
F1000Research

Open Peer Review

, University of QueenslandLynn Fink

Australia

, University of California LosHilary Coller

Angeles USA

, University of Dundee UKChristian Cole

Discuss this article

 (0)Comments

3

2

1

SOFTWARE TOOL ARTICLE

 pyGeno: A Python package for precision medicine and
 proteogenomics [version 2; referees: 1 approved, 2 approved

with reservations]
Tariq Daouda , Claude Perreault , Sébastien Lemieux1,5

Institute for Research in Immunology and Cancer, Université de Montréal, Montreal, Canada
Department of Biochemistry, Faculty of Medicine, Université de Montréal, Montreal, Canada
Division of Hematology, Hôpital Maisonneuve-Rosemont, Montreal, Canada
Department of Medicine, Faculty of Medicine, Université de Montréal, Montreal, Canada
Department of Computer Science and Operations Research, Faculty of Arts and Sciences, Université de Montréal, Montreal, Canada

Abstract
pyGeno is a Python package mainly intended for precision medicine
applications that revolve around genomics and proteomics. It integrates
reference sequences and annotations from Ensembl, genomic polymorphisms
from the dbSNP database and data from next-gen sequencing into an easy to
use, memory-efficient and fast framework, therefore allowing the user to easily
explore subject-specific genomes and proteomes. Compared to a standalone
program, pyGeno gives the user access to the complete expressivity of Python,
a general programming language. Its range of application therefore
encompasses both short scripts and large scale genome-wide studies.

1,2 1,3,4 1,5

1

2

3

4

5

 Referee Status:

 Invited Referees

version 2
published
10 May 2016

version 1
published
21 Mar 2016

 1 2 3

report report report

 21 Mar 2016, :381 (doi:)First published: 5 10.12688/f1000research.8251.1
 10 May 2016, :381 (doi:)Latest published: 5 10.12688/f1000research.8251.2

v2

Page 1 of 8

F1000Research 2016, 5:381 Last updated: 13 SEP 2016

http://f1000research.com/articles/5-381/v2
http://f1000research.com/articles/5-381/v2
http://f1000research.com/articles/5-381/v2
http://f1000research.com/articles/5-381/v1
http://dx.doi.org/10.12688/f1000research.8251.1
http://dx.doi.org/10.12688/f1000research.8251.2
http://crossmark.crossref.org/dialog/?doi=10.12688/f1000research.8251.2&domain=pdf&date_stamp=2016-05-10

F1000Research

 Tariq Daouda (), Sébastien Lemieux ()Corresponding authors: tariq.daouda@umontreal.ca s.lemieux@umontreal.ca
 Daouda T, Perreault C and Lemieux S. How to cite this article: pyGeno: A Python package for precision medicine and proteogenomics

 2016, :381 (doi:)[version 2; referees: 1 approved, 2 approved with reservations] F1000Research 5 10.12688/f1000research.8251.2
 © 2016 Daouda T . This is an open access article distributed under the terms of the , whichCopyright: et al Creative Commons Attribution Licence

permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
 This work was supported by the Canadian Cancer Society (Grant number 701564), assigned to Claude Perreault. Grant information:

The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

 Competing interests: No competing interests were disclosed.

 21 Mar 2016, :381 (doi:) First published: 5 10.12688/f1000research.8251.1

Page 2 of 8

F1000Research 2016, 5:381 Last updated: 13 SEP 2016

http://dx.doi.org/10.12688/f1000research.8251.2
http://creativecommons.org/licenses/by/4.0/
http://dx.doi.org/10.12688/f1000research.8251.1

