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Tetrahydropalmatine (THP), a tetrahydroproberine isoquinoline alkaloid, is widely present
in some botanical drugs, such as Stephania epigaea H.S. Lo (Menispermaceae; Radix
stephaniae epigaeae), Corydalis yanhusuo (Y.H.Chou & Chun C.Hsu) W.T. Wang ex Z.Y.
Su and C.Y. Wu (Papaveraceae; Corydalis rhizoma), and Phellodendron chinense
C.K.Schneid (Berberidaceae; Phellodendri chinensis cortex). THP has attracted
considerable attention because of its diverse pharmacological activities. In this review,
the chemical properties, plant sources, pharmacological activities, pharmacokinetic and
toxicological characteristics of THP were systematically summarized for the first time. The
results indicated that THP mainly existed in Papaveraceae and Menispermaceae families.
Its pharmacological activities include anti-addiction, anti-inflammatory, analgesic,
neuroprotective, and antitumor effects. Pharmacokinetic studies showed that THP was
inadequately absorbed in the intestine and had rapid clearance and low bioavailability in
vivo, as well as self-microemulsifying drug delivery systems, which could increase the
absorption level and absorption rate of THP and improve its bioavailability. In addition, THP
may have potential cardiac and neurological toxicity, but toxicity studies of THP are limited,
especially its long-duration and acute toxicity tests. In summary, THP, as a natural alkaloid,
has application prospects and potential development value, which is promising to be a
novel drug for the treatment of pain, inflammation, and other related diseases. Further
research on its potential target, molecular mechanism, toxicity, and oral utilization should
need to be strengthened in the future.
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INTRODUCTION

Alkaloids, as a class of basic organic compounds containing
nitrogen, widely exist in nature and have good potential
biological activities and development value.
Tetrahydropalmatine (THP, PubChem CID: 5417), with one
chiral center, is a tetrahydroprotoberberine isoquinoline
alkaloid and can be extracted from Stephania and Corydalis
(Alasvand et al., 2019; Liu C. et al., 2019). Modern studies have
shown that THP is an active ingredient in some common
Chinese medicines, such as Stephania epigaea H.S. Lo
[Menispermaceae; Radix stephaniae epigaeae] (Sun et al.,
2020; Xiao et al., 2021), Corydalis yanhusuo (Y.H.Chou &
Chun C.Hsu) W.T.Wang ex Z.Y.Su and C.Y.Wu
[Papaveraceae; Corydalis rhizoma] (Henkes et al., 2011),
and Stephania yunnanensis H.S. Lo [Menispermaceae;
Yunnan Di Bu Rong] (Ma et al., 2008). and Corydalis
ternata (Nakai) Nakai [Papaveraceae; Corydalis rhizoma]
(Yun, 2014; Kim et al., 2017). THP is also found in
botanical drugs used in some Southeast Asian countries and
African countries, Stephania rotunda Lour [Menispermaceae;

Koma pich] (Baghdikian et al., 2013; Bory et al., 2013;
Desgrouas et al., 2014), Stephania venosa (Blume) Spreng
[Menispermaceae; Sa-Bu-Leud] (Kongkiatpaiboon et al.,
2016; Le et al., 2017), and Tinospora cordifolia (Willd.)
Hook.f. and Thomson [Menispermaceae; Guduchi] (Bajpai
et al., 2016; Singh and Chaudhuri, 2017; Chowdhury, 2021).
Hence, the pharmacological activities of THP have been
extensively studied in recent years, especially its analgesic,
anti-addictive, anti-inflammatory, neuroprotection, and
anticancer activities (Figure 1). These studies suggested that
THP is a promising compound for treating dysmenorrhea,
drug addiction, inflammatory diseases, neuropathic pain,
cancer, brain edema, and acute global cerebral ischemia-
reperfusion injury.

In the past few decades, the pharmacological activities of THP
have been widely studied, and its pharmacokinetic characteristics
and toxicity have been gradually elucidated in recent years.
However, numerous studies on THP are limited and lack
systematic induction and summaries. Thus, in this review, the
plant origin, pharmacological activity, pharmacokinetic and
toxicological characteristics of THP up to 2021 were

FIGURE 1 | Plant source and potential pharmacological activity of THP. (References to all information specified in the figure are in the Supporting materials
References).
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comprehensively summarized by using Pubmed (https://pubmed.
ncbi.nlm.nih.gov/), Web of Science (https://www.webofscience.
com/wos/woscc/basic-search), ScienceDirect (https://www.

sciencedirect.com/), and CNKI (https://oversea.cnki.net/index/)
online database, with the aim to promote the further development
and clinical application of THP.

