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Abstract

Objective: Despite the known benefit of vitamin D in reducing sarcopenia risk in older adults, its effect against muscle 
loss in the young population is unknown. We aimed to examine the association of serum 25-hydroxy vitamin D [25(OH)D] 
level and its changes over time with the risk of incident low muscle mass (LMM) in young and middle-aged adults.
Design: This study is a cohort study.
Methods: The study included Korean adults (median age: 36.9 years) without LMM at baseline followed up for a median 
of 3.9 years (maximum: 7.3 years). LMM was defined as the appendicular skeletal muscle (ASM) mass by body weight 
(ASM/weight) of 1 s.d. below the sex-specific mean for the young reference group. Cox proportional hazard models 
were used to estimate hazard ratios (HRs) with 95% CIs.
Results: Of the 192,908 individuals without LMM at baseline, 19,526 developed LMM. After adjusting for potential 
confounders, the multivariable-adjusted HRs (95% CIs) for incident LMM comparing 25(OH)D levels of 25–<50, 50–<75, 
and ≥75 nmol/L to 25(OH)D <25 nmol/L were 0.93 (0.90–0.97), 0.85 (0.81–0.89), and 0.77 (0.71–0.83), respectively. 
The inverse association of 25(OH)D with incident LMM was consistently observed in young (aged <40 years) and older 
individuals (aged ≥40 years). Individuals with increased 25(OH)D levels (<50–≥50 nmol/L) or persistently adequate 
25(OH)D levels (≥50 nmol/L) between baseline and follow-up visit had a lower risk of incident LMM than those with 
persistently low 25(OH)D levels.
Conclusions: Maintaining sufficient serum 25(OH)D could prevent unfavourable changes in muscle mass in both young 
and middle-aged Korean adults.

Introduction

Sarcopenia is characterized by a progressive decline 
in skeletal muscle mass and muscle strength (1) and 
represents a major public health concern in older adults. 
Sarcopenia can lead to serious health consequences that 
impair the quality of life and pose a considerable burden 

on healthcare systems (1, 2). Although sarcopenia is more 
commonly associated with older ages, there is growing 
recognition that sarcopenia also occurs early in life, partly 
due to increased sedentary lifestyle and physical inactivity 
in the modern young population (1, 3, 4). However, risk or 

Correspondence 
should be addressed 
to Y Chang or S Ryu or  
S H Wild 
Email 
yoosoo.chang@gmail.com or 
sh703.yoo@gmail.com or 
Sarah.Wild@ed.ac.uk

European Journal of 
Endocrinology  
(2022) 186, 477–487

-21-1229

Clinical Study

186
4

This work is licensed under a Creative Commons 
Attribution 4.0 International License.

Printed in Great Britain
Published by Bioscientifica Ltd.

© 2022 The authorshttps://eje.bioscientifica.com
https://doi.org/10.1530/EJE-21-1229

http://orcid.org/0000-0002-3927-8646
mailto:yoosoo.chang@gmail.com
mailto:sh703.yoo@gmail.com
mailto:Sarah.Wild@ed.ac.uk
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1530/EJE-21-1229


Eu
ro

pe
an

 Jo
ur

na
l o

f E
nd

oc
ri

no
lo

gy
186:4 478Clinical Study Y Kim and others Serum 25(OH)D and low muscle 

mass

https://eje.bioscientifica.com

protective factors associated with sarcopenia or muscle loss 
in younger individuals have not been adequately addressed 
and remain largely unknown.

Beyond its widely recognized effects on bone 
health, vitamin D is known to affect skeletal muscle via 
vitamin D receptors (VDRs) (5). The link between low 
serum 25-hydroxyvitamin D [25(OH)D] levels, a reliable 
marker of vitamin D status, and the risk of sarcopenia in 
older individuals is well established (6, 7). Several cross-
sectional studies explored the relationship between 
vitamin D deficiency and muscle mass, but the results 
were conflicting (8, 9, 10, 11). Also, findings from small 
randomized–controlled trials (RCTs) showed no benefit 
of vitamin D supplementation on muscle mass gain in 
young individuals (12, 13). With the lack of large and 
high-quality studies, it remains unclear whether vitamin D 
has any protective effect against low muscle mass (LMM) 
development in young people. In addition, no studies have 
yet to evaluate the effect of changes in serum 25(OH)D 
levels overtime on the risk of developing LMM.

Thus, we examined the association of serum 25(OH)D  
level and its changes over time with the risk of incident 
LMM in young and middle-aged adults without LMM  
at baseline.