Introduction
High-throughput systems biology and precision medicine applica-
tions require the integration of data from many different sources. For
instance, a significant part of precision medicine research revolves
around the identification of relevant single nucleotide polymor-
phisms (SNPs) and insertions/deletions (INDELS) and the study of
their context1. Furthermore recent studies in proteogenomics show
that replacing traditional reference databases such as Uniprot2 by
customized databases that integrate the subject’s genomic poly-
morphisms, can significantly improve the identification of peptides
or proteins using mass spectrometry3–6. These applications usually
require the integration of reference sequences, reference genome
annotations, specific SNPs and INDELs along with an external SNP
database such as dbSNP7 for validation. The sheer amount of data
generated by theses studies rules out most spreadsheet analyses and
requires tools that are both fast and memory efficient. Furthermore,
these studies often require the collaboration of people with differ-
ent sets of skills. Thus, it was important to us to develop a tool that
is powerful enough to be integrated in complex high-throughput
pipelines, while still being understandable by users with limited
technical abilities. In contrast to other projects such as BioPython8
and PyCogent9 whose objective is to provide a general set of tools
for bioinformatics, the primarily ambition behind pyGeno is to
provide the community with a powerful genome and proteome
exploration tool that can be easily integrated into scripts. The
current version integrates gene set annotations and reference
sequences from Ensembl10 along with polymorphisms (both SNPs
and INDELs) derived from dbSNP7, and experimentally detected
patient-specific polymorphisms.

To our knowledge pyGeno is the only available tool that provides
this kind of integration in an easy-to-use and programming-friendly
environment. Furthermore, more advanced users can rely on object-
oriented inheritance to extend the functionalities of pyGeno to
implement support for polymorphisms from other sources. pyGeno
has been used with human and mouse genomes and should read-
ily work with any diploid organism whose annotations are made
available by Ensembl.

Methods
Design and implementation
pyGeno is written in Python, a language that enjoys a large set
of well established and mature scientific libraries that are used in
research fields such as physics, mathematics and bioinformatics8,11–13.
pyGeno gives users access to the full expressivity of Python to
explore reference and patient-specific genomes and proteomes,
by manipulating familiar objects such as genomes, chromosomes,
genes, transcripts, proteins and exons. In order to make pyGeno

as easy to use and learn as possible, we have created an interface
where only one function, get(), can be used for almost any query.
An example of usage can be seen in Figure 1. An integrated docu-
mentation is also available through the help() function.

The current version of pyGeno does not require any access to
remote REST APIs. This results in more robust and faster process-
ing since the application is not affected by connection speed or
sudden changes to the server API. On the other hand it also implies
that extra care must be taken regarding the optimization of the
application.

Memory efficiency and speed are mainly achieved through the
use of a custom lazy object-oriented database system that we have
specifically written for pyGeno (https://github.com/tariqdaouda/
rabaDB). When an object is loaded through the get() function,
only a minimal version of it is served. The object fully develops
only once the user accesses a field that is not present in the mini-
mal version (Figure 1). The transformation is entirely transparent
and does not require more memory than necessary to store the
fully developed object. This is especially important, since most
of the time users are only interested in specific regions of the
genome, and do not require that the full genome be loaded into
memory. Every loaded object is also a singleton, if the user asks
for a previously loaded object, pyGeno will serve the object in
memory.

Furthermore, this database system is built on top of SQLite
version 3 (http://www.sqlite.org/), a serverless relational database.
Because SQLite3 uses single files to store data, pyGeno’s
database can be easily backed up and shared by a simple
copy/paste. Moreover, the files can be directly read, modified and
analyzed through any SQLite3 client.

As with any other database system, indexes play a crucial role in
determining the general performance. Within pyGeno’s database,
several reference genomes along with patient-specific data and
versions of dbSNP can coexist. Therefore building indexes
for all the stored information would result in unnecessarily
large databases. We therefore have taken the approach of giving
the end user full control over indexation through the
ensureGlobalIndex() and dropGlobalIndex() functions. Users can,
for example, decide to index the field ’id’ of transcripts by using
Transcript.ensureGlobalIndex(’id’) and dramatically improve
queries based on transcript ids.

pyGeno’s database is populated through imports of datawraps
using importSNPs and importGenome functions. Datawraps are
compressed archives that can be shared among co-workers, and are
designed to solve the version and update problems. A datawrap con-
tains at least one file named manifest.ini that contains basic infor-
mation about the package such as a description, a version and a
maintainer, as well a list of files from which data must be extracted.
It is possible to either compress these files within the archive, or to
specify URLs from which the files can be downloaded.

