most
common cytogenetic abnormalities, ranking from high to
low risk, are: del(17p), del(11q), trisomy 12, del(13q) (26).
Furthermore, differential DNA methylation and histone
modification profiles have been reported for different CLL
prognostic subgroups, for example cases with U-CLL ver-
sus M-CLL genes and the presence or absence of trisomy
12 (8,22,36–38).

Due to its great heterogeneity and well characterized
prognostic/predictive biomarkers, CLL provides a paradig-
matic case to decode complex associations of the events
within the same TADs. We report the high biological bench-
marking of the InterTADs method, since the produced re-
sults clearly reflect the existing literature, such as the signifi-
cance of SHM status. Moreover, we highlight the reduction
of the heterogeneity by integrating the data on TADs com-
pared to individual events. Finally, we show that InterTADs
provides an efficient means to decode complex associations
between omics data within TADs, assisting in the discov-
ery of molecular pathways and transcription factors (TFs)
relevant for disease pathogenesis.

MATERIALS AND METHODS

Overview

Briefly, the data aggregation module contains functions for
loading, reformatting and scaling of the input files, and ulti-
mately constructs a single table. Subsequently, each event of
the integrated table is characterized according to the related
gene and the genomic features (exon, intron etc.). Regard-
ing the 3D organization, all events are grouped into cor-
responding TADs based on the overlap of the chromoso-
mal regions. A statistical analysis is then performed, which
includes the evaluation of the differences of the (i) events
and (ii) TADs between the predefined groups of interest
(e.g. normal cells versus cancer cells), retrieved by a user-
provided meta-data file. As an additional post-processing
step, enrichment analysis using KEGG database, GO and
TFBS options are available for the downstream analysis. Fi-
nally, visualization scripts produce plots of the events on the
chromosomal location of a TAD and dot plots based on the
values of the events on a TAD, considering the predefined
groups for both options. It is worth noting that the visu-
alization outputs include figures related to the enrichment
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analysis using KEGG database, GO and TFBS highlight-
ing the significant terms on bar plots. Our approach (Fig-
ure 1) can be applied to any kind of NGS or array-based ex-
periment, and any cohort size and integrates with the TAD
boundaries using either publicly available Hi-C data or any
custom-defined segmentation of the reference genome used
in the analysis.

Workflow

We split the InterTADs workflow into four main phases: (i)
automation of the multi-omics data aggregation, (ii) intro-
duction of the biological knowledge regarding the 3D orga-
nization of the genome through the TADs, (iii) functional
analysis of the significant results and (iv) visualization of
the statistically significant results (Figure 1):

• Data aggregation: The first phase includes the automated
process of reading and formatting all inputs into a sin-
gle file. Since the tool is focused on multi omics data, the
samples with missing data will be automatically excluded
from the analysis. Omitting this, the user can apply two
different scenarios including (i) the minimum informa-
tion that is present in most of the cases (ii) the higher
number of multi-omics layers even if it is not present in
all samples. The input tab-delimited files contain the co-
ordinates of each event (CpG, transcript, mutation etc.),
and the corresponding score values. These files are pro-
duced by tools performing the analysis of the raw data
such as HISAT2 (39), featureCounts, MACS2 (40), minfi
(41), GATK (42). Along with these files, a meta-data file
is created containing information about the mapping be-
tween the files’ columns. The output of this step is a tab-
delimited table in which the first column corresponds to
the chromosome that the specific observation (table row)
belongs to. The second and third columns contain infor-
mation about the TAD name and the TAD’s start and
end positions while the fifth to seventh columns contain
information about the event’s ID (CpG, transcript, mu-
tation etc.) and chromosomal location (start and end po-
sitions). The next two columns (#8 and #9) store infor-
mation about associated genes (Gene ID and Gene func-
tionality) while the tenth column points to the input an
event comes from. Finally the rest of the columns cor-
respond to the samples’ count or freq values. The Data
aggregation phase consists of five steps (Figure 1):

1. Loading: First, all inputs are read and loaded regard-
less of the source of each individual file.

2. Reformatting: Next, each file is transformed into a data
table based on the given meta-data file. This transfor-
mation ensures that the same index columns from dif-
ferent tables point to the same physical source (chro-
mosome information, patient ID etc.).

3. Scaling: In order for any further analysis to be pos-
sible, all tables are transformed so that they corre-
spond to the same scale. A range between [0, 100] has
been chosen for convenience purposes. Hence, numeric
data, which contain frequency score values in the above
range, are slightly (DNA methylation) or not at all
changed (mutation data). On the other hand, a func-
tion is applied to count values so that they correspond

to the desired range. The transformation process is as
follows; supposing that E corresponds to expression
counts, then a logarithmic scale is applied:

Elog = ln (E)

Later on, a vector with all maximum values of the
columns of Elog is created:

Emax = max
j

Elog, where refers to column index

and a new matrix is generated by calculating the ratio
between the maximum values and the desired range:

Enew = Elog · 100/Emax

4. Gene names/location: Moreover, for every event on the
new integrated matrix, the gene names and locations
(exon, intron, cds etc.) are retrieved based on the chro-
mosomal location of the event. This module includes
options for either hg19 or hg38 annotation according
to the reference genome of the multi omics data.

5. TAD annotation: Finally, a BED file containing infor-
mation of segments of the genome, such as TADs (seg-
ments), is provided and compared with each event for
overlaps between their chromosomal coordinates. The
TADs are conserved sites for a specific cell type and
there are several publicly available files on UCSC, on
the ENCODE project and also Hi-C experiments on
GEO DataSets. Additionally, InterTADs can perform
with a user-specified bed file containing segments of the
users’ choice instead of the TADs.

• Reverse methylation values: The output file of the Data
Aggregation phase can be used as input to the pre-
pare methylation values module. The script provides
functionality for filtering specific locations of methyla-
tion values (e.g. promoter, intergenic) and reversing them
so that low/high methylation frequencies correspond to
high/low values.

• EvenDIff: The output file of the Data Aggregation phase
is the input for the EvenDiff module. At this phase, the
samples are split in two subgroups according to a prede-
fined metadata file that includes a list of sample IDs and
the corresponding group, e.g. normal/tumor. Then, sta-
tistical analysis between the two subgroups is performed
based on the limma package (43). The output of this
module includes the statistically different events between
the predefined groups, together with the output of the
limma package (logFC,AveExpr, adj.P.Val, etc), chromo-
somal location and the individual values of each sample.