Subjects and methods

Study participants

The Kangbuk Samsung Health Study is a cohort study of 
Korean men and women aged ≥18 years who participated 
in comprehensive health examinations every 1–2 
years at Kangbuk Samsung Hospital Total Healthcare 
Center in Seoul and Suwon, South Korea, as previously  

described (14). The present cohort study included 
participants who underwent comprehensive health 
examinations between January 2012 and December 2018. 
From 2012, data on appendicular skeletal muscle mass and 
serum 25(OH)D levels were available, and all participants 
had at least one follow-up visit between recruitment and 
31 December 2020 (n = 232,564 participants). A total of 
39,656 participants were excluded in a two-step selection 
process (Fig. 1) (see Supplementary Material for detailed 
exclusion criteria, see section on supplementary materials 
given at the end of this article).

This study was approved by the Institutional Review 
Board of Kangbuk Samsung Hospital (IRB no. KBSMC 
2021-09-032), which waived the requirement for informed 
consent because de-identified retrospective data routinely 
collected during health screenings were used.

Measurements

At baseline and follow-up visits, information on 
demographic factors, lifestyle factors such as physical 
activity, medical history, and medication use was obtained 
using standardized, self-administered questionnaires (14).

Physical activity was assessed using the short form 
of the validated Korean version of the International 
Physical Activity Questionnaire (15). According to this 
questionnaire’s results, the participants were categorized 
as being inactive, being minimally active, or engaging in 
health-enhancing physical activity (HEPA). HEPA was 
defined as follows: (i) vigorous activity for ≥3 days/week 
with ≥1500 accumulated metabolic equivalent (MET)-
min/week or (ii) a combination of walking and moderate- 
or vigorous-intensity activities for 7 days totalling to ≥3000 
MET-min/week.

Figure 1
Selection of study participants.
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Blood pressure, height, weight, and body composition 
measurements were performed by trained nurses. A multi-
frequency bio-impedance analyzer (BIA) with eight-point 
tactile electrodes (InBody 720; Biospace Inc., Seoul, Korea) 
was used to measure body composition including lean 
body mass of individuals’ limbs, appendicular skeletal 
muscle mass (ASM), and fat mass. The body composition 
using the BIA (InBody720) was reliable in men and women 
as indicated by high intraclass correlation coefficient for 
measures of body composition of ≥0.98 including skeletal 
muscle mass (16, 17). The BIA technique was validated 
for the assessment of body composition, showing a good 
correlation with dual-energy X-ray absorptiometry (DEXA), 
and applied to estimate ASM in various populations 
(18, 19, 20, 21, 22, 23). The InBody720 demonstrated a 
strong correlation with DXA in ASM (Pearson correlation 
coefficients 0.944 and 0.903, and s.e. of estimate 1.051 
kg and 0.927 kg in men and women, respectively) (24). 
Obesity was defined as BMI ≥ 25 kg/m2, which is the cut-
off value for diagnosing obesity in Asians (25).

Blood specimens were collected after a fasting period 
of at least 10 h, and fasting blood tests evaluated glycemic 
parameters, lipid profiles, liver enzyme levels, and high-
sensitivity C-reactive protein (hsCRP) levels (26). Insulin 
resistance was estimated using the homeostatic model 
assessment–insulin resistance (HOMA-IR) equation as 
follows: fasting blood insulin (uU/mL) × fasting blood 
glucose (mmol/L)/22.5; the cut-off value of 2.5 was 
used (27). Hypertension was defined as a systolic blood 
pressure ≥ 140 mmHg, diastolic blood pressure ≥ 90 mmHg, 
or current use of blood pressure-lowering medication. 
Diabetes mellitus was defined as a fasting serum glucose 
level ≥ 126 mg/dL, haemoglobin A1c ≥ 6.5%, or current 
use of anti-diabetic medications or insulin.

Skeletal muscle mass index (SMI) was calculated 
using BIA as SMI (%) = appendicular skeletal muscle mass 
(kg)/body weight (kg) × 100, according to the methods 
by Janssen  et  al (28). Normal SMI was defined as an SMI 
higher than −1 s.d. below the sex-specific mean of young 
reference adults (aged 20–39 years) (28). Among young 
adults (20–39 years old) in this study population, the mean 
(s.d.) of SMI was 32.9 % (2.7) for men and 28.6 % (2.5) for 
women. Class I LMM was defined as an SMI within −1 to 
−2 s.d. below the mean values of young adults, and class 
II LMM was defined as SMI below −2 s.d. below the mean 
values of young adults (28). Because early detection of 
muscle mass loss in young adults is important, incident 
LMM was defined according to class I LMM development.