FIGURE 2 | Chemical structural formulae of THP and its main related derivatives.
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CHEMICAL CHARACTERISTICS AND
PLANT SOURCES OF
TETRAHYDROPALMATINE
THP (molecular formula: C21H25NO4), an isoquinoline alkaloid,
widely exists in Chinese herbal medicine preparations. THP has
four–OCH3 groups at the 2, 3, 9 and 10 positions. THP has a
chiral center in its structure, and its levorotatory, form
[(-)-tetradropalmatine (-)-THP], is also known as rotundine.
In L-THP, the N+ cation is downward, and the chiral (C14)-H
is upward. Therefore, it is also known as (13aR)-5,8,13,13a-
tetrahydro-2,3,9,10-tetramethoxy-6H-dibenzo [a,g]quinolizine
hydrochloride (IUPAC name). THP has several derivatives
with similar structures, such as corydaline (Figure 2), and
benzyltetrahydropalmatine (Figure 2) (Jiang et al., 2009).
Palmatine can be converted to THP when its C–C double
bond and C–N double bond are reduced (Wei et al., 2001).
Moreover, THP is a tertiary amine alkali and thus commonly
soluble in trichloromethane, benzene, ether, hot ethanol (Li,
2013), and water (Kocanci and Aslim, 2021) and insoluble in
other highly polar solvents (Li, 2013). The chemical structures of
THP and its derivatives are presented in Figure 2. THP is a
secondary metabolite generated during plant metabolism and
found in peanuts, roots, tubers, leaves, or whole plants of some
important medicinal plants (Supplementary Table S1), such as
Stephania cepharantha Hayata [Menispermaceae; Shan Wu Gui]
(Wu et al., 2011; Xiao et al., 2019),Corydalis yanhusuo (Y.H.Chou
& Chun C.Hsu) W.T.Wang ex Z.Y.Su and C.Y.Wu

[Papaveraceae; Corydalis rhizoma] (Xiao et al., 2011; Xu et al.,
2015; Wu et al., 2018; Zhang et al., 2020), and Uvaria microcarpa
Champ. ex Benth [Annonaceae; Zi Yu Pan] (Annonaceae) (Liu
et al., 2011). In conclusion, by summarizing relevant literature on
the plant sources of THP, we found that THP has a wide range of
plant sources and provided a basis for the extraction and
separation of THP.

PHARMACOLOGICAL ACTIVITIES OF
TETRAHYDROPALMATINE

Anti-Addiction Activity
The treatment of addiction is a complex problem. Many
compounds derived from traditional Chinese medicine have
been proved to have good anti-addiction activity. THP
completely inhibits the effects of methamphetamine (METH)
in all stages of the conditional place preference (CPP) task (Su
et al., 2013). From the perspective of neuropharmacology, THP
can selectively activates key regions of the brain’s dopaminergic,
serotonergic, and norepinephrine systems according to
pharmacological magnetic resonance imaging (Liu et al.,
2012). Additionally, THP can significantly inhibit morphine-
induced CPP acquisition and expression in a dose-dependent
manner (Jiang et al., 2020). Treatment with THP blocks the
morphine-induced downregulation of dopamine D2 receptors
(D2R) and upregulation of GluA1 AMPA receptors in the
prefrontal cortex, hippocampus (Hip), and striatum. THP

FIGURE 3 | The main targets and pathways of analgesic activity of THP. Abbreviations:THP, Tetrahydropalmatine; TNF-α, Tumor necrosis factor alpha; IL-18,
Interleukin-18; D1R, Dopamine D-1 receptor; D2R, Dopamine D-2 receptor; TrkA, Tropomyosin receptor kinase A; Sig-1R, Sigma-1 receptor; NMDAR1, N-methyl-D-
asparate receptor 1; TRPV, Transient receptor potential vanilloid; P2X3R, P2X purinergic ion channel type 3 receptor; ZEB1, Zinc finger E-Box binding homeobox 1;
ZEB2, Zinc finger E-Box binding homeobox 2; E2, Estrogen; PROG, Progesterone; CGRP, Calcitonin gene-related peptide; HDAC, Histone deacetylase; iNOS,
Inducible NO synthase; MMP-2, Matrix metalloproteinase-2; MMP-9, Matrix metalloproteinase-9; MMP/TIMP, Matrix metalloproteinase/tissue inhibitor of MMP.
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FIGURE 4 | The main targets and pathways of anti-inflammatory activity of THP. Abbreviations: p-AKT, Phosphorylated AKT; p-ERK, Phosphorylated extracellular signal-
regulated kinase; Hsp70, 70-kDa heat shock protein; p-c-Jun, Phosphorylated c-Jun; p-p38, Phosphorylated p38; HIF-1α, Hypoxia-inducible factor 1-alpha; VEGF, Vascular
endothelial growth factor; iNOS, Inducible NO synthase; Pho eNOS, Phosphorylated endothelial nitric oxide synthase; NO, Nitric oxide; SOD, Superoxide dismutase; GPx,
Glutathione peroxidase; CAT, Catalase; ROS, Reactive oxygen species; PI3K/AKT/eNOS/NO, Phosphatidylinositol 3-kinase/AKT/endothelial nitric oxide synthase/nitric
oxide;MDA,Malondialdehyde;MPO,Myeloperoxidase; RNS, Reactive nitrogen species; GSH,Glutathione; P2X3R, P2X purinergic ion channel type 3 receptor; TRPV1, Transient
receptor potential vanilloid 1; TLR4, Toll-like receptor 4; TRAF6, TNF-receptor associated factor-6; MMP2, Matrix metalloproteinase-2; MMP9, Matrix metalloproteinase-9; ICAM-
1, Intercellular adhesion molecule-1; VCAM-1, Vascular cell adhesion molecule-1; TNF-α, Tumornecrosis factor alpha; IL-1β, Interleukin-1 beta; IL-1α, Interleukin-1 alpha; IFN-γ,
Interferon-gamma; GFAP, Glial fibrillary acidic protein; IL-6, Interleukin-6; IL-18, Interleukin-18; MCP-1, Monocyte chemoattractant protein-1; BALF, Bronchoalveolar lavage fluid;
NF-κB, Nuclear factor-kappa B; AChE, Acetylcholinesterase; ACh, Acetylcholine; Erk/NF-κB, Extracellular signal-regulated kinase/nuclear factor-kappa B; PI3K/AKT/mTOR,
Phosphatidylinositol 3-kinase/Akt/mechanistic target of rapamycin; TRAF6/JNK, TNF-receptor associated factor-6/c-Jun N-terminal kinase; Cyt c, Cytochrome c; PLC-γ1,
Phospholipase C gamma 1; GDNF, Glial cell-derived neurotrophic factor.
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inhibits dopamine-induced dopamine D1 receptor (D1R) activity
and dopamine autoreceptor activity (Wu et al., 2018; Ahn et al.,
2020). These results suggest that the possible mechanism may be
linked to antagonizing morphine-induced changes in brain
dopamine and glutamate transmission. Furthermore, the
mechanism by which THP improves METH-induced
behavioral phenotype is regulating brain-derived neurotrophic
factor pathway, 5-HT neuronal activity, and dopamine D3
receptor (D3R) expression (Yun, 2014; Liu et al., 2021b).
Meanwhile, THP combined with low-dose naltrexone (LDN)
is used to treat cocaine relapse(Sushchyk et al., 2016).
Combined treatment with THP and LDN can upregulate
plasma β-endorphin and hypothalamic pro-opiomelanocortin.
THP inhibits nicotine addiction by blocking neuronal α 4 β 2-
nAChR functions and elevating extracellular dopamine levels in
the nucleus accumbens shell, reducing nicotine intake and
preventing relapse (Faison et al., 2016; Huang et al., 2021).
The combination of L-THP and imperatorin (IMP)
synergistically reduces EtOH-induced CPP, and the inhibition
of inflammatory cytokines and the regulation of neurotransmitter
receptor levels are the potential pharmacological mechanisms
(Xu et al., 2021). Moreover, THP decreases ethanol drinking and
the mechanism associated with D2R-mediated PKA signaling in
the caudate-putamen (CPu) (Kim et al., 2013). These results fully
prove that the combination of THP and other drugs, such as LDN
and IMP, can significantly increase its anti-addiction effect.