• TADiff: The output file of the Data Aggregation phase is
also provided as input for the TADiff module. The tool
splits the samples in two subgroups, according to a pre-
defined metadata file, e.g. normal/tumor. The statistical
analysis between the two subgroups includes:

1. Filtering of the statistically significant events from the
evenDiff divided across the TADs.

2. Hypergeometric distribution test using the number of
the significant events of the TAD compares it with the
total number of events in the TAD.

3. Measurement the activation of the TADs through the
phenotypic outcome (i.e. gene expression) calculating
the mean of absolute numbers of logFC.
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Figure 1. (A) Schematic diagram of input files for InterTADs. (B) Schematic diagram of InterTADs. Input multi-omics data are loading, reformatting,
scaling and annotating to the genome in order to generate a single aggregated file. The events of the aggregated file are mapped on the TADs and statistics
are provided for single events and for the integrated table through TADs. Finally, functional analysis and plotting functions are available. (C) Schematic
diagram of the data integration regarding TADs. The upper part shows the grouping of the event in each TAD and then with a special focus on TAD1 an
explanation of the criteria included in the TADiff module.
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The output of this module is a table with the statistically
significant TADs defined by a high number of differential
events between the groups and a phenotypic outcome in
gene expression (i.e. differentially expressed genes between
the groups). Also, it includes the statistical analysis of this
phase in each TAD and their associated events with their
values in each sample.

• Functional analysis: The next phase of the workflow in-
cludes an enrichment analysis with GO Biological Pro-
cess and Molecular Function Terms, KEGG pathways
and TFBS. The output files of the EvenDiff and TADiff
phases are the main inputs of this phase, as the analysis is
performed on the events confirmed as significant by the
previous steps. It consists of two parts:

1. GO/KEGG enrichment using the Enrichr tool
(44,63,64) and the annotated gene names of the events.

2. Motif enrichment using the allele sequences of the
events and specifically for the expression events, the
promoter regions, provided as inputs to the PWMEn-
rich tool (65). The Ensembl Rest API (45) is used to ex-
tract representation of the respective sequences at the
nucleotide level from their corresponding chromoso-
mal coordinates.

3. The enriched terms are matched with the correspond-
ing TADs of the events they were found into. Then,
a hypergeometric distribution test is performed using
the number of genes matched to each term per TAD
and the total number of genes annotated to the term
to determine the significance of each TAD per enriched
term.

• Visualization: The visualization phase includes three op-
tions: (i) dot plots for the two subgroups based on the val-
ues of the events of each TAD, (ii) dot plots for the two
subgroups based on the mean values of the cases of each
event and (iii) chromosomal representation of TADs. In
more detail, the dot plot takes into account the associ-
ated events of a TAD of interest and plots the values of
the cases between the two subgroups. The second option
is a dot plot based on the mean of each event in each sub-
group accompanied by a connecting line. Also, a violin
plot is generated on the same plot showing the distribu-
tion of the mean values. The third option takes as input
the integrated matrix and a desired chromosomal loca-
tion, and produces plots showing the chromosomal loca-
tion of the TAD of interest on the x axis and the asso-
ciated events combined with their values on the y axis.
The plots are generated based on each case separately or
on each group. Also, a single plot with the differences of
the events between the groups is produced. Additionally,
regarding the functional analysis there is a visualization
output of the significant terms in each module (analysis
using KEGG database, GO and TFBS) using bar plots.

Considering all the steps, the InterTADs generates differ-
ent output files:

• integrated-table.csv: A table contains all the events of
the input omics data included the ID of the event (e.g.
cg02913364, chr1 100503564:T:C etc.), the chromosomal

location (e.g. chromosome, start, end), gene names, gene
locations (transcript, exon, threeUTR)

• integrated-tad-table.csv: The integrated-table containing
additional information about the TAD in which each
event belongs to.

• integrated-tad-table-methNorm.txt: The integrated-tad-
table after reversing methylation values as described in
Materials and Methods section.

• summary.txt: A mapping file showing what kind of in-
formation (methylation, gene expression etc.) is coming
from each source.

• IGHV evenDiff.txt: A tab-delimited table containing the
results for the statistical analysis of the evenDiff module
on the IGHV meta-data column.

• Summary evenDiff.txt: A summary table with informa-
tion of the evenDiff statistical analysis.

• IGHV TADiff.txt: A tab-delimited table containing the
results for the statistical analysis of the TADiff module
on the IGHV meta-data column.

• Summary TADiff.txt: A summary table with informa-
tion of the TADiff statistical analysis.

• over-represented enriched terms.csv: A table of the en-
riched terms and their corresponding p-values and ad-
justed p-values, grouped with regard to the TAD they
were found into.

• enriched terms in different TADs.csv: A table containing
the information as the over-represented enriched terms.csv
file, grouped with regard to the enriched term.

• prepared sequences info.csv: A table containing the infor-
mation (e.g. chromosome name, start, end) of the merged
sequences after the extension of the methylation events,
as well as the IDs of the initial events.

• seq perTADs.fasta: A file with the allele sequences pro-
duced using the Ensembl Rest API.

• report MotifEA.txt: A file containing the output tables of
the PWMEnrich tool for each TAD.

The over-represented enriched terms.csv and enriched
terms in different TADs.csv files are produced independently
for each kind of term the data are enriched with; GO Bio-
logical Process (BP) terms, GO Molecular Function (MF)
terms, KEGG pathways and TFs.

Data

The proposed method was evaluated using data from a large
CLL series retrieved from the Primary Cancer Cell Ency-
clopedia (PaCE) database, directly as data tables. The de-
tected mutations of the study were used as additional in-
formation to the metadata since there are targeted sequenc-
ing results. Finally, we used the matrix of DNA methylation
values (based on Illumina 450K BeadChip Arrays), the ma-
trix with expression values (based on RNA-seq) as the in-
put multi-omics file for our tool. Finally, TADs from the
cell line GM12878 were used (36) which is a lymphoblas-
toid B-cell line widely used to characterize the epigenome
in CLL (8,18,36,37). Additionally, and in order to assess
the impact of using well-defined TADs versus randomized
segments of DNA sequence, we generated five different
BED files containing randomly generated segments of sim-
ilar size distribution with the original TAD file, and ran
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the entire pipeline with the same parameters (results shown
in Supplementary Figures S1–S3). The two omics datasets
contained 221 565 rows with DNA methylation events
(CpGs) and 47 639 rows with gene expression events (tran-
scripts). For the whole analysis, only events on chromo-
somes 1–22 were included. We generated the metadata file
by filtering out the makers whose presence was in less than
five patients.