To assess serum 25(OH)D status, total 25(OH)D levels, 
including 25(OH)D2 and 25(OH)D3, were measured with a 

competitive immunoassay using an Elecsys Vitamin D Total 
assay on the Modular E170 (Roche Diagnostics) until April 
2015 and Cobas e801 (Roche Diagnostics) thereafter. Total 
25(OH)D measurement using the Elecsys vitamin D total 
assay demonstrated acceptable performance compared to 
using liquid chromatography-tandem mass spectrometry, 
the reference standard for 25(OH)D measurement (29, 
30). When the analytical performance for precision was 
evaluated according to CLSI-EP15-A2 guidelines, the inter-
assay coefficients of variation for quality control specimens 
of lower and higher levels of total 25(OH)D were 2.01–5.94 
and 2.69–5.03%, respectively, during the study period. 
The detection limit was determined according to the CLSI 
EP17-A2 guidelines and was reported to be <3 ng/mL (<7.5 
nmol/L). Serum 25(OH)D levels were categorized as <10, 
10–<20, 20–<30, and ≥30 ng/mL (for conversion to SI units: 
ng/mL × 2.5 = nmol/L; e.g. <25, 25–<50, 50–<75, and ≥75 
nmol/L) (31, 32). Despite some controversy, serum 25(OH)
D level >20 ng/mL (>50 nmol/L) is considered sufficient for 
skeletal health in the healthy general population (33, 34). 
Therefore, the change in 25(OH)D status from baseline to 
the second visit was analysed in the following four groups 
based on the presence/absence of insufficient serum 
25(OH)D (defined as serum 25(OH)D level <20 ng/mL (50 
nmol/L)): (i) insufficient 25(OH)D level at baseline and 
follow-up (persistently low); (ii) insufficient 25(OH)D level 
at baseline but no insufficiency at follow-up (increased); 
(iii) no insufficiency at baseline but insufficiency at 
follow-up (decreased); and (iv) no 25(OH)D insufficiency 
at baseline and follow-up (persistently adequate).

Statistical analysies

Baseline characteristics of the study participants are 
presented according to the 25(OH)D categories mentioned 
above. To determine linear trends, the median values of 
each category were included in each model.

The primary outcome was the development of 
incident LMM. Each participant was followed from the 
baseline visit until either the occurrence of incident LMM 
or the last health examination conducted through the 
end of 2020, whichever occurred first. The incidence rates 
were calculated as the number of incident cases divided by 
person-years of follow-up. Cox proportional hazard models 
were used to estimate the hazard ratios (HRs) with 95% CIs 
for incident LMM in each 25(OH)D category compared 
with the reference category.

We used three models with progressive adjustment 
to control for potential confounders. The first model 
(Model 1) was adjusted for age, sex, centre, year of 
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screening, alcohol consumption, smoking, physical 
activity, total energy intake, education level, medication 
for hypertension, medication for diabetes, multivitamin 
supplementation, calcium supplementation, and season. 
Given the potential impact of obesity on the relationship 
between serum 25(OH)D levels and sarcopenia (10), 
the model was additionally adjusted for BMI (Model 2). 
Alternatively, analyses were performed with adjustment for 
waist circumference instead of BMI. To evaluate the effects 
of changes in serum 25(OH)D levels and other covariates 
during the follow-up period, we performed additional 
analyses by introducing serum 25(OH)D levels and other 
factors as time-varying covariates in the models.

We assessed the proportional hazards assumption by 
examining graphs of estimated log (−log) survival. Pre-
defined subgroup analyses were performed after stratifying 
by age (<40 vs ≥40 years), current smoking status (no 
vs yes), alcohol intake (<20 vs ≥20 g/day), HEPA (no vs 
yes), obesity defined using the specific criteria for Asians 
(BMI<25 kg/m2 vs ≥25 kg/m2 (25, 35)), hypertension 
(no vs yes), diabetes (no vs yes), HOMA-IR (<2.5 vs ≥2.5), 
and hsCRP (<1.0 mg/L vs ≥1.0 mg/L). The interactions 
according to subgroup characteristics were tested using 
likelihood ratio tests that compared models with and 
without multiplicative interaction terms. As a sensitivity 
analysis, the association between serum 25(OH)D levels 
and incident LMM was tested using LMM defined as SMI 
less than −2 s.d. below the mean values of young adults.

STATA version 16.0 (Stata Corp.) was used for data 
analysis. All P-values were two-tailed, and P-values <0.05 
were considered statistically significant.

Results

The median age of the participants was 36.9 years 
(interquartile range, 32.4–41.8 years), and 44.5% of patients 
were females. At baseline, the proportions of participants 
with 25(OH)D levels <25, 25–<50, 50–<75, and ≥75 
nmol/L were 16.2, 56.6, 21.9, and 5.3%, respectively 
(Table 1). Serum 25(OH)D levels were positively associated 
with age, alcohol intake, physical activity, education 
level, medication use for hyperlipidaemia, and use of 
multivitamin, vitamin D, and/or calcium supplements 
(Table 1). Baseline characteristics of the study participants 
are also presented according to 25(OH)D levels at baseline 
and subsequent visits (Supplementary Table 1).