Although THP by itself does not induce CPP or conditioned
position aversion, THP significantly reduces the high expression
of METH-induced extracellular signal-regulated kinase (ERK)
phosphorylation (Su et al., 2020). In addition, THP (20 mg/kg)
inhibits the enhanced phosphorylation of ERK and cAMP-
responsive element-binding proteins in CPu, nucleus
accumbens (NAc), and prefrontal cortex (PFC), and Hip (Du
et al., 2017; Du et al., 2021). THP improves METH-induced

hyper-locomotor activity, locomotor sensitization, and
concomitant ERK1/2 activation in the NAc and CPu (Zhao
et al., 2014) and may prevent addiction through antioxidant,
anti-inflammatory, and anti-apoptotic mechanisms (Zhang Y.
et al., 2018). Furthermore, THP reverses the impairment of spatial
memory acquisition and retention (Cao et al., 2018), and the
mechanism may be related to the expression of ERK1/2 in the
PFC (Chen et al., 2012). METH self-administration was reduced
when treated with THP at different doses (1.25, 2.50, and
5.00 mg/kg) (Gong et al., 2016). When THP was administered
at 2.50 and 5.00 mg/kg, the METH-induced recovery of METH-
seeking behavior was prevented. Interestingly, neither dose had
an effect on locomotor activity (Yue et al., 2012; Cao et al., 2018).
The effects of THP (3 mg/kg) on recovery may not be related to
nonspecific motor impairment (Figueroa-Guzman et al., 2011).
Collectively, these findings suggest that the anti-addiction effect
of THP may be mainly related to the inhibition of METH in all
stages of a CPP task, providing a basis for revealing the anti-
addiction effect of THP.

Analgesic Activity
In China, some traditional Chinese medicines (e.g., Corydalis
yanhusuo (Y.H.Chou & Chun C.Hsu) W.T.Wang ex Z.Y.Su and
C.Y.Wu [Papaveraceae; Corydalis rhizoma]) containing THP are
extensively used to treat pain. THP has an outstanding analgesic
effect with different mechanisms and can decrease the abundance
of protonated current mediated by acid-sensing ion channels
(ASICs) in rat dorsal root ganglion (DRG) neurons, inhibit the
functional activity of isolated primary sensory neuron ASICs, and
relieve pain caused by acidosis (Liu et al., 2015). Mice that
received an intraperitoneal injection at doses of 5 and
10 mg/kg showed increased mechanical threshold, thermal
latency, and nonrapid eye movement sleep because THP had
analgesic effects through D1R agonist and D2R antagonism (Liu