Implementation

The tool is implemented as a standalone R script. The in-
put multi-omics files are BED-formatted containing the co-
ordinates of each event (mutation, CpG site, transcript etc),
and the corresponding score values. In more detail, the in-
put files have to include in the first column a unique identi-
fier (e.g. cg00000029, XLOC 032721, mut 1, etc.) for each
event, in the next second to fourth columns the BED format
information (i.e. chromosome, start, end), and in the rest of
the columns the values for each patient. These files are pro-
duced by tools performing the analysis of the raw data such
as HISAT2 (39), featureCounts, MACS2 (40), minfi (41),
GATK (42), etc. In our study case, the format of the omics
data were transformed to a BED-format adding the scores
of each patient using the library IlluminaHumanMethyla-
tion450kanno.ilmn12.hg19 in R for the CpG events; and,
the GTF file from StringTie of the HISAT2 pipeline. In or-
der for the algorithm to run properly, all files are placed
into two folders, named freq and counts, based on the type
of information they are carrying (frequency score values or
count values). Along with these files, a meta-data file is cre-
ated containing information about the mapping between
the files’ columns. The overlap of the ranges between the
events and the TADs is tested using the R package Genom-
icRanges (46). The plotting functions were generated using
ggplot2, gghalves and karyoploteR (47).

RESULTS

Unsupervised analysis using evenDiff and TADiff module of
InterTADs leads to a biologically relevant clustering of cases

InterTADs was applied on previously published omics data
from 135 CLL as described in the Data Section above. The
aggregated table, as constructed after application of the
evenDiff step, contains 267 650 events, i.e. CpG sites, tran-
scripts. These events were found on 3034/3036 (99.8% 0
TADs in the GM12878 cell line, after the TADiff step.

To demonstrate the ability of the tool in revealing the
most significant results compared to the individual events,
we performed unsupervised principal component analysis
on both the aggregated data table and the TAD-associated
table. The analysis was performed according to the prede-
fined metadata file, in which the samples are characterized
based on the group of interest. We selected the SHM sta-
tus of IG genes since it is perhaps the key biological stati-
fier in CLL and, moreover, remains stable overtime, hence
contrasting genomic aberrations which tend to change with
disease evolution. The aggregated table shows a high hetero-
geneity and low explained variance of the Principal Compo-
nents (PCs) (Figure 2A). Aggregating the integrated events
across the related TADs and calculating the mean of the

events for each TAD, a clear separation emerges between
M-CLL and U-CLL (Figure 2B), highlighting the potential
of InterTADs to provide biologically meaningful results.
Also, we noticed that the explained variance of the PCs is
increased after TADiff. Due to the fact of the overpressen-
ation of CpGs compared to transcript on the TAD matrix,
we performed unsupervised hierarchical clustering analysis
taking into account (i) the CpGs and the transcripts (Sup-
plementary Figure S4A) and (ii) only the CpGs (Supple-
mentary Figure S4B). The results show different cluster-
ing between the two approaches and the integration of two
multi-omics layers concluded to a better clustering of the
SHM status.

Exploratory analysis of the evenDiff module supports the rel-
evance of the InterTADs tool

Using the aggregated table, we investigated the significant
events that were identified in several subgroups of CLL,
such as. cases which carried del(11q), trisomy 12, TP53 gene
aberrations [i.e. del(17p) and/or TP53 gene mutations], or
M-CLL/U-CLL status, by applying the evenDiff module.
We found significant differences (adj-pvalue < 0.01) re-
garding U-CLL/M-CLL (n = 8859 events) and trisomy 12
(n = 1341) (Figure 3A, Supplemental Tables S1 and S2).
Hierarchical clustering analysis of 8859 events revealed dis-
tinct patterns between M-CLL versus U-CLL (Figure 3B).
Then, by applying the functional analysis module on the
significant events table of the M-CLL/U-CLL categories,
we found statistically significant results (adj-P-value < 0.05)
in KEGG pathways for inactive events/related genes in U-
CLL versus M-CLL which were enriched in Allograft re-
jection, Graft-versus-host disease, Type I diabetes mellitus,
and Cytokine-cytokine receptor interaction. Moreover, the
TFBS analysis revealed significant results for both active
and inactive events relevant to B cell/CLL biology. More-
over, by focusing the analysis only on the TFs showing dif-
ferences on the expression levels of U-CLL and M-CLL
as well, we ended up with 19 key TFs (Figure 3C and D).
Finally, analyzing the aggregated table, 31 genes were tar-
geted with more than three events (Figure 3E) such as
KCNJ2, CRY1, ZNF667-AS1, CACNB2, CHL1, MYLK,
PPP1R9A, ZNF135, ZAP70.

Exploratory analysis of TADiff module revealed differential
TAD activation in M-CLL versus U-CLL

Applying the TADiff module, we explored the significant
TADs in different subgroups of CLL based on the corre-
sponding metadata. We applied thresholds, as descripted in
methods section, of:

1. differential analysis of the events ( |logFC| =
2, ad j pvalue < 0.01))

2. hypergeometric distribution test (pvalue < 0.01)
3. Measurement the activation of the TADs through the

phenotypic outcome (meanlogFC2)

The results showed 45 statistically significant TADs
between M-CLL and U-CLL (Figure 4A, Supplemental
Table S3). The 2251 events of 45 TADs were used on PCA
and showed distinct separation of M-CLL from U-CLL
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Figure 2. Principal component analysis showing components 1 and 2 in subgroups regarding the IG SHM status based on A. the aggregated table of
evenDiff module and B. the integrated table through TADs of the TADiff module calculated the mean of the events for each TAD.

(Figure 4B). Next, we calculated the mean of the absolute
differences of the events in each TAD and performed hier-
archical clustering analysis, which revealed different activa-
tion patterns between the two groups (Figure 4C).