            Amendments from Version 1

Updated the archived source code link to correspond to the last
version since the original publication 1.2.8.

See referee reports

REVISED

Page 3 of 8

F1000Research 2016, 5:381 Last updated: 13 SEP 2016

https://github.com/tariqdaouda/rabaDB
https://github.com/tariqdaouda/rabaDB
http://www.sqlite.org/

In an effort to make pyGeno as easy to install as possible we have
made it as dependency-free as possible. This approach has moti-
vated our choice for SQLite3, since it is natively supported by
Python 2.5 and above, and it also lead us to develop many tools that
were subsequently integrated into pyGeno. Among theses tools are
various functions for translating sequences, parsers for GTF/GFF,
VCF, FASTA, FASTQ and CSV files, a progress bar, and an effi-
cient way of annotating the genome called segment trees.

Personalized genomes
One of the biggest strengths of pyGeno is to allow the user to define
personalized genomes. These genomes are built by combining a
reference genome with sets of polymorphisms and a filtering func-
tion that returns the alleles to be inserted at the appropriate locus
(Figure 1). Personalized genomes are a powerful tool that can go
beyond the definition of patient-specific genomes. For instance,
we recently used this tool to combine the results of both RNA-
and DNA-seq data and create more robust personalized genomes
that were used to identify protein-derived peptides by mass
spectrometry3. Furthermore because pyGeno loads the necessary
parts of a given reference genome only once, a pyGeno applica-
tion can handle several personalized genomes without significantly
increasing its memory consumption.

Operation
pyGeno’s only requirement is Python2 and we highly recommend
version 2.7.6 or later. pyGeno can be easily installed using the pip
package manager (https://pip.pypa.io/) by typing pip install pyGeno
into command line interface. Alternatively the latest developments
can be obtained from the github repository. Once pyGeno’s instal-
lation has been completed, the first action that users must perform
is the importation of a reference genome datawrap. In order to sim-
plify the process pyGeno comes with several datawraps that can be
directly listed and installed using its bootstrap module. If the desired
reference genome is not among the ones provided, users also have
the possibility to create their own from scratch by following the steps
described in the documentation. After the first reference genome
importation, pyGeno is fully functional and users can further expand
its database by importing other reference genomes or SNP sets.

Summary
We have developed pyGeno because, in an age where both precision
medicine and DNA/RNA sequencing are becoming more and more
important, we needed a tool that would allow us to easily work on
personalized genomes that include subject-specific genomic fea-
tures. Nowadays research teams are increasingly multidisciplinary
and are composed of people with very different backgrounds. Since
we wanted pyGeno to serve as a common language between users,
we therefore took great care in making pyGeno easy to install, easy
to use and optimized it so it can run on computers with limited
resources (eg. laptops). The fact that pyGeno has been downloaded
more than 12,000 times over its first year of existence suggests that
there is indeed a need for powerful user-friendly precision medi-
cine tools. With pyGeno we have taken a rather unusual approach to
user-friendliness. Instead of writing a program with a graphical user
interface (GUI), we have decided to create a Python module that
fully integrates within the Python environment. This ensures that
users can leverage the full expressiveness of Python as well as the
functionalities of other python modules such as SciPy and numpy11,

prot1 = G1.get(Protein,
 id = "ENSP...")

print prot1.sequence

MRLSVRRVLLAAGCALVLVLAVQLGQQ
VLECRAVLAGLRSPRGAMRPEQEELVM
VGTNHVEYRYGKAMPLIFVGGVPRSGT
TLMRAMLDAHPEVRCGEETRIIPRVLA
MRQAWSKSGREKLRLDEAGVTDEVLDA
AMQAFILEVIAKHGEPARVLCNKDPFT
LKSSVYLSRLFP