FIGURE 5 | The main targets and pathways of neuroprotective activity of THP. Abbreviations:D-gal, D-galactose; ChAT, Choline acetyltransferase; ACh,
Acetylcholine; AChE, Acetylcholinesterase; ROS, Reactive oxygen species; MDA, Malondialdehyde; NO, Nitric oxide; SOD, Superoxide dismutase; GSH, Glutathione;
GPx, Glutathione peroxidase; CAT, Catalase; NF-κB, Nuclear factor-kappa B; GFAP, Glial fibrillary acidic protein.
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FIGURE 6 | Themain targets and pathways of vasodilatory activity of THP. Abbreviations:THP, Tetrahydropalmatine; Indo, Indomethacin; COX2, Cyclooxygenase-
2; PGI2, Prostacyclin; PGIS, Prostacyclin synthase; AA, Arachidonic acid; PI3K, Phosphatidylinositol 3-kinase; Wort, Wortmannin; Akt, Protein kinase B; Akti Ⅳ, Akt
inhibitor Ⅳ; L-NAME, L-nitroarginiemethylester; NOS, Nitric oxide synthase; L-Arg, L-arginine; NO, Nitric oxide; L-Cit, L-Citrulline; GTP, Guanosine triphosphate; sGC,
Soluble guanylyl cyclase; cGMP, Cyclic guanosine monophosphate; VDCCs, Voltage-dependent calcium channels; ROCCs, Receptor-operated calcium
channels; Kv, Voltage-dependent potassium channel; Ki, Inward rectifying potassium channel; KATP, ATP-sensitive potassium channel; KCa, Calcium-activated
potassium channel; TEA, Tetraethylammonium; 4-AP, 4-Aminopyridine; Gly, Glibenclamide; ODQ, 1H-[1,2,4]-oxadiazolo-[4,3-alpha]-quinoxalin-1-one; MB, Methylene
blue; RR, Ruthenium red; Ryr, Ryanodine receptors; IP3r, IP3 receptors; AR, Aorta relaxation; CaM, Calmodulin; MLCK, Myosin light chain kinase.
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YY. et al., 2019). Furthermore, THP can inhibit formalin-induced
second-stage pain behavior through the sig-1R mechanism in the
spinal cord (Kang et al., 2016). Moreover, THP can produce anti-
hyperalgesia effects in a dose-dependent manner by intensifying
dopaminergic transmission mediated by D1R (Zhou et al., 2016).
In addition, the analgesic effect of THP on bone cancer pain
induced by tumor cell implantation was observed in rats. In fact,
THP can prevent or reverse bone cancer-related pain behavior
because it inhibits microglial activation and proinflammatory
cytokine increase (Zhang et al., 2015; Liu et al., 2021a). A paw
withdrawal threshold test showed that THP had a dose-
dependent analgesic effect on oxaliplatin-induced neuropathic
pain in mice and possessed a strong analgesic effect on

neuropathic pain in mice (Guo et al., 2014). A bee venom test
was used in determining the antinociception of THP in rats.
Accordingly, THP may be more effective for supraspinal
processed nociceptive behavior than spinally mediated
nociceptive behavior (Cao et al., 2011). Pain relief is a major
goal of medications for endometriosis. One study conducted
surgery on a rat to induce endometriosis. THP significantly
reduced the size of the injury and significantly improved
response to heat-damaging stimuli. The treatment expressively
reduced immune reactivity to all mediators involved in central
sensitization, such as histone deacetylase 2 (HDAC2) in dorsal
root ganglion (DRG) and tyrosine kinase receptor A (TrkA) and
calcitonin gene-related peptide (CGRP) in ectopic endometrium

FIGURE 7 | The main targets and pathways of anti-hepatic fibrosis activity of THP. Abbreviations:THP, Tetrahydropalmatine; PPARγ, Peroxisome proliferator-
activated receptor gamma; NF-κB, Nuclear factor-kappa B; TGF-β1, Transforming growth factor-β1; IκBα, Inhibitor of kappa B alpha; Smad2, Drosophila mothers
against decapentaplegic protein 2; Smad3, Drosophila mothers against decapentaplegic protein 3; TIMP-1, Tissue inhibitor of metalloproteinase 1; MMP2, Matrix
metalloproteinase 2.
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(Zhao et al., 2011). In addition, treatment with THP can inhibit
myometrium infiltration, alleviate systemic hyperalgesia, and
reduce uterine contraction amplitude and irregularity (Mao
et al., 2011). THP can significantly reduce the severity of
experimental primary dysmenorrhea. When THP is utilized
with imperatorin (IMP), the severity of experimental primary
dysmenorrhea was alleviated more effectively than THP or IMP
alone. Mechanisms may include reduction of oxidative stress,
inhibition of excessive inflammatory response, and reduction of
in vitro rat uterine contraction by inhibition of extracellular Ca2+

influx (Chen et al., 2013). THP is a potent ingredient that
alleviates dysmenorrhea in women. Moreover, a combination
of ligustrazine, ferulic acid, and THP suppresses epithelial-
mesenchymal transformation by inactivating MMP/TIMP
signaling and Wnt/beta-catenin pathway in endometriosis
(Chen et al., 2018; Tan et al., 2021; Zhang et al., 2021). In
summary, the analgesic effects of THP mainly include relief of
neuropathic pain and pain induced by endometriosis. Figure 3
lists the potential analgesic targets and pathways of THP. It may
act through several pathways, including the MMP/TIMP
signaling and Wnt/β-catenin pathways. Notably, THP can be
used in the treatment of bone cancer pain. However, further
research is required to determine whether it can be used to
alleviate pain caused by other cancer types.