The most significant TAD, based on the criterion
of the p-value of the hypergeometric distribution, was
TAD2886 (Figure 4D) at chr19, 56 900 000–57 700 000 [P-
value < 0.001, mean logFC(activation) = 9.167059]. This
TAD includes 164 events (147 CpGs, 17 transcripts) of
which 37 were found to be statistically significant. Hier-
archical clustering analysis, based on 164 events, revealed
a clear separation between U-CLL and M-CLL (Figure
4E, Supplementary Figure S5) cases, therefore highlight-
ing the appropriate selection of criteria in order to suc-
cessfully detect 3D interactions. Additionally, the func-
tional analysis based on the significant events (37/160) re-
vealed significant GO terms (Figure 4F, Supplementary
Figure S6), such as regulation of transcription, but also
relevant TFs for the pathogenesis of the disease, such as
EGR2, and regulators of chromatin, such as TRIM69,

HIST1H2BN and DNMT3A (Figure 4G, Supplementary
Figure S7).

Benchmarking

For the evaluation of the tool’s computational time, twelve
different subsets of the original datasets were produced con-
taining 100, 200, 500, 1000, 2000, 5000, 10 000, 20 000, 50
000, 100 000, 200 000 and 498 832 number of rows (e.g.
events; CpG, expression, mutation etc.). All experiments
were executed on an SSD drive computer with 32GB RAM
at 2.60 GHz and a 64-bit operating system. Figure 5 shows
the compute times for each phase of InterTADs (e.g. Data
integration, Prepare methylation values, evenDiff, TADiff)
as a function of the produced datasets’ size. The functional
analysis was excluded from the computational benchmark-
ing as it is strongly affected by the response times of the data
base that are used.
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Figure 3. (A) Bar plot showing the number of the statistically significant events (x-axis, No-evenDiff) in each subgroup of the metadata. Changes on CpG
level is highlighted with orange and on gene level with blue. (B) Hierarchical cluster analysis of the 8859 events from the M-CLL/U-CLL comparison. (C)
Venn diagram showing the overlap of the TFs which showed enrichment on active and inactive region between M-CLL and U-CLL with the differentially
expressed genes between these groups. (D) 19 TFs which showed statistically significant enrichment based on the 8859 events and statistically significant
differences in the expression levels between M-CLL and U-CLL. Blue circles highlight the enriched TFs on inactive regions, red circles highlight the
enriched TFs on active regions and gray the TFs which showed enrichment on both regions. The left panel shows the motifs for each TF. (E) Bar plot
showing 31 genes which were targeted with more than three CpGs. Blue corresponds to down-regulated genes and red to up-regulated genes in expression
analysis.
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Figure 4. (A) Bar plot showing the number of the statistically significant TADs (x-axis, No TADs) in each subgroup of the metadata. (B) Principal com-
ponent analysis showing components 1 and 2 in the IGHV subgroups based on 2,251 events of 45 TADs. (C) Hierarchical cluster analysis of the 45 TADs
from the M-CLL/U-CLL comparison calculating the mean of the absolute differences of the events in each TAD. (D) Dot plot showing the statistically
significant TADs of the M-CLL/U-CLL comparison on y-axis and the −log10P-value of the hypergeometric distribution test. The color code shows the
activation of the TADs through the phenotypic outcome (mean of logFC based on gene expression levels) and the size of the dots represents the frequency
of the statistically significant events in each TAD compared the total number of events of the TAD. (E) Hierarchical cluster analysis of TAD2886 including
164 events (147 CpGs, 17 transcripts). (F) Bar plot showing the significant GO terms based on the 37/160 events of TAD2886 on y-axis and the adj-pvalue
of the GO enrichment analysis in x-axis. (G) Bar plot representing the statistically enriched TFs based on the 37/160 events of TAD2886 on y-axis and the
adj-pvalue of the enrichment analysis in x-axis. The right panel shows the motifs for each TF.

Complexity

The complexity of the proposed framework is analyzed for
every module below. For the analysis we assume that if each
statement is ‘simple’ (only involves basic operations) then
the time for each statement is constant and the total time is
also constant:O(1):

As described above, the first part of the multi-omics in-
tegration pipeline is the Data Integration phase. In order
to analyse the complexity of this module the following con-
stants are defined:

a. Nf iles : Number of files to read.
b. Nevents : Number of total events retained
c. NT ADs : Number of TADS
d. Tread : response time for reading a file
e. Tf iltering: response time for filtering events

f. TGenomicOverlap: response time for finding genomic over-
laps

Consequently, the complexity for each part of this script
is:

a. Reading the input files: O(Nf iles · Tread )
b. Filtering events: O(Nevents · Tf iltering)
c. Annotating with gene features (e.g. Gene ID, Gene loca-

tion): O(Nevents · TGenomicOverlap)
d. Annotating with TADS: O(NT ADs · Nevents ·

TGenomicOverlap)

The overall complexity of this module is estimated as fol-
lows:

O(Nf iles · Tread + Nevents · (Tf iltering

+TGenomicOverlap + NT ADs · TGenomicOverlap))
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Figure 5. Compute times for each phase of InterTADs, showing time (in seconds) as a function of the number of rows of the artificial input table.

For the second part of the pipeline, preparing methyla-
tion values module, Nsamples is defined as the number of to-
tal samples to be analyzed and the total complexity results
in O(Nsamples).

The next two phases of the pipeline are the EvenDiff and
the TADiff modules. For the EvenDiff part the following
variables are defined:

a. Nmeta–data: number of meta-data to be compared
b. Tlimma: response time for limma differential analysis

The complexity results in O(Nmeta–data·Tlimma).
In addition, for the TADiff module the following param-

eters are defined:

a. Nmeta–data: number of meta-data to be compared
b. Tlimma: response time for limma differential analysis,

which result in the complexity of O(Nmeta–data·Tlimma).

Finally, the theoretical complexity of the functional anal-
ysis phase, performed for one file, can be roughly calculated
as follows. Firstly, the following constants are defined:

a. E: number of events of the file
b. NT: number of TADs corresponding to the events
c. Ne: number of enriched terms annotated to the events
d. TEnrichr: response time of the Enrichr tool
e. TPWMEnrich: response time of the PWMEnrich tool
f. TEnsembl: response time of the Ensembl Rest API

Considering the workflow described in the Materials
and Methods section, the complexity is estimated as fol-
lows:

a. GO/KEGG enrichment part: O(NT〉TEnrichr)
b. Motif enrichment part: O(E·(TPWMEnrich·TEnsembl)
c. Analysis of each enriched term per TAD: O((NT·Ne)2)



NAR Genomics and Bioinformatics, 2022, Vol. 4, No. 1 11

Assuming that the computational time of the TAD anno-
tation and the hypergeometric distribution test is negligible
compared to the response times of the web tools, an overall
estimation of the theoretical complexity is:

O (NT · TEnrichr + E · (TPWMEnrich · TEnsembl ))

It is worth mentioning that in case the file was pro-
duced by the EvenDiff phase, the first term degenerates to
O(TEnrichr).