G1 = Genome(name = "GRCh37.75",

 SNPs = ["P1_RNA"],

 SNPFilter = myFilter())

DBG1

B

A

C

D

Translation

prot1 DB

prot1

name
id
sequence
transcript
gene
chromosome
genome

prot1

name
id
sequence
transcript
gene
chromosome
genome

prot1

name
id
sequence
transcript
gene
chromosome
genome

myFilter

Splicing

DB

Figure 1. Extracting the subject-specific sequence of a protein. 
(A) Here we instantiate a personalized genome G1 by providing
the Genome constructor with the name of a reference genome, a
set of polymorphisms and a user defined SNP filter (for example
a quality filter). (B) We then ask the get function of G1 to return a
protein by id. The result is an object where only the fields in bold
are fully loaded, other fields will be automatically loaded when and
if accessed. (C) Asking for the currently unloaded sequence of the
protein triggers the following sequence of events. The transcript, as
well as the exons that encode for it, and any polymorphisms in their
regions are loaded. The polymorphisms are filtered according to the
filter provided to the genome constructor (for example, according to
sequencing quality) and inserted at their corresponding locations.
The exons are then assembled into the transcript sequence and the
sequence is translated. (D) The sequence as well as the transcript
are now fully loaded and the sequence of the precision protein is
printed.

Page 4 of 8

F1000Research 2016, 5:381 Last updated: 13 SEP 2016

https://pip.pypa.io/

pandas (http://pandas.pydata.org/) and matplotlib13, to meet their
specific needs. Furthermore, it led us to think of the functions and
objects the user manipulates as pyGeno’s interface and we strived
to make it as simple and easy to learn as possible.

In the past few years great technologies have been developed.
Scripting languages such as Python and JavaScript have taken
programming to a whole new level of simplicity, and are now
fast enough to serve as foundations to large-scale projects. Freely
available libraries such as D3.js (http://d3js.org/) allow for the crea-
tion of stunning data representations, that once coupled with tools
such as pyGeno, could be used to create powerful interactive repre-
sentations of biological data. The NoSQL movement has produced
several new database systems from which developers can choose,
offering them the opportunity to store sheer amounts of data with
a flexibility that was not present only a few years ago. These tech-
nologies and many others are only waiting to be put together into
ground breaking tools for the treatment of biological data. In life
saving research areas, we believe that great tools that dramatically
improve workflow efficiency are not a luxury but a necessity.

Software availability
1. pyGeno is available from the Python Package Index (PyPI;

https://pypi.python.org) via: pip install pyGeno.

2. Latest source code: https://github.com/tariqdaouda/pyGeno.

3. Documentation: http://pyGeno.iric.ca

4. Link to archived source code as at time of publication: https://
zenodo.org/record/50587#.VyIP0UErJB0 (doi:10.5281/zen-
odo.50587)

5. License: Apache License Version 2.0

Author contributions
TD designed and developed pyGeno. SL, CP, and TD contributed
to the preparation of the manuscript. All authors were involved in
the revision of the draft manuscript and have agreed to the final
content.

Competing interests
No competing interests were disclosed.

Grant information
This work was supported by the Canadian Cancer Society (Grant
number 701564), assigned to Claude Perreault.

The funders had no role in study design, data collection and analysis,
decision to publish, or preparation of the manuscript.

Acknowledgments
We would like to thank Jean-Philippe Laverdure, Céline Laumont
and Hillary Pearson for being the first users (outside of the devel-
oper) and the first testers of pyGeno.