Within 720,713.2 person-years of follow-up (median, 
3.9 years; interquartile range, 2.1–5.0 years; maximum, 
7.3 years), 19,526 participants developed LMM (incidence 

rate, 27.1 per 1000 person-years) (Table 2). Overall, baseline 
25(OH)D levels were inversely associated with the risk of 
incident LMM. After adjusting for age, sex, physical activity, 
and other potential confounders (model 1), HRs (95% CI) 
for incident LMM at baseline 25(OH)D levels of 25–<50, 
50–<75, and ≥75 nmol/L (compared to the reference, <25 
nmol/L) were 0.93 (0.90–0.97), 0.83 (0.79–0.88), and 0.67 
(0.62–0.73), respectively. Further adjustment for either BMI 
or waist circumference attenuated the association, which 
remained significant (Table 2, model 2, and Supplementary 
Table 2). The inverse association was consistently observed 
in men and women but with a slightly stronger effect in men 
than in women (P for interaction = 0.025). The association 
between 25(OH) level and incident LMM became stronger 
in time-dependent analyses than in the original analyses. 
Corresponding HRs (95% CI) comparing 25(OH)D levels 
of 25–<50, 50–<75, and ≥75–<25 nmol/L were 0.79 (0.76–
0.83), 0.65 (0.62–0.68), and 0.52 (0.48–0.56), respectively. 
In spline regression models, the LMM risk decreased across 
the range of the 25(OH) level in both men and women (Fig. 
2). Similar results were observed in a sensitivity analysis 
using LMM defined as SMI less than −2 s.d. below the 
mean values of young adults (Supplementary Table 3).

Changes in 25(OH)D levels from baseline to 
follow-up were significantly associated with the risk of 
incident LMM without any significant interaction by sex  
(P for interaction = 0.326) (Table 3). The multivariable-
adjusted HRs (95% CI) for the ‘decreased’, ‘increased’, and 
‘persistently adequate’ groups vs the ‘persistently low’ 
group for LMM development were 0.84 (0.77–0.92), 0.85 
(0.79–0.91), and 0.81 (0.75–0.87), respectively (model 2). 
The significant associations persisted after serum 25(OH)
D levels and other confounders were considered time-
varying variables.

In subgroup analyses (Supplementary Table 4), the 
association between 25(OH)D level and incident LMM 
differed with respect to hypertension, insulin resistance, 
and inflammation status; the association was evident 
in participants without either homeostasis model 
assessment of insulin resistance (HOMA-IR) of ≥2.5 or 
hypertension but was attenuated in those with either 
insulin resistance or hypertension (P for interaction 
<0.001 and 0.002, respectively). The graded dose-response 
association between 25(OH)D levels and incident LMM 
was slightly stronger in those with hsCRP < 1.0 mg/L than 
in those with hsCRP ≥ 1.0 mg/L (P for interaction = 0.018). 
Otherwise, there were no other significant interactions 
by subgroup, including the age group (<40 vs ≥40 years). 
Participants taking vitamin D supplements tended to 
engage in a healthier lifestyle including physical activity 
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and less smoking (Supplementary Table 5); however, after 
adjustments for physical activity and smoking status, 
there was an independent and inverse association between 
serum 25(OH)D levels and incident LMM. Additionally, 
in subgroup analyses, these associations were similarly 
observed, and there was no significant interaction, by 
smoking status, alcohol intake, and physical activity.

Discussion

In this large cohort study of young Korean adults without 
LMM at baseline, serum 25(OH)D levels were inversely 
associated with LMM development in a dose-response 
manner. The protective association between higher 
serum 25(OH)D levels and decreased LMM incidence 

was consistently observed irrespective of sex and age. 
Furthermore, increases in 25(OH)D levels from insufficient 
levels at baseline to 50 nmol/L at follow-up and adequate 
25(OH)D levels over time were associated with lower risk 
of incident LMM; these associations were independent of 
factors such as vitamin D supplementations, exercise, BMI, 
or season of the blood draw.

It has been well documented that vitamin D 
insufficiency/deficiency is frequently observed in older 
people with sarcopenia (6, 7). However, as most studies 
exploring the link between vitamin D and sarcopenia/
LMM by far were almost exclusively focused on older 
adults, the effect of vitamin D on the risk of LMM among 
younger adults is unknown. There are few cross-sectional 
studies that have explored the effects of serum vitamin D 
levels in muscle mass in younger individuals. A study of 

Table 1 Estimateda mean and adjusteda proportions of baseline characteristics by serum 25(OH)D levels among participants 
(n  = 192,908).