DISCUSSION

NGS technologies have impacted massively on the life
sciences, especially in cancer research. Through global
scientific communities and consortia, such as The Can-
cer Genome Atlas (TCGA) (48), the International Can-
cer Genome Consortium (ICGC) (49), BLUEPRINT (50)
etc., high-quality data and corresponding metadata of over
20,000 tumor genomes are available worldwide.

Despite the increasing amount of data, however, there is
no single approach to efficiently integrate multi-omics data
that originate from the same source (e.g. patient). Here we
propose a novel method, implemented as a tool named In-
terTADs, which provides a complete end-to-end framework
for the analysis of multi-omics data, that are either available
in-house or through public repositories. The implementa-
tion of InterTADs includes (i) generating a single file from
multi-omics inputs, (ii) finding significant differences in the
events and the TADs between predefined groups of interest,
(iii) performing functional analysis based on GO, KEGG
and TFBS analysis and (iv) visualizing the TADs of inter-
est and significant terms of the functional enrichment anal-
ysis. Our approach clearly supports efficient pattern discov-
ery in multi-omics data by decreasing the heterogeneity (and
therefore potential noise) across higher level organizational
units (i.e. TADs), as compared to the individual datasets/
events.

In regard to other existing tools (10), InterTADs falls
under the genome-wide approaches category, by separating
the genome into predefined segments, with TADs being the
case in study. Applying this approach, we omit the gene level
analysis and a more random windows analysis approach,
which generates sliding windows within the chromosome
by taking into account the chromatin configuration and the
high level of interactions within the TADs. Also, the users
could upload a bed file with segments of their choice instead
of the TADs file. Our proposed tool is applicable to any kind
of omics data.

By applying InterTADs on 135 CLL cases, we vali-
date our results by reproducing the outputs from previ-
ous publications, but we also suggest a new pattern dis-
covery approach through the data integration within the
TADs. In fact, initial unsupervised principal component
analysis (PCA) disclosed a distinct separation of M-CLL
from U-CLL based on the integrated table through TADs
(TADiff module) compared to individual events (evenDiff
module) which represents a biological benchmarking of
the tool considering the significance of IG SHM status as
the key biological stratifier in CLL (29–31). Moreover, the
explained variance of the PCs is increased after TADiff,

highlighting the value of the tool as a pattern discovery
approach.

In more detail, we identified clear and statistically sig-
nificant differences between events by applying the even-
Diff on the categories relating to IG SHM status and the
presence of trisomy 12. Several publications have already
highlighted the differential patterns on transcriptomics and
epigenomics layers (8,19,33–35) in these disease subgroups,
hence suggesting the biological relevance of InterTADs. Fo-
cusing on the IG SHM status, we found genes that were
targeted by more than one event, such as KCNJ2 (51),
CRY1 (51), ZNF667-AS1 (52), MYLK (51), ZAP70 (53),
all of which have been previously identified in previous re-
ports. We also observed that events of inactive regions in U-
CLL were enriched for binding sites of several TFs relevant
to B cell/CLL biology, while also showing differential ex-
pression between the two groups, including the ATF5 (54),
MYBL2 (55). Applying the TADiff module, we revealed
differentially active TADs in M-CLL and U-CLL cases.
The hierarchical clustering analysis of TAD2886, which
showed the lowest p-value (hypergeometric distribution),
revealed a clear separation of M-CLL from U-CLL cases,
including all associated events (both significant and non-
significant). These results uncover 3D interactions inside
the TADs and highlight the crucial role of specific TFs par-
ticipating in this complex interplay such as the chromatin
regulator TRIM69, HIST1H2BN and DNMT3A, as well
as genes that play a role in gene regulation i.e. members of
ZNF protein family.

InterTADs is an open-source R package, easily appli-
cable to any type of omics data. The tool is in line with
the Open Science and FAIR principles (Findable, Acces-
sible, Interoperable, Reusable) for research Software (56),
and is freely available on GitHub under an MIT license.
Altogether, InterTADs aggregates different omics data and
integrates them within TADs. The publicly available data
of multi-omics and Hi-C experiments from primary cells
are increasing (57,58) and future studies will uncover more
relevant associations of the related events within compart-
ments or TADs highlighting the importance of the Inter-
TADs tool. The user can upload the TADs displaying differ-
ences between groups (e.g. U- versus M- CLL) captured by
Hi-C and apply the tool on a supervised perspective for fur-
ther pattern discovery. Our method offers a new perspective
towards analyzing multi-omics data, by streamlining the en-
tire process, and by incorporating a meaningful represen-
tation of information structure, biological benchmarking,
pattern discovery and clear visualization options.

DATA AVAILABILITY

InterTADs is an open-source tool implemented in R and
licensed under the MIT License. The source code is freely
available from https://bio.tools/InterTADs (GitHub repo
https://github.com/BiodataAnalysisGroup/InterTADs).
The InterTADs was applied on data from a large CLL
series retrieved from from the R package BloodCancerMul-
tiOmics2017 ((https://bioconductor.org/packages/release/
data/experiment/html/BloodCancerMultiOmics2017.html)
of the Primary Cancer Cell Encyclopedia (PaCE) database
(http://pace.embl.de/), directly as data tables.

https://bio.tools/InterTADs
https://github.com/BiodataAnalysisGroup/InterTADs
https://bioconductor.org/packages/release/data/experiment/html/BloodCancerMultiOmics2017.html
http://pace.embl.de/


12 NAR Genomics and Bioinformatics, 2022, Vol. 4, No. 1

SUPPLEMENTARY DATA

Supplementary Data are available at NARGAB Online.

FUNDING

‘Hellenic Network for Precision Medicine’ in the frame-
work of the Hellenic Republic – Siemens Settlement Agree-
ment; European Regional Development Fund of the Eu-
ropean Union and Greek national funds through the Op-
erational Program Competitiveness, Entrepreneurship and
Innovation, under the call RESEARCH – CREATE – IN-
NOVATE [GenOptics, project code: T2E1DK-00407].
Conflict of interest statement. None declared.

REFERENCES
1. Lander,E.S., Linton,L.M., Birren,B., Nusbaum,C., Zody,M.C.,

Baldwin,J., Devon,K., Dewar,K., Doyle,M., FitzHugh,W. et al.
(2001) Initial sequencing and analysis of the human genome. Nature,
409, 860–921.