References

1. Collins FS, Varmus H: A new initiative on precision medicine. N Engl J Med.
2015; 372(9): 793–795.
PubMed Abstract | Publisher Full Text 

2. Uniprot Consortium: Update on activities at the Universal Protein Resource 
(UniProt) in 2013. Nucleic Acids Res. 2013; 41(Database issue): D43–47.
PubMed Abstract | Publisher Full Text | Free Full Text 

3. Granados DP, Sriranganadane D, Daouda T, et al.: Impact of genomic 
polymorphisms on the repertoire of human MHC class I-associated peptides.
Nat Commun. 2014; 5: 3600.
PubMed Abstract | Publisher Full Text | Free Full Text 

4. Kim MS, Pinto SM, Getnet D, et al.: A draft map of the human proteome. Nature.
2014; 509(7502): 575–581.
PubMed Abstract | Publisher Full Text | Free Full Text 

5. Wilhelm M, Schlegl J, Hahne H, et al.: Mass-spectrometry-based draft of the 
human proteome. Nature. 2014; 509(7502): 582–587.
PubMed Abstract | Publisher Full Text 

6. Laumont CM, Daouda T, Laverdure JP, et al.: Global proteogenomic analysis of 
human MHC class I-associated peptides derived from non-canonical reading 
frames. Nat Commun. 2016; 7: 10238.
PubMed Abstract | Publisher Full Text 

7. Sherry ST, Ward MH, Kholodov M, et al.: dbSNP: the NCBI database of genetic 

variation. Nucleic Acids Res. 2001; 29(1): 308–311.
PubMed Abstract | Publisher Full Text | Free Full Text 

8. Cock PJ, Antao T, Chang JT, et al.: Biopython: freely available Python tools 
for computational molecular biology and bioinformatics. Bioinformatics. 2009;
25(11): 1422–1423.
PubMed Abstract | Publisher Full Text | Free Full Text 

9. Knight R, Maxwell P, Birmingham A, et al.: PyCogent: a toolkit for making sense 
from sequence. Genome Biol. 2007; 8(8): R171.
PubMed Abstract | Publisher Full Text | Free Full Text 

10. Flicek P, Amode MR, Barrell D, et al.: Ensembl 2014. Nucleic Acids Res. 2014;
42(Database issue): D749–D755.
PubMed Abstract | Publisher Full Text | Free Full Text 

11. Jones E, Oliphant T, Peterson P, et al.: SciPy: Open source scientific tools for 
Python. 2001; [Online; accessed 2016-02-22].
Reference Source

12. SymPy Development Team: SymPy: Python library for symbolic mathematics.
2014.
Reference Source

13. Hunter JD: Matplotlib: A 2d graphics environment. Comput Sci Eng. 2007; 9(3):
90–95.
Publisher Full Text 

Page 5 of 8

F1000Research 2016, 5:381 Last updated: 13 SEP 2016

http://pandas.pydata.org/
http://d3js.org/
https://pypi.python.org
https://github.com/tariqdaouda/pyGeno
http://pyGeno.iric.ca
https://zenodo.org/record/50587#.VyIP0UErJB0
https://zenodo.org/record/50587#.VyIP0UErJB0
http://dx.doi.org/10.5281/zenodo.50587
http://dx.doi.org/10.5281/zenodo.50587
http://www.ncbi.nlm.nih.gov/pubmed/25635347
http://dx.doi.org/10.1056/NEJMp1500523
http://www.ncbi.nlm.nih.gov/pubmed/23161681
http://dx.doi.org/10.1093/nar/gks1068
http://www.ncbi.nlm.nih.gov/pmc/articles/3531094
http://www.ncbi.nlm.nih.gov/pubmed/24714562
http://dx.doi.org/10.1038/ncomms4600
http://www.ncbi.nlm.nih.gov/pmc/articles/3996541
http://www.ncbi.nlm.nih.gov/pubmed/24870542
http://dx.doi.org/10.1038/nature13302
http://www.ncbi.nlm.nih.gov/pmc/articles/4403737
http://www.ncbi.nlm.nih.gov/pubmed/24870543
http://dx.doi.org/10.1038/nature13319
http://www.ncbi.nlm.nih.gov/pubmed/26728094
http://dx.doi.org/10.1038/ncomms10238
http://www.ncbi.nlm.nih.gov/pubmed/11125122
http://dx.doi.org/10.1093/nar/29.1.308
http://www.ncbi.nlm.nih.gov/pmc/articles/29783
http://www.ncbi.nlm.nih.gov/pubmed/19304878
http://dx.doi.org/10.1093/bioinformatics/btp163
http://www.ncbi.nlm.nih.gov/pmc/articles/2682512
http://www.ncbi.nlm.nih.gov/pubmed/17708774
http://dx.doi.org/10.1186/gb-2007-8-8-r171
http://www.ncbi.nlm.nih.gov/pmc/articles/2375001
http://www.ncbi.nlm.nih.gov/pubmed/24316576
http://dx.doi.org/10.1093/nar/gkt1196
http://www.ncbi.nlm.nih.gov/pmc/articles/3964975
https://www.researchgate.net/publication/213877848_SciPy_Open_Source_Scientific_Tools_for_Python
http://www.sympy.org/en/index.html
http://dx.doi.org/10.1109/MCSE.2007.55