Characteristics
Serum 25(OH)D levels (nmol/L)

P<25 25–<50 50–<75 ≥75 

Participants, n 31,224 109,197 42,200 10,287
Age (years) 37.3 (37.2–37.4) 37.5 (37.5–37.6) 38.6 (38.5–38.6) 40.0 (39.8–40.1) <0.001
Male (%) 35.27 (34.74–35.80) 56.68 (56.38–56.97) 66.27 (65.81–66.72) 59.94 (58.99–60.89) <0.001
Alcohol intake (%)b 14.50 (14.05–14.94) 18.78 (18.55–19.00) 23.31 (22.94–23.68) 25.69 (24.89–26.49) <0.001
Current smoker (%) 15.10 (14.63–15.57) 16.75 (16.54–16.95) 19.28 (18.96–19.61) 20.09 (19.39–20.78) <0.001
HEPA (%) 11.06 (10.70–11.42) 13.58 (13.38–13.79) 17.00 (16.64–17.36) 19.73 (18.96–20.50) <0.001
Education level (%)c 82.92 (82.51–83.33) 84.95 (84.74–85.16) 85.33 (84.98–85.67) 85.16 (84.48–85.84) <0.001
History of  

diabetes (%)
1.61 (1.44–1.77) 1.83 (1.75–1.91) 1.83 (1.71–1.94) 1.76 (1.55–1.96) 0.336

History of 
hypertension (%)

5.79 (5.49–6.10) 6.02 (5.88–6.16) 6.19 (5.99–6.40) 6.40 (5.99–6.81) 0.006

History of CVD (%) 0.81 (0.70–0.93) 0.84 (0.78–0.89) 0.80 (0.72–0.88) 0.86 (0.71–1.01) 0.986
Anti-lipid  

medication use (%)
1.98 (1.80–2.16) 1.80 (1.72–1.88) 1.73 (1.62–1.84) 1.97 (1.76–2.18) 0.507

Multivitamin 
supplement (%)

3.49 (3.29–3.69) 6.05 (5.91–6.19) 10.42 (10.13–10.72) 14.95 (14.28–15.62) <0.001

Vitamin D 
supplement (%)

0.21 (0.17–0.26) 0.62 (0.57–0.66) 1.74 (1.61–1.87) 4.79 (4.38–5.19) <0.001

Calcium  
supplement (%)

0.20 (0.16–0.25) 0.38 (0.35–0.42) 0.98 (0.87–1.08) 2.12 (1.85–2.39) <0.001

Obesity (%)d 19.42 (18.94–19.91) 21.49 (21.26–21.72) 22.49 (22.14–22.84) 19.22 (18.53–19.92) <0.001
BMI (kg/m2) 22.5 (22.5–22.6) 22.7 (22.7–22.7) 22.8 (22.8–22.8) 22.5 (22.4–22.5) <0.001
SBP (mmHg) 107.0 (106.9–107.1) 107.5 (107.5–107.6) 107.8 (107.7–107.9) 108.0 (107.8–108.2) <0.001
DBP (mmHg) 68.8 (68.7–68.9) 69.3 (69.2–69.3) 69.5 (69.5–69.6) 69.2 (69.1–69.4) <0.001
Glucose (mg/dL) 93.2 (93.1–93.4) 93.5 (93.5–93.6) 93.6 (93.5–93.7) 93.1 (92.9–93.3) 0.191
Total cholesterol  

(mg/dL)
188.0 (187.6–188.3) 191.1 (190.9–191.3) 191.8 (191.5–192.1) 190.6 (190.0–191.3) <0.001

GGT (U/L) 26.4 (26.0–26.8) 28.1 (27.9–28.3) 30.3 (30.0–30.6) 29.9 (29.3–30.6) <0.001
ALT (U/L) 21.5 (21.3–21.7) 22.0 (21.9–22.1) 22.5 (22.3–22.6) 22.6 (22.3–23.0) <0.001
HOMA-IR 1.45 (1.43–1.46) 1.44 (1.44–1.45) 1.43 (1.42–1.44) 1.33 (1.32–1.35) <0.001
hsCRP (mg/L) 0.90 (0.87–0.93) 0.91 (0.89–0.93) 0.94 (0.91–0.97) 0.94 (0.88–1.00) <0.001
Total energy intake 