2. Venter,J.C., Adams,M.D., Myers,E.W., Li,P.W., Mural,R.J.,
Sutton,G.G., Smith,H.O., Yandell,M., Evans,C.A., Holt,R.A. et al.
(2001) The sequence of the human genome. Science, 291, 1304–1351.

3. Head,S.R., Komori,H.K., LaMere,S.A., Whisenant,T., Van
Nieuwerburgh,F., Salomon,D.R. and Ordoukhanian,P. (2014)
Library construction for next-generation sequencing: overviews and
challenges. Biotechniques, 56, 61–64.

4. He,K.Y., Ge,D. and He,M.M. (2017) Big data analytics for genomic
medicine. Int. J. Mol. Sci., 18, 412.

5. Han,Y., Gao,S., Muegge,K., Zhang,W. and Zhou,B. (2015) Advanced
applications of RNA sequencing and challenges. Bioinform. Biol.
Insights, 9, 29–46.

6. He,W., Ju,D., Jie,Z., Zhang,A., Xing,X. and Yang,Q. (2018) Aberrant
cpg-methylation affects genes expression predicting survival in lung
adenocarcinoma. Cancer Med., 7, 5716–5726.

7. Del Real,A., Perez-Campo,F.M., Fernandez,A.F., Sanudo,C.,
Ibarbia,C.G., Perez-Nunez,M.I., Criekinge,W.V., Braspenning,M.,
Alonso,M.A., Fraga,M.F. et al. (2017) Differential analysis of
genome-wide methylation and gene expression in mesenchymal stem
cells of patients with fractures and osteoarthritis. Epigenetics, 12,
113–122.

8. Kulis,M., Heath,S., Bibikova,M., Queiros,A.C., Navarro,A., Clot,G.,
Martinez-Trillos,A., Castellano,G., Brun-Heath,I., Pinyol,M. et al.
(2012) Epigenomic analysis detects widespread gene-body DNA
hypomethylation in chronic lymphocytic leukemia. Nat. Genet., 44,
1236–1242.

9. Wagner,J.R., Busche,S., Ge,B., Kwan,T., Pastinen,T. and
Blanchette,M. (2014) The relationship between DNA methylation,
genetic and expression inter-individual variation in untransformed
human fibroblasts. Genome Biol., 15, R37.

10. Misra,B.B., Langefeld,C.D., Olivier,M. and Cox,L.A. (2018)
Integrated omics: tools, advances, and future approaches. J. Mol.
Endocrinol., 62, R21–R45.

11. Sathyanarayanan,A., Gupta,R., Thompson,E.W., Nyholt,D.R.,
Bauer,D.C. and Nagaraj,S.H. (2019) A comparative study of
multi-omics integration tools for cancer driver gene identification and
tumour subtyping. Brief Bioinform., 21, 1920-1936.

12. Kim,S.Y., Jeong,H.H., Kim,J., Moon,J.H. and Sohn,K.A. (2019)
Robust pathway-based multi-omics data integration using directed
random walks for survival prediction in multiple cancer studies. Biol.
Direct., 14, 8.

13. Paczkowska,M., Barenboim,J., Sintupisut,N., Fox,N.S., Zhu,H.,
Abd-Rabbo,D., Mee,M.W., Boutros,P.C., Drivers,P., Functional
Interpretation Working, G. et al. (2020) Integrative pathway
enrichment analysis of multivariate omics data. Nat. Commun., 11,
735.

14. Dixon,J.R., Selvaraj,S., Yue,F., Kim,A., Li,Y., Shen,Y., Hu,M.,
Liu,J.S. and Ren,B. (2012) Topological domains in mammalian
genomes identified by analysis of chromatin interactions. Nature, 485,
376–380.

15. Vietri Rudan,M., Barrington,C., Henderson,S., Ernst,C., Odom,D.T.,
Tanay,A. and Hadjur,S. (2015) Comparative Hi-C reveals that CTCF
underlies evolution of chromosomal domain architecture. Cell Rep.,
10, 1297–1309.

16. Speedy,H.E., Beekman,R., Chapaprieta,V., Orlando,G., Law,P.J.,
Martin-Garcia,D., Gutierrez-Abril,J., Catovsky,D., Bea,S., Clot,G.
et al. (2019) Insight into genetic predisposition to chronic lymphocytic
leukemia from integrative epigenomics. Nat. Commun., 10, 3615.

17. Weischenfeldt,J., Dubash,T., Drainas,A.P., Mardin,B.R., Chen,Y.,
Stutz,A.M., Waszak,S.M., Bosco,G., Halvorsen,A.R., Raeder,B.
et al. (2017) Pan-cancer analysis of somatic copy-number alterations
implicates IRS4 and IGF2 in enhancer hijacking. Nat. Genet., 49,
65–74.

18. Tsagiopoulou,M., Chapaprieta,V., Duran-Ferrer,M., Moysiadis,T.,
Psomopoulos,F., Kollia,P., Papakonstantinou,N., Campo,E.,
Stamatopoulos,K. and Martin-Subero,J.I. (2020) Chronic
lymphocytic leukemias with trisomy 12 show a distinct DNA
methylation profile linked to altered chromatin activation.
Haematologica, 105, 2864–2867.

19. Paulsen,J., Liyakat Ali,T.M., Nekrasov,M., Delbarre,E.,
Baudement,M.O., Kurscheid,S., Tremethick,D. and Collas,P. (2019)
Long-range interactions between topologically associating domains
shape the four-dimensional genome during differentiation. Nat.
Genet., 51, 835–843.

20. Kanehisa,M. and Goto,S. (2000) KEGG: kyoto encyclopedia of
genes and genomes. Nucleic Acids Res., 28, 27–30.

21. Ashburner,M., Ball,C.A., Blake,J.A., Botstein,D., Butler,H.,
Cherry,J.M., Davis,A.P., Dolinski,K., Dwight,S.S., Eppig,J.T. et al.
(2000) Gene ontology: tool for the unification of biology. The gene
ontology consortium. Nat. Genet., 25, 25–29.

22. Papakonstantinou,N., Ntoufa,S., Tsagiopoulou,M., Moysiadis,T.,
Bhoi,S., Malousi,A., Psomopoulos,F., Mansouri,L., Laidou,S.,
Papazoglou,D. et al. (2019) Integrated epigenomic and transcriptomic
analysis reveals TP63 as a novel player in clinically aggressive chronic
lymphocytic leukemia. Int. J. Cancer, 144, 2695–2706.