F1000Research

Open Peer Review

 Current Referee Status:

Version 2

 13 September 2016Referee Report

doi:10.5256/f1000research.9391.r15427

 Christian Cole
Division of Computational Biology, School of Life Sciences, University of Dundee, Dundee, UK

Daouda propose a new tool, pyGeno, for the interrogation of proteomics data in the context ofet al.
genomic sequence variants.

General Comment:

Several times the authors make reference to ‘precision medicine’ without clarifying what is meant
by the term. If the authors have a specific workflow or use case which befits ‘precision medicine’
they need to make it clearer. I note that the authors do not include a ‘Use Cases’ section as
suggested by in the ‘Instructions to Authors’. Their previous paper (Granados , 2014) wouldet al
be a great example of how to use pyGeno on real data.The examples provided in the paper are
either too vague or too simplistic.

Too often new tools come out which try to reinvent the wheel for a small incremental improvement.
Here, the authors need to be acknowledged for using well-established systems like Ensembl,
SQLite and reading in existing data types (e.g. GFF, VCF, fasta).

The paper is too short on specifics and somewhat unstructured. The Methods section is fine
although would benefit from an overview- with a Figure and/ or text- as the overall structure of
pyGeno is unclear. The Personalized genomes section should be expanded as a ‘Use Cases’
section. The ‘Operation’ section should be part of the Methods.

The online instructions are quite clear for installation, however I gave up due to the incredibly slow
progress: >20 hours remaining of a full genome ‘datawrap’. Thus, unfortunately, I was not able to
test the software myself. Given that pyGeno has been downloaded many times, this might an issue
local to me.

Overall I do feel pyGeno is a valuable contribution to the community, however the paper needs
some improvement to highlight the tool’s usefulness better.

Specific Comments:

In the third paragraph of the Methods, the authors state that pyGeno is not dependent on any
‘remote REST APIs’. If this is the case how does the pyGeno interact with Ensembl and keep in
sync with the regular updates (every 6 months)? The focus on ‘robust and faster processing’ is
understandable, but version drift from official sources can be a serious problem. Is version

Page 6 of 8

F1000Research 2016, 5:381 Last updated: 13 SEP 2016

http://dx.doi.org/10.5256/f1000research.9391.r15427

F1000Research

sync with the regular updates (every 6 months)? The focus on ‘robust and faster processing’ is
understandable, but version drift from official sources can be a serious problem. Is version
maintenance something end users can do or are they dependent on the authors keeping the
versions up-to-date?

In Figure 1, a simple example is provided showing a protein sequence with what appears to be two
non-synonymous variants highlighted in the protein sequence. How does pyGeno cope with
summarising/ visualising; 1) mutually exclusive variants at a single amino acid (e.g. two
non-synonymous variants at different positions of the codon), or 2) more complex variants like
splicing-affecting changes and loss/gain of STOP codons? Similarly does pyGeno accept phased
haplotypes thereby allowing inspection of both protein products from each of the individual’s
alleles?

What are the hardware requirements for running pyGeno and associated analyses? Is a
well-specified workstation with several GB of RAM, fast cpu and terabytes of diskspace required or
can it be run on a laptop?