Anti-Inflammatory Effects
Inflammation is involved in the progression and development of
many clinical diseases, such as atherosclerosis, pneumonia, and
hepatitis. Hence, anti-inflammatory drugs remain a major topic
of interest. THP can alleviate neuropathic and inflammatory pain
by downregulating P2X ligand-gated ion channel 3 (P2X3)
receptors and transient receptor potential vanilloid 1 (TRPV1),

which play a key role in the occurrence and maintenance of pain
(Wang et al., 2021). The anti-inflammatory effect of THP on
acute lung injury (ALI) induced by limb-ischemia/reperfusion (I/
R) surgery was found in vivo (Wen et al., 2020). The
phosphatidylinositol 3-kinase (PI3K)/protein kinase B (AKT)/
mechanistic target of rapamycin (mTOR) is crucial to the
regulation of cellular growth and metabolism. THP protects
ALI, and possible mechanisms are associated with the
inhibition of PI3K/Akt/mTOR phosphorylation (Zhang et al.,
2015). THP can inhibit ERK/nuclear factor κB (NF-κB) signaling
pathway and reduce hepatocyte apoptosis and autophagy (Yu
et al., 2019). In RAW264.7 macrophages, THP decreases the
expression of various proinflammatory cytokines (TNF-α, IL-1α,
and IL-1β) in a dose-dependent manner possibly because of the
inhibition of the NF-κB signaling pathway (Yodkeeree et al., 2018;
Zhi L. et al., 2020). In a myocardial IR injury model, THP reduces
inflammatory cytokines (TNF-a and MPO), which are associated
with PI3K/Akt/eNOS/NO pathway activation (Han et al., 2012).
In a mouse tumor-cell-implantation-induced pain model, THP
decreases the levels of TNF-α and IL-18 but had no effect on IL-
1β (Zhang et al., 2015). Moreover, THP reduces the release of
inflammatory cytokines (IL-6 and TNF-α) and inhibits apoptosis
and autophagy through the TRAF6/JNK pathway (Yu et al.,
2018). Additionally, THP down-regulates the transcription and
translation levels of vascular cell adhesion molecule-1 and the
mRNA and protein levels of TNF receptor-associated factor-6,
Toll-like receptor 4, and intercellular adhesion molecule-1 (Yang
et al., 2015; Sun C. et al., 2018). In a mouse Japanese encephalitis
virus (JEV) model, THP inhibited a decrease in proinflammatory
cytokines (THF-α, MCP-1, IFN-γ, and IL-6) (Lixia et al., 2018).
THP exerts a potential radio-protective effect on irradiation-
induced lung injury (Yu et al., 2016). Given that THP not only

FIGURE 8 | The absorption, distribution, metabolism, excretion and toxicity (ADMET) of THP. (A) Radar map of THP ADMET. (B) The property and decision of THP
toxicity. The data obtained from the following websites: https://admetmesh.scbdd.com/.
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reduces bronchoalveolar lavage fluid (BALF) cell recruitment but
also reduces BALF protein levels. THP decreases the expression of
monocyte chemotactic protein-1, NF-κB, and glial fibrillary
acidic proteins (Qu et al., 2016; Wang et al., 2018). These
results suggest that the anti-inflammatory effect of THP is
closely related to the P2X3/TRPV1, TRAF6/JNK, PI3K/Akt/
eNOS/NO, NF-κB, and ERK/NF-κB signaling pathways
(Figure 4).

Neuroprotective Activity
The effect of neuroprotective agents is to reduce the cell damage
after ischemia, so as to prolong the time window of cerebral
perfusion therapy and achieve the purpose of delaying the death
of nerve cells and alleviating brain dysfunction. THP has a
neuroprotective effect on neuronal apoptosis induced by brain
I/R injury (Sun R. et al., 2018). THP can improve c-Abl
expression and neuronal apoptosis. The number of viral
populations; expression level of caspase-2; levels of reactive
oxygen species, nitrogen, microglia, proinflammatory
mediators, and stress-related protein molecules; and neuronal
apoptosis decreased after the THP treatment of JEV (Lixia et al.,
2018). THP can inhibit the delayed rectifier Kv1.5 channel
expressed in HEK293 cells (HEK293 is a cell line derived from
human embryonic kidney cells grown in tissue culture). This line
was initiated by the transformation and culturing of normal HEK
cells with sheared adenovirus 5 DNA (Li K. et al., 2017). The
antinociceptive effect of THP is related to the modulation of
spinal sigma-1 receptor (Sig-1R) activation (Kang et al., 2016).
On D-galactose-induced memory impairment in rats, THP not
only reverses the abnormal levels of acetylcholine and
acetylcholinesterase activities related to several
neuropsychiatric functions, such as learning, memory, and
sleep. But also reduces the expression of NF-κB and glial
fibrillary acidic protein (GFAP) (Qu et al., 2016). Activated
NF-κB can increase the expression of inflammatory cytokines
and astrocytes, thus causing memory impairment. Meanwhile,
GFAP is a specific marker of astrocyte activation (Ali et al., 2015).
Likewise, THP inhibits the functional activity of ASICs. In

addition, THP can alter the membrane excitability of rat DRG
neurons to acid stimulation and significantly reduce action
potential and depolarization amplitude induced by
extracellular pH drop (Liu et al., 2015), as shown in Figure 5.
THP has potential anxiolytic-like and antidepressant effects and
can inhibit a decrease in hypothalamic neuropeptide Y level. This
effect is related to a predisposition to anxiety or stress-induced
depression (Serova et al., 2013). THP can inhibit the increase in
the expression level of the adrenocorticotropin-releasing factor in
the hypothalamus. Important genes involved in serotonin,
dopamine, acetylcholine, and gamma-aminobutyric acid
neurotransmitter systems showed significant transcriptional
folding changes in rodent models of post-traumatic stress
disorder after the subcutaneous injection of THP (Ceremuga
et al., 2013; Lee B. et al., 2014). Overall, these results suggest that
THP has a good neuroprotective effect, including anti-memory
damage, antidepression, and anti-anxiety effects. These
neuroprotective effects may be realized through targets and
pathways, such as inhibiting neuronal apoptosis, reducing the
level of free radicals, regulating inflammatory factors and their
pathways, and regulating neurotransmitters and related
receptors.