23. Kipps,T.J., Stevenson,F.K., Wu,C.J., Croce,C.M., Packham,G.,
Wierda,W.G., O’Brien,S., Gribben,J. and Rai,K. (2017) Chronic
lymphocytic leukaemia. Nat. Rev. Dis. Primers, 3, 17008.

24. Guieze,R. and Wu,C.J. (2015) Genomic and epigenomic
heterogeneity in chronic lymphocytic leukemia. Blood, 126, 445–453.

25. Tsagiopoulou,M., Papakonstantinou,N., Moysiadis,T., Mansouri,L.,
Ljungstrom,V., Duran-Ferrer,M., Malousi,A., Queiros,A.C.,
Plevova,K., Bhoi,S. et al. (2019) DNA methylation profiles in chronic
lymphocytic leukemia patients treated with chemoimmunotherapy.
Clin. Epigenetics, 11, 177.

26. Baliakas,P., Mattsson,M., Stamatopoulos,K. and Rosenquist,R.
(2016) Prognostic indices in chronic lymphocytic leukaemia: where do
we stand how do we proceed? J. Int. Med., 279, 347–357.

27. Ghia,P., Chiorazzi,N. and Stamatopoulos,K. (2008)
Microenvironmental influences in chronic lymphocytic leukaemia:
the role of antigen stimulation. J. Int. Med., 264, 549–562.

28. Chiorazzi,N. and Ferrarini,M. (2011) Cellular origin(s) of chronic
lymphocytic leukemia: cautionary notes and additional
considerations and possibilities. Blood, 117, 1781–1791.

29. Fais,F., Ghiotto,F., Hashimoto,S., Sellars,B., Valetto,A., Allen,S.L.,
Schulman,P., Vinciguerra,V.P., Rai,K., Rassenti,L.Z. et al. (1998)
Chronic lymphocytic leukemia b cells express restricted sets of
mutated and unmutated antigen receptors. J. Clin. Invest., 102,
1515–1525.

30. Chiorazzi,N. and Ferrarini,M. (2003) B cell chronic lymphocytic
leukemia: lessons learned from studies of the b cell antigen receptor.
Ann. Rev. Immunol., 21, 841–894.

31. Hamblin,T.J., Davis,Z., Gardiner,A., Oscier,D.G. and Stevenson,F.K.
(1999) Unmutated ig V(H) genes are associated with a more
aggressive form of chronic lymphocytic leukemia. Blood, 94,
1848–1854.

32. Dohner,H., Stilgenbauer,S., Benner,A., Leupolt,E., Krober,A.,
Bullinger,L., Dohner,K., Bentz,M. and Lichter,P. (2000) Genomic
aberrations and survival in chronic lymphocytic leukemia. N. Engl. J.
Med., 343, 1910–1916.

33. Baliakas,P., Hadzidimitriou,A., Sutton,L.A., Rossi,D., Minga,E.,
Villamor,N., Larrayoz,M., Kminkova,J., Agathangelidis,A., Davis,Z.
et al. (2015) Recurrent mutations refine prognosis in chronic
lymphocytic leukemia. Leukemia, 29, 329–336.

https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqab121#supplementary-data


NAR Genomics and Bioinformatics, 2022, Vol. 4, No. 1 13

34. Landau,D.A., Tausch,E., Taylor-Weiner,A.N., Stewart,C.,
Reiter,J.G., Bahlo,J., Kluth,S., Bozic,I., Lawrence,M., Bottcher,S.
et al. (2015) Mutations driving CLL and their evolution in
progression and relapse. Nature, 526, 525–530.

35. Puente,X.S., Bea,S., Valdes-Mas,R., Villamor,N., Gutierrez-Abril,J.,
Martin-Subero,J.I., Munar,M., Rubio-Perez,C., Jares,P.,
Aymerich,M. et al. (2015) Non-coding recurrent mutations in chronic
lymphocytic leukaemia. Nature, 526, 519–524.

36. Beekman,R., Chapaprieta,V., Russinol,N., Vilarrasa-Blasi,R.,
Verdaguer-Dot,N., Martens,J.H.A., Duran-Ferrer,M., Kulis,M.,
Serra,F., Javierre,B.M. et al. (2018) The reference epigenome and
regulatory chromatin landscape of chronic lymphocytic leukemia.
Nat. Med., 24, 868–880.

37. Oakes,C.C., Seifert,M., Assenov,Y., Gu,L., Przekopowitz,M.,
Ruppert,A.S., Wang,Q., Imbusch,C.D., Serva,A., Koser,S.D. et al.
(2016) DNA methylation dynamics during b cell maturation underlie
a continuum of disease phenotypes in chronic lymphocytic leukemia.
Nat. Genet., 48, 253–264.

38. Tsagiopoulou,M., Chapaprieta,V., Duran-Ferrer,M., Moysiadis,T.,
Psomopoulos,F., Kollia,P., Papakonstantinou,N., Campo,E.,
Stamatopoulos,K. and Martin-Subero,J.I. (2020) Chronic
lymphocytic leukemias with trisomy 12 show a distinct DNA
methylation profile linked to altered chromatin activation.
Haematologica., 105, 2864–2867.

39. Kim,D., Langmead,B. and Salzberg,S.L. (2015) HISAT: a fast spliced
aligner with low memory requirements. Nat. Methods, 12, 357–360.

40. Zhang,Y., Liu,T., Meyer,C.A., Eeckhoute,J., Johnson,D.S.,
Bernstein,B.E., Nusbaum,C., Myers,R.M., Brown,M., Li,W. et al.
(2008) Model-based analysis of chip-Seq (MACS). Genome Biol., 9,
R137.

41. Aryee,M.J., Jaffe,A.E., Corrada-Bravo,H., Ladd-Acosta,C.,
Feinberg,A.P., Hansen,K.D. and Irizarry,R.A. (2014) Minfi: a flexible
and comprehensive bioconductor package for the analysis of infinium
DNA methylation microarrays. Bioinformatics, 30, 1363–1369.

42. DePristo,M.A., Banks,E., Poplin,R., Garimella,K.V., Maguire,J.R.,
Hartl,C., Philippakis,A.A., Angel,G., Rivas,M.A., Hanna,M. et al.
(2011) A framework for variation discovery and genotyping using
next-generation DNA sequencing data. Nat. Genet., 43, 491–498.