(kcal/d)e, f
1,450.6 (1,442.2–1,458.9) 1,446.5 (1,442.2–1,450.9) 1,434.7 (1,427.6–1,441.7) 1,411.7 (1,397.4–1,426.1) <0.001

aAdjusted for age and sex; b≥20 g/day; c≥College graduate; dBMI ≥ 25 kg/m2; eAmong 132,466 participants with plausible estimated energy intake levels 
(within 3 s.d. from the log-transformed mean energy intake); f1 kcal equals to 4185.8 J.
ALT, alanine aminotransferase; CVD, cardiovascular disease; DBP, diastolic blood pressure; GGT, gamma-glutamyltransferase; HEPA, health-enhancing 
physically active; hsCRP, high-sensitivity C-reactive protein; HOMA-IR, homeostasis model assessment of insulin resistance; SBP, systolic blood pressure
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667 community-dwelling adults aged 21–97 years showed 
significant associations between 25(OH)D levels and 
muscle mass only in participants younger than 65 years 
(9). Some other studies have also reported the potential 
benefit of serum vitamin D on muscle mass; however, these 
studies were undertaken in specific population subgroups 
(e.g. obese men) (10, 11). To our knowledge, our study is the 
first cohort study showing that adequate serum 25(OH)
D levels confer decreased risk of incident LMM in young 
and middle-aged individuals without comorbidities. Also, 
while there is scarce data on the prevalence of sarcopenia 
or LMM in young populations, a previous report has 
estimated that, among adults aged 21–59 years, up to 32% 
have LMM and 7% have sarcopenia, suggesting that it is 
already prevalent among younger adults (4). Likewise, 
our findings on the incident rate of LMM (27.1 per 1,000 
person-years) further supports the notion that LMM in 
young adults is no longer an uncommon condition.

In our study, persistently adequate serum 25(OH)D 
levels over time and increases in serum 25(OH)D levels 
from being insufficient to sufficient were significantly 
associated with decreased LMM risk. The effect of time-
dependent changes of serum 25(OH)D levels on preserving 

muscle mass has been uncertain, with a lack of comparable 
data. Two previous RCTs evaluated the benefit of vitamin 
D supplementation and changes in vitamin D levels on 
muscle mass and strength in young and middle-aged 
individuals, but neither found any significant benefits of 
vitamin D in improving muscle mass (12, 13). However, 
it is difficult to directly compare these study results with 
ours because these trials were underpowered with a 
sample size <40 and had a very short-term follow-up (12 
weeks) in a setting of resistance training, wherein vitamin 
D was supplemented only as an adjunct intervention. In 
our large sample of 192,908 healthy participants free of 
LMM at baseline, we could account for various known 
confounders, as well as time-dependent variables. Also, 
the extended follow-up duration of approximately 4 
years allowed the extended time frame for us to better 
observe the development of LMM over time. Although 
the possibility of residual confounding remains due 
to unmeasured factors including sun exposure or  
outdoor physical activity, our findings suggest that 
improved or persistently adequate serum 25(OH)D 
status over time may have benefit in reducing the risk of  
incident LMM.

Table 2 Development of low muscle mass according to serum 25(OH)D levels among participants at baseline (n  = 192,908). P = 0.025 
for the overall interaction between sex and serum 25(OH)D levels for incident low muscle mass (multivariable-adjusted model 2).

25(OH)D 
levels 
(nmol/L) Person-years 

Incident 
cases

Incidence 
density  
(/103 PY)

Age-adjusted HR 
(95% CI)