Anticancer Activity
Cancer is a serious threat to human health and quality of life and
has high morbidity and mortality. To date, no miracle drug for
cancer is available, and novel drugs for cancer treatment should
be developed. A recent study confirmed that THP can treat
glioblastoma multiforme by inhibiting the ERK/NF-κB cascade
(Xue and Chen, 2021). THP is effective in treating melanoma by
inhibiting the activity of CDK2, which is a unique target among
the CDK family members in melanoma therapy (Tang and Chen,
2014). In ovarian cancer A2780/DDP cell line, THP can increase
the sensitivity of ovarian cancer cells to cisplatin by regulating the
miR-93/PTEN/AKT pathway (Gong et al., 2019). Moreover, THP
alleviates kidney injury induced by cisplatin through the selective
inhibition of organic cation transporter 2 (OCT2) but does not
affect its antitumor effect (Li et al., 2020). THP can inhibit the

FIGURE 9 | Potential target prediction, tissue distribution and disease type enrichment analysis of THP. (A) A total of 106 targets were predicted by
SwissTargetPrediction database (http://www.swisstargetprediction.ch/). (B–C) The tissue distribution and disease type enrichment analysis of THP using DAVID
database. The data obtained from the following websites: https://david.ncifcrf.gov/home.jsp.
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uptake of oxaliplatin (OXA), which has severe peripheral
neurotoxicity (Yi et al., 2021). In another report, p53 null
leukemia EU-4 cells coped with THP, and the result showed
that THP downregulated XIAP protein by inhibiting MDM2,
which is a primary cellular inhibitor of p53 and a therapy target of
cancer (Wang S. et al., 2017) and is associated with proteasome-
dependent pathway; hence, THP result in p53-independent
apoptosis and increased the sensitivity of EU-4 cells to
doxorubicin (Li S. et al., 2017). In addition, THP increases the
sensitivity of ER alpha (+) BCa cells to tamoxifen and fulvestrant,
which are the inhibitors of antiestrogen and are applied to
patients with ERα-positive breast cancer (Xia et al., 2020). In
vitro, THP markedly restrains the proliferation of ER alpha (+)
BCa cells by inducing cell cycle arrest rather than apoptosis.
Nitidine chloride has anticancer activity. As an OCT2 inhibitor,
THP can reduce its accumulation and toxicity in the kidney, and
as OCT1 and OCT3 inhibitors, THP can reduce their
accumulation and toxicity in the liver (Li et al., 2014; Li et al.,
2016). These results suggest that THP can be used as a potential
treatment compound for glioblastoma multiforme, melanoma,
ovarian cancer, leukemia, and breast cancer and can attenuate
cancer patients’ resistance to anticancer drugs, such as cisplatin,
doxorubicin, fulvestrant, and tamoxifen. However, the
underlying mechanism of THP in combination with other
chemicals has not been fully elucidated and will be the focus
of future research.

Other Pharmacological Activities
THP exerts hypotensive effects. The post-perfusion of THP
(15 mg/kg/day) can reduce systolic blood pressure by
decreasing diameter (Wang et al., 2018). The mechanism of
the THP dilation of the rat aorta mainly involves the PI3K/
Akt/eNOS/NO/cGMP signaling pathway and Ca2+ and K+

channels but not COX2, β-adrenergic receptor, and renin-
angiotensin system (Zhou et al., 2019). Further, the activation
of NO/cGMP signaling pathways results in the activation of an
endothelium-dependent pathway (Qu et al., 2015). In addition,
THP activates the KATP channel and plays a role in vascular
relaxation, and promotes angiogenesis by regulating the sequence
of citrulline-to-arginine flux, arginine biosynthesis, and VEGFR2
expression in endothelial cells (Cui et al., 2021), as shown in
Figure 6. Furthermore, THP can inhibit osteoclast formation in a
dose-dependent manner and has no cytotoxicity at a
concentration lower than 19.00 μg/ml (Zhi X. et al., 2020). In
vitro experiments, THP suppressed early osteoclast
differentiation, downregulated the transcription level of
osteoclast-related genes, and impaired the function of
osteoclasts in bone marrow monocytes cells and mouse
leukemic monocyte/macrophage cell line RAW264.7 cells. In
vivo, THP significantly inhibits ovariectomy-induced bone loss
and osteoclast formation in mice. It mineralizes nodule density
and increases osteoblast proliferation (Wang et al., 2019).