The final paragraph does not contribute anything to the paper, I suggest the authors remove it and
end the article with something more succinct and pertinent.

References
1. Granados DP, Sriranganadane D, Daouda T, Zieger A, Laumont CM, Caron-Lizotte O, Boucher G,
Hardy MP, Gendron P, Côté C, Lemieux S, Thibault P, Perreault C: Impact of genomic polymorphisms on
the repertoire of human MHC class I-associated peptides. . 2014; : 3600 |Nat Commun 5 PubMed Abstract

 Publisher Full Text

I have read this submission. I believe that I have an appropriate level of expertise to confirm that
it is of an acceptable scientific standard, however I have significant reservations, as outlined
above.

 No competing interests were disclosed.Competing Interests:

 31 May 2016Referee Report

doi:10.5256/f1000research.9391.r14063

 Hilary Coller
Department of Molecular, Cell and Developmental Biology, University of California Los Angeles, Los
Angeles, CA, USA

This is manuscript describes the development of a valuable new Python package that provides the user
with an environment in which they can explore multiple different large datasets related to a single gene.
The software maps genes back to Ensemble, provides polymorphisms from dbSN, and provides
information on experimentally detected patient-specific polymorphisms. The software can also handle
DNA Sequencing data, RNA-Seq data and proteomics data for the same individual. The authors have
designed the software so that it manages these datasets efficiently, thus providing the user with seamless
and rapid access to the information desired. The use of “datawraps” so that co-authors can share
information will likely also be valuable for users. The software has been downloaded over 12,000 times in
the first year, demonstrating its utility. There is a very helpful figure, Figure 1, that gives an overview of the
process. The authors might consider adding a section of the manuscript in which they walk the reader

Page 7 of 8

F1000Research 2016, 5:381 Last updated: 13 SEP 2016

http://www.ncbi.nlm.nih.gov/pubmed/24714562
http://dx.doi.org/10.1038/ncomms4600
http://dx.doi.org/10.5256/f1000research.9391.r14063

F1000Research

the first year, demonstrating its utility. There is a very helpful figure, Figure 1, that gives an overview of the
process. The authors might consider adding a section of the manuscript in which they walk the reader
through the analysis of an actual gene in an actual genome to give the reader a sense of the findings.

I have read this submission. I believe that I have an appropriate level of expertise to confirm that
it is of an acceptable scientific standard.

 No competing interests were disclosed.Competing Interests:

 31 May 2016Referee Report

doi:10.5256/f1000research.9391.r13874

 Lynn Fink
Diamantina Institute, University of Queensland, Brisbane, Australia

pyGeno is a Python package that allows a user to simply query either a standard reference genome or a
custom genome for information such as sequences, SNPs, and related RNA and protein data. I agree that
this package fills a need for genome research, appears to be very straightforward to use, and I would like
to use it myself.

However, when I tested it I was unable to get it to run; contrary to the authors claims that it is easy to
install with minimal dependencies I couldn't make it work. (I am not a Python expert, but I have installed
much more complicated packages successfully.) With Python virtual environments, I wonder if there is a
need to be quite so minimal. Would it be easier to rely on standard packages to ensure a universal,
smooth experience?

I have read this submission. I believe that I have an appropriate level of expertise to confirm that
it is of an acceptable scientific standard, however I have significant reservations, as outlined
above.

 No competing interests were disclosed.Competing Interests:

Author Response 03 Jun 2016
, University of Montreal, CanadaTariq Daouda

Thank you for taking the time to review our work.

In light of your review we have retested the installation, genome importation and polymorphism
insertion on Linux, MacOS and Windows and it seems to work on every platform. We are fully
committed to make the experience for the end user as smooth and easy as possible, if you could
give us more details about the problems you encountered by filling a GitHub issue, we would be
very happy to address them.

 No competing interests were disclosed.Competing Interests:

Page 8 of 8

F1000Research 2016, 5:381 Last updated: 13 SEP 2016

http://dx.doi.org/10.5256/f1000research.9391.r13874