Multivariable-adjusted HRa (95% CI) HR (95% CI)b in a model 
with time-dependent 

variablesModel 1 Model 2

Total (n = 192,908)
 <25 120,174.0 3539 29.4 1.00 (reference) 1.00 (reference) 1.00 (reference) 1.00 (reference)
 25–<50 412,350.5 11,324 27.5 0.92 (0.89–0.96) 0.93 (0.90–0.97) 0.93 (0.90–0.97) 0.79 (0.76–0.83)
 50–<75 154,073.9 3914 25.4 0.83 (0.79–0.87) 0.83 (0.79–0.88) 0.85 (0.81–0.89) 0.65 (0.62–0.68)
 ≥75 34,114.8 749 22.0 0.68 (0.63–0.74) 0.67 (0.62–0.73) 0.77 (0.71–0.83) 0.52 (0.48–0.56)
 P <0.001 <0.001 <0.001 <0.001
Women (n = 85,898)
 <25 78,608.8 2499 31.8 1.00 (reference) 1.00 (reference) 1.00 (reference) 1.00 (reference)
 25–<50 175,005.9 5428 31.0 0.97 (0.92–1.01) 0.94 (0.90–0.99) 0.96 (0.91–1.00) 0.81 (0.77–0.86)
 50–<75 47,255.6 1359 28.8 0.87 (0.81–0.92) 0.84 (0.78–0.90) 0.90 (0.84–0.97) 0.67 (0.63–0.72)
 ≥75 11,863.1 291 24.5 0.69 (0.61–0.78) 0.67 (0.59–0.76) 0.82 (0.72–0.92) 0.56 (0.50–0.62)
 P <0.001 <0.001 <0.001 <0.001
Men (n = 107,010)
 <25 41,565.2 1040 25.0 1.00 (reference) 1.00 (reference) 1.00 (reference) 1.00 (reference)
 25–<50 237,344.6 5896 24.8 0.98 (0.92–1.05) 0.92 (0.86–0.98) 0.88 (0.82–0.94) 0.74 (0.69–0.80)
 50–<75 106,818.3 2555 23.9 0.92 (0.86–0.99) 0.82 (0.77–0.89) 0.78 (0.72–0.84) 0.61 (0.56–0.65)
 ≥75 22,251.7 458 20.6 0.76 (0.68–0.84) 0.67 (0.60–0.75) 0.71 (0.63–0.79) 0.48 (0.43–0.53)
 P <0.001 <0.001 <0.001 <0.001

aEstimated using Cox proportional hazard models. Multivariable model 1 was adjusted for age, sex (only for total), centre, year of screening examination, 
alcohol consumption, smoking, physical activity, total energy intake, education level, medication for hypertension, medication for diabetes, multivitamin 
supplement use, calcium supplement use, and season; model 2: model 1 plus adjustment for BMI; bEstimated using Cox proportional hazard models with 
categories of serum 25(OH)D levels, smoking, alcohol consumption, physical activity, total energy intake, medication for hypertension, medication for 
diabetes, multivitamin supplement use, calcium supplement use, season, and BMI as time-dependent variables and baseline age, sex (only for total), 
centre, year of screening examination, and education level as time-fixed variables.
HR, hazards ratio; PY, person-year.
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The present study has several important clinical 
implications. Earlier onset of sarcopenia has constantly 
been increasing, especially in developed countries, 
possibly owing to changes in lifestyle and diets (4), and 
there is an emerging need for taking a life-course approach 
to sarcopenia prevention during early years (4, 36). Given 

the progressive nature of and the seriousness of disability 
and complications associated with sarcopenia (1), 
preventing mild LMM may in turn delay further loss of 
muscle mass, consequently lowering the risk of sarcopenia 
as well as sarcopenia-related health consequences in 
later life. In light of this, our findings suggest that the 
prevention of early unfavourable changes in muscle mass 
and mild LMM may be achievable in young individuals by 
maintaining sufficient serum 25(OH)D levels. In addition, 
the proportion of our study participants with sub-optimal 
25(OH)D levels (<50 nmol/L) at baseline (approximately 
74%) is considerably higher than that in the United States 
and Europe (24–40%) (37), although it is comparable to 
the previously reported national prevalence in the Korean 
population (38). We assume that a high proportion of 
white-collar workers in our population who are likely 
to have less sun exposure may have contributed to the 
relatively high prevalence of sub-optimal serum 25(OH)
D levels. Our findings thus highlight the importance of 
maintaining adequate serum 25(OH)D levels to reduce the 
risk of LMM in populations with a high prevalence of low 
vitamin D status. Large and well-designed intervention 
trials are necessary to confirm our findings.

The mechanism by which serum 25(OH)D reduces 
LMM risk is not completely understood, but recent studies 
confirm that VDR is expressed in skeletal muscle and that a 
substantial level of signalling via VDR is required for normal 
muscle growth and muscle mass maintenance (39). In 
animal studies, VDR knockout mice had small and variable 
muscle fibres (40); vitamin D deficiency in rats inhibited 
mammalian target of rapamycin complex 1 (mTORC1) 
signalling and contributed to decreased protein synthesis 
in skeletal muscles (41), while VDR overexpression induced 
muscle hypertrophy (5). In human muscle tissue, VDR 
expression levels, which decline with age, can be altered 
using vitamin D supplementation (42), indicating that 
maintaining adequate 25(OH)D levels could reduce 
LMM risk. 25(OH)D may also stimulate protein synthesis 
through mTORC1 signalling; this mechanism may play 
an important role in muscle hypertrophy and muscle loss 
prevention (39).