THP can enhance MyoD activation through the
upregulation of p38MAPK and Akt, which can promote
premature muscle development (Lee SJ. et al., 2014).
Accordingly, THP can serve as a potential drug for
preventing fibrosis and promoting muscle regeneration and

repair. The mechanism of THP in anti-adipogenic effect is that
THP suppresses hepatic lipid accumulation and decreases the
serum levels of serum cholesterol, triglyceride, low-density
lipoprotein cholesterol, and high-density lipoprotein
cholesterol, as demonstrated in golden hamsters fed with a
high-fat diet (Sun C. et al., 2018). In addition, THP inhibits
lipid accumulation and decreases the level or activity of lipid
droplets, triglyceride, and glycerol-3-phosphate
dehydrogenase in 3T3-L1 adipocytes through the AMPK
signaling pathway (Piao et al., 2017). THP inhibits
extracellular matrix (ECM) deposition and hepatic stellate
cells (HSCs) autophagy by regulating the PPAR gamma/NF-
κB and TGF-beta 1/Smad pathways, thereby reducing liver
fibrosis, which is a necessary stage in the progression of
chronic liver disease to cirrhosis (Yu et al., 2021)
(Figure 7). Other studies demonstrated that THP has a
certain resistance to plasmodium(Baghdikian et al., 2013;
Bory et al., 2013; Malebo et al., 2013), parasites (Dutta
et al., 2016), and pathogenic fungi (Zhao et al., 2019).

PHARMACOKINETIC CHARACTERISTICS

With the advances in pharmaceutical chemistry, the demand for
pharmacokinetic characteristics of drugs is increasing. At present,
the properties and application prospects of patent drugs are not
only evaluated by their effectiveness and low toxicity but also by
their good pharmacokinetic characteristics (Yang et al., 2021).
The metabolic pathways of THP in three male healthy Chinese
volunteers were studied (Xiao et al., 2016). The biotransformation
of THP mainly includes monohydroxylation, demethylation,
glucuronidation, and sulfonation of demethylated metabolites.
Multiple demethylations, glucuronic acid and sulfate coupling,
and renal excretion of THP in humans are the main drug
clearance pathways of THP. THP has four monodesmethyl
metabolites: L-isocorypalmine, L-corypalmine,
L-tetrahydropalmatrubine, and L-corydalmine (Abdallah et al.,
2017). The mean time to peak concentration (Tmax) and half-life
(T1/2) of THP in rats were 0.44 and 4.49 h, respectively (WangW.
et al., 2017), whereas those of healthy cocaine-using adults were
1.5 and 13.3 h, respectively (Hassan et al., 2017). THP is only
partially converted into metabolites, and the prototype drug
remains in the blood (Wang W. et al., 2017). THP and its
metabolites show high blood-brain barrier (BBB) permeability
because of their high lipophilic properties (Wang et al., 2012;
Abdallah et al., 2017). From the pathological perspective, the T1/2

and MRT of THP in spontaneously hypertensive rats (SHR) were
significantly longer than those in healthy Sprague-Dawley rats,
indicating that the elimination of THP in SHR is slow (Hong
et al., 2012). THP can be metabolized by the rat gut microbiota,
indicating the importance of intestinal microorganisms in THP
metabolism (He et al., 2017). THP can be transported to the
kidney through OAT3, OATP1B1, and OATP1B3 and then to the
liver. The ingredients in Angelica dahurica (Fisch. ex Hoffm.)
Benth. et Hook. f. ex Franch. et Sav. inhibited both pathways and
increased THP levels in the blood and brain (Wang et al., 2020).
Other components in Yuanhu Zhitong prescription (Zhang H.
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et al., 2018) or Tong-Bi-Si-Wei-Fang (Ni et al., 2019) can increase
the Cmax of THP or prolong the retention time of THP in the
plasma. THP enantiomers in human liver microsomes are mainly
metabolized by CYP3A4/5 and CYP1A2, and (+)-THP is
preferentially metabolized by CYP1A2. CYP3A4/5 has the
same contribution to (-)-THP or (+)-THP metabolism (Sun
et al., 2013). In rat liver microsomes, THP enantiomers are
mainly metabolized by CYP3A1/2 and CYP1A2, and CYP3A1/
2 tends to metabolize (+)-THP, whereas CYP1A2 tends to
metabolize (-)-THP (Zhao M. et al., 2012). d-THP inhibits the
isozyme activities of CYP2D6 and CYP1A2, whereas L-THP
inhibits the isozyme activities of CYP1A2 and induces the
isozyme activities of CYP3A4 and CYP2C9 (Zhao Y. et al.,
2012; Li et al., 2015). The above performance of THP is
related to the connection of the H-bond and a few Pi-bond
with CYP1A2-, CYP2D6-, and CYP3A4-specific amino acid
residues (Zhao et al., 2015). THP enantiomers inhibit P-gp but
not MRP1 or BCRP, and (-)-THP and (+)-THP show the obvious
stereoselective difference (Sun et al., 2012). By contrast, CYP
inhibitors significantly affect the systemic levels of THP and its
metabolites (Xiao et al., 2021). Moreover, the effective oral dose of
DA-9701, which is a new botanical gastroprokinetic agent, can
decrease the brain concentrations of THP and inhibit THP from
exerting central D2R antagonism (Jung et al., 2015).

Traditional oral administration may not be the best use of
THP because of poor intestinal absorption, rapid clearance,
and low bioavailability. To improve absorption efficiency, the
absorption level and rate of THP in a self-microemulsifying
drug delivery system (SMEDDS) pellet formulation are higher
than those of raw excipients(Tran et al., 2016). The SMEDDS
improved the oral bioavailability of THP in a rabbit model by
198.63% (Tung et al., 2018) and in a rat model by 225% (Li
et al., 2021) compared with THP suspension. The figures for
self-emulsifying drug-delivery systems were 33.2% in a rat
model (Ma et al., 2012) and 234.77% for binary amorphous
solid dispersion application in rabbit plasma (Tung et al.,
2021). Another method for increasing THP bioavailability is
the use of hydrochloride freeze-dried powder, in which C-max,
AUC, and bioavailability are significantly elevated (Wu C.
et al., 2013). THP oral disintegrating tablets have good taste
and tolerance, rapidly disinteg, and are quickly absorbed
(Chao-Wu et al., 2011). A comparison of plasma
pharmacokinetics and lung distribution of THP at the
Feishu point (BL 13) and non-Feishu points showed that
the amount of THP entering the blood and lung after
Feishu point application was significantly higher than that
after non-Feishu point application (Lin et al., 2014). Moreover,
the in vitro release of THP with the addition of osmotic
promoters showed an abnormalrate (non-Fickian) release
kinetics (Li et al., 2011).