43. Ritchie,M.E., Phipson,B., Wu,D., Hu,Y., Law,C.W., Shi,W. and
Smyth,G.K. (2015) limma powers differential expression analyses for
RNA-sequencing and microarray studies. Nucleic Acids Res., 43, e47.

44. Kuleshov,M.V., Jones,M.R., Rouillard,A.D., Fernandez,N.F.,
Duan,Q., Wang,Z., Koplev,S., Jenkins,S.L., Jagodnik,K.M.,
Lachmann,A. et al. (2016) Enrichr: a comprehensive gene set
enrichment analysis web server 2016 update. Nucleic Acids Res., 44,
W90–W97.

45. Yates,A., Beal,K., Keenan,S., McLaren,W., Pignatelli,M.,
Ritchie,G.R., Ruffier,M., Taylor,K., Vullo,A. and Flicek,P. (2015)
The ensembl REST API: ensembl data for any language.
Bioinformatics, 31, 143–145.

46. Lawrence,M., Huber,W., Pages,H., Aboyoun,P., Carlson,M.,
Gentleman,R., Morgan,M.T. and Carey,V.J. (2013) Software for
computing and annotating genomic ranges. PLoS Comput. Biol., 9,
e1003118.

47. Gel,B. and Serra,E. (2017) karyoploteR: an R/Bioconductor package
to plot customizable genomes displaying arbitrary data.
Bioinformatics, 33, 3088–3090.

48. Tomczak,K., Czerwinska,P. and Wiznerowicz,M. (2015) The cancer
genome atlas (TCGA): an immeasurable source of knowledge.
Contemp. Oncol. (Pozn), 19, A68–A77.

49. International Cancer Genome,C., Hudson,T.J., Anderson,W.,
Artez,A., Barker,A.D., Bell,C., Bernabe,R.R., Bhan,M.K., Calvo,F.,
Eerola,I. et al. (2010) International network of cancer genome
projects. Nature, 464, 993–998.

50. Martens,J.H. and Stunnenberg,H.G. (2013) BLUEPRINT: mapping
human blood cell epigenomes. Haematologica, 98, 1487–1489.

51. Rani,L., Mathur,N., Gupta,R., Gogia,A., Kaur,G., Dhanjal,J.K.,
Sundar,D., Kumar,L. and Sharma,A. (2017) Genome-wide DNA
methylation profiling integrated with gene expression profiling
identifies PAX9 as a novel prognostic marker in chronic lymphocytic
leukemia. Clin. Epigenetics, 9, 57.

52. El-Khazragy,N., Esmaiel,M.A., Mohamed,M.M. and Hassan,N.S.
(2020) Upregulation of long noncoding RNA lnc-irf2-3 and
lnc-znf667-as1 is associated with poor survival in B-chronic
lymphocytic leukemia. Int. J. Lab. Hematol., 42, 284–291.

53. Corcoran,M., Parker,A., Orchard,J., Davis,Z., Wirtz,M.,
Schmitz,O.J. and Oscier,D. (2005) ZAP-70 methylation status is
associated with ZAP-70 expression status in chronic lymphocytic
leukemia. Haematologica, 90, 1078–1088.

54. Mittal,A.K., Hegde,G.V., Aoun,P., Bociek,R.G., Dave,B.J.,
Joshi,A.D., Sanger,W.G., Weisenburger,D.D. and Joshi,S.S. (2007)
Molecular basis of aggressive disease in chronic lymphocytic
leukemia patients with 11q deletion and trisomy 12 chromosomal
abnormalities. Int. J. Mol. Med., 20, 461–469.

55. Musa,J., Aynaud,M.M., Mirabeau,O., Delattre,O. and
Grunewald,T.G. (2017) MYBL2 (B-Myb): a central regulator of cell
proliferation, cell survival and differentiation involved in
tumorigenesis. Cell Death Dis., 8, e2895.

56. Lamprecht,A.-L., Garcia,L., Kuzak,M., Martinez,C., Arcila,R.,
Martin Del Pico,E., Dominguez Del Angel,V., van de Sandt,S.,
Ison,J., Martinez,P.A. et al. (2020) Towards FAIR principles for
research software. Data Sci., 3, 37–59.

57. Vilarrasa-Blasi,R., Soler-Vila,P., Verdaguer-Dot,N., Russinol,N., Di
Stefano,M., Chapaprieta,V., Clot,G., Farabella,I., Cusco,P., Kulis,M.
et al. (2021) Dynamics of genome architecture and chromatin
function during human b cell differentiation and neoplastic
transformation. Nat. Commun., 12, 651.

58. Mallm,J.P., Iskar,M., Ishaque,N., Klett,L.C., Kugler,S.J.,
Muino,J.M., Teif,V.B., Poos,A.M., Grossmann,S., Erdel,F. et al.
(2019) Linking aberrant chromatin features in chronic lymphocytic
leukemia to transcription factor networks. Mol. Syst Biol., 15, e8339.

59. The gene ontology resource: enriching a GOld mine. Nucleic Acids
Res.,2021;49:D325–D334.

60. Kanehisa,M. and Goto,S. (2000) KEGG: kyoto encyclopedia of
genes and genomes. Nucleic Acids Res., 28, 27–30.

61. Kanehisa,M. (2019) Toward understanding the origin and evolution
of cellular organisms. Protein Sci., 28, 1947–1951.

62. Kanehisa,M., Furumichi,M., Sato,Y., Ishiguro-Watanabe,M. and
Tanabe,M. (2021) KEGG: integrating viruses and cellular organisms.
Nucleic Acids Res., 49, D545–D551.

63. Kuleshov,M.V., Jones,M.R., Rouillard,A.D., Fernandez,N.F.,
Duan,Q., Wang,Z., Koplev,S., Jenkins,S.L., Jagodnik,K.M.,
Lachmann,A. et al. (2016) Enrichr: a comprehensive gene set
enrichment analysis web server 2016 update. Nucleic Acids Res., 44,
W90–W97.

64. Xie,Z., Bailey,A, Kuleshov,M.V., Clarke,D.J.B., Evangelista,J.E.,
Jenkins,S.L., Lachmann,A., Wojciechowicz,M.L., Kropiwnicki,E.,
Jagodnik,K.M. et al. (2021) Gene set knowledge discovery with
enrichr. Curr. Prot., 1, e90.

65. Stojnic,R. and Diez,D. (2020) PWMEnrich: PWM enrichment
analysis. R package version 4.26.0.