According to our subgroup analyses, the association 
between serum 25(OH)D and LMM was attenuated 
in participants with insulin resistance defined as 
HOMA-IR ≥ 2.5 and/or hypertension. Skeletal muscle is 
the key tissue responsible for insulin-stimulated glucose 
disposal and is the major site of peripheral insulin 
resistance (43). Muscle mass is determined by the balance 
between protein synthesis and breakdown in the tissue, and 
particularly in younger people, insulin has a predominant 

Figure 2
Multivariable-adjusted hazard ratios for the development of 
low muscle mass in the total population (A) and sex-specific 
(B). Curves represent adjusted hazard ratios for low muscle 
mass based on restricted cubic splines with knots at the 5th, 
35th, 65th, and 95th percentiles of serum 25(OH)D 
distribution. Models were adjusted for age, sex (only for total), 
centre, year of screening examination, alcohol consumption, 
smoking, physical activity, total energy intake, education level, 
ongoing medication for hypertension and/or diabetes, 
multivitamin and/or calcium supplementation, season, and 
BMI. A full colour version of this figure is available at https://
doi.org/10.1530/EJE-21-1229.

https://eje.bioscientifica.com
https://doi.org/10.1530/EJE-21-1229.
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role in inhibiting protein catabolism, thereby preventing 
muscle atrophy (44). Insulin resistance thus may represent 
a state of ‘anabolic resistance’ in skeletal muscle, wherein 
the insulin-mediated suppression of muscle breakdown 
is inhibited, potentially leading to increased proteolysis 
that may eventually result in sarcopenia (45). VDRs are 
also involved in the pathogenesis of insulin resistance 
(46); a recent report showed that decreased glucose uptake 
reduced VDR expression in a diabetic mouse model (47). 
Therefore, a series of these interactive processes may act 
synergistically to attenuate the effect of vitamin D. The 
reason for the null association observed in the presence 
of hypertension is unclear. Hypertension is pathologically 
related to hyperactivity of the renin-angiotensin system 
(RAS), and animal studies show the involvement of VDR 
activation in downregulating RAS (48). High circulating 
levels of angiotensin II decrease muscle protein homeostasis 
and accelerate proteolysis, thereby promoting skeletal 
muscle fibre atrophy (49). Thus, in hypertension, vitamin 
D metabolism may not compensate for the effects of RAS 
overactivation. Future studies are warranted to better 
elucidate the role of insulin resistance and hypertension in 
the association between 25(OH)D and LMM.

The strengths of our study include the large sample 
size, carefully standardized clinical examination, imaging, 
and laboratory procedures and include the assessment 
of physical activity and other lifestyle factors. Also, 
the longitudinal cohort study design with repeated 
measurements of 25(OH)D levels and confounders enabled 
us to examine temporal and independent associations of 
serum 25(OH)D status and changes in serum 25(OH)
D status over time with LMM risk. We also considered 
the changes of covariates during follow-up in our time-
dependent model, wherein 25(OH)D levels and other 
covariates were considered time-varying variables.

This study had some limitations. First, we used 
bioimpedance analysis instead of DEXA, which is the gold 
standard body composition measurement for assessing 
muscle mass. DEXA, however, may expose participants 
to low-level ionizing radiation and is expensive to 
perform in large cohort studies. Secondly, we did not 
collect information on variables that could influence 
the serum 25(OH)D levels such as vitamin D intake via 
food consumption, details on the amount and frequency 
of vitamin D supplementation (e.g. dose, frequency, 
and duration), outdoor activities, or sunlight exposure, 
or presence of genetic polymorphism. Therefore, the 
potential for residual confounding remains. Thirdly, the 
reference values used in our study in defining LMM were 
derived from the young adults in this study population 

since there is no available value derived from the 
representative sample of the Korean population based on 
bioimpedance analysis. According to the fourth and fifth 
KNHANES, the cut-off values of 1 s.d. below the mean for 
DEXA-based SMI of young adults were 32.2 and 29.9%, 
respectively, for men and 25.6 and 23.5%, respectively, for 
women (50, 51), which were similar to the cut-off values 
used in our study (30.2% for men and 26.1% for women). 
Finally, our study participants represented a relatively 
young and healthy Korean working population. Although 
this could be perceived as a limitation, it also represented 
a strength of our study as relatively few study participants 
had existing comorbidities that are associated with low 
serum 25(OH)D levels. Nevertheless, the generalizability 
of our findings to other populations with comorbidities or 
different sociodemographic characteristics may be limited.

In conclusion, we demonstrated that serum 25(OH)
D levels are inversely associated with LMM risk in young 
adults. Favourable changes in serum 25(OH)D levels from 
insufficient to sufficient were associated with reduced 
LMM risk. Considering the importance of attaining 
high peak muscle mass during adulthood for sarcopenia 
prevention, maintaining sufficient serum 25(OH)D 
levels, which may be easily achieved by sun exposure or 
vitamin D supplementation, could be an effective primary 
prevention strategy to slow muscle loss and its associated 
consequences in later years.
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