Toxicological Characteristics of
Tetrahydropalmatine
Studies used THP or corydalis with caution in patients with heart
diseases because of its potential cardiac and neurotoxic effects
(Chan et al., 1999). A randomized, placebo-controlled, and

double-blind clinical study assessed the safety of THP for
cocaine users. The results showed that a short 3.5-days course
of THP was well tolerated and safe and did not affect the
pharmacokinetics of cocaine or its acute cardiovascular effects
(Hassan et al., 2017). The liver toxicity of THP in mice revealed
that THP suppressed the expression of CYP1A2, and no obvious
pathological changes were observed in liver tissues after THP
administration (Wang D. et al., 2017). Some reports mentioned
the toxicity of THP as a natural substance but did not study it in
depth(Wu H. et al., 2013; Zeng et al., 2015). Although THP has
proven to be a promising compound with a variety of
pharmacological actions, it also has some disadvantages, such
as poor intestinal absorption, rapid clearance, and some potential
toxicity. To further clarify its pharmacokinetic and toxicological
characteristics, we used ADMETlab 2.0 (Xiong et al., 2021) to
predict the ADMET of THP. The ADMET characteristics of THP
are shown in Figure 8. The results indicated that THP is toxic at
concentrations above the maximum recommended daily dose by
the FDA and potentially toxic to the respiratory system. In
conclusion, experimental evaluation of THP toxicity is limited,
especially in terms of the cytotoxicity, long-term toxicity, and
acute toxicity of THP.

CONCLUSION AND FUTURE
PERSPECTIVES

In this review, the chemical properties, plant origins
(Supplementary Table S1), pharmacological activities
(Supplementary Table S2), and pharmacokinetic and
toxicological characteristics of THP were systematically
reviewed. The structure of THP has long been elucidated.
THP comes from numerous natural plant sources and is
mostly found in China and Southeast Asian countries. The
extraction process needs to be strengthened. THP has a large
number of pharmacological effects, including analgesic, anti-
addiction, anti-inflammatory, neuroprotection, and
anticancer effects. As a traditional gynecological analgesic,
this aspect of pharmacological research is sufficient. There are
also many studies on the anti-addiction and neuroprotective
effects associated with the neuropharmacological effects of
analgesia. Other important topics, such as anti-inflammatory
and antitumor mechanisms, have been discussed. Further
pharmacological effects of THP, such as antifibrosis,
antiparasite, antifungal, and antimalaria, need further
research. In addition, we also found that in addition to
being used alone, THP can also be used in combination
with other compounds to achieve the effect of increasing
efficacy and reducing toxicity (Chen et al., 2013; Chen
et al., 2018; Gong et al., 2019; Xu et al., 2021; Zhang et al.,
2021). This also provides more evidence for THP
combination.

The rapid development of bioinformatics and network
pharmacology provides a powerful means for further exploring
the potential potential pharmacological value of THP. Therefore,
we predicted the potential targets of THP by using the
SwissTargetPrediction database (Daina et al., 2019) and
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conducted target tissue location and clinical disease enrichment
analysis of 106 potential targets (Figure 9A) with the DAVID
database (Huang da et al., 2009). The results showed that nine
items were enriched to tissue distribution: brain, blood, fetal
brain, Hip, platelet, peripheral blood, corpus striatum, fetal lung,
and myeloid (Figure 9B, Supplementary Table S3). Ten disease
types had a Count% of ≥30: metabolic, pharmacogenomic, psych,
cancer, chem-dependency, neurological, cardiovascular, immune,
renal, and reproduction (Figure 9C, Supplementary Table S4).
Further analysis showed that these potential targets were mostly
abundant in brain tissues, metabolic diseases, nervous system,
and other disease types, and these disease types are also the focus
of our future research. In addition, whether DRD1, SRC, SLC6A4,
NTRK1, DRD2, PTGS2, ADRB2 and other potential targets of
THP play a role in these diseases. This also requires further
experimental verification.

The drug absorption and metabolic pathways of THP have
been described in animal models, but the pharmacokinetic
studies of THP in humans are limited. Many drugs in
traditional Chinese medicine prescriptions can increase the
utilization rate of THP, and the application of THP in new
preparations and dosage forms can improve its
pharmacokinetic properties. Drug safety is an important
factor affecting the therapeutic potential of THP. Although
no obvious toxicity of THP has been observed to date, through
literature review and analysis, we found that THP may have
some potential toxicity. Given that toxicity tests on THP are
still lacking, the potential toxicity of THP should be extensively
explored, and studies in this field should be strengthened. In
summary, this paper comprehensively reviewed and
summarized the chemical properties, plant origins,

pharmacological activities, pharmacokinetic and
toxicological characteristics of THP, which provides a
reference for future research and development of THP.
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