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Abstract Increasing evidence suggests that the presence and spatial localization and distribution

pattern of tumor infiltrating lymphocytes (TILs) is associate with response to immunotherapies. Recent

studies have identified TGFb activity and signaling as a determinant of T cell exclusion in the tumor

microenvironment and poor response to PD-1/PD-L1 blockade. Here we coupled the artificial intelligence

(AI)-powered digital image analysis and gene expression profiling as an integrative approach to quantify

distribution of TILs and characterize the associated TGFb pathway activity. Analysis of T cell spatial dis-

tribution in the solid tumor biopsies revealed substantial differences in the distribution patterns. The dig-

ital image analysis approach achieves 74% concordance with the pathologist assessment for tumor-

immune phenotypes. The transcriptomic profiling suggests that the TIL score was negatively correlated

with TGFb pathway activation, together with elevated TGFb signaling activity observed in excluded and
(Rui Wang).

the studies were performed.
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desert tumor phenotypes. The present results demonstrate that the automated digital pathology algorithm

for quantitative analysis of CD8 immunohistochemistry image can successfully assign the tumor into one

of three infiltration phenotypes: immune desert, immune excluded or immune inflamed. The association

between “cold” tumor-immune phenotypes and TGFb signature further demonstrates their potential as

predictive biomarkers to identify appropriate patients that may benefit from TGFb blockade.

ª 2022 Chinese Pharmaceutical Association and Institute of Materia Medica, Chinese Academy of Medical

Sciences. Production and hosting by Elsevier B.V. This is an open access article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Recent studies suggest that the spatial context of tumor infiltrating
lymphocytes is an important prognostic determinant of tumor
progression and response1e3. The distribution pattern of tumor
infiltrating lymphocytes in the tumor microenvironment (TME)
can be classified as three T cell infiltration phenotypes: immune-
inflamed, immune-excluded and immune-desert, based on the
spatial localization of immune cells with respect to the tumor and
stromal compartments4. Immune-inflamed tumors are usually
associated with increased level of infiltrating antigen-specific
CD8þ T cells and better response to immunotherapies5. The
immune-desert has been associated with general lack of immune
response due to minimal infiltration of TILs6,7. Finally, the
immune-excluded tumors display a phenotype in which CD8þ T
cells are restricted to surrounding tumor stroma compartment but
not able to infiltrate into tumor parenchyma4. Thus, overcoming
the restriction barriers to enable re-distribution of effector T cells
from stroma to close contact with cancer cells might serve as a
strategy to improve efficacy of immune checkpoint blockade.

Recent studies have identified TGFb activity and signaling in the
TME as a determinant of cytotoxic CD8 T cell exclusion and poor
response to PD-1/PD-L1 blockade8. Analysis of transcriptome
sequencing data suggested significantly enhanced TGFb signaling
pathway inbiopsies frompatients not responding to PD-L1antagonist
atezolizumab in metastatic urothelial cancer study. Further back
translational research in syngeneic mouse tumor models which
recapitulated the immune-excluded TME demonstrated that dual
targeting of PD-L1andTGFb reverses immune exclusionby inducing
CD8þT cell infiltration into tumors, while treatment of either therapy
alone is not effective9. The results shed light on leveraging TGFb
inhibition to enhance antitumor response of immune checkpoint in-
hibitors by changing the immune landscape in TME.

Over the years the clinical development of TGFb inhibitors
have been hampered by lack of efficient predictive biomarkers to
identify patients who are likely to benefit from the treatment10.
The recent study indicating the role of TGFb signaling pathway as
key driver of immune-exclusion provided additional insight for
combining TGFb blockade with checkpoint inhibitors in
biomarker-driven clinical trials11,12. We applied an integrative
approach using image analysis together with gene expression
profiling to quantify distribution of TILs and characterize the
associated TGFb pathway activity. The goal is to use this approach
to identify tumors with immune-excluded phenotype and high
levels of TGFb pathway activity, as predictors of response to
TGFb inhibition to facilitate conversion of “cold” (immune
excluded and desert) tumors to “hot” in the future clinical studies.

However, determining a patient’s immune phenotype from
their digital imaging slides can be a subjective process based on
the individual pathologist’s analysisddiscrepancies between pa-
thologists (inter-rater) and discrepancies between analyses from
the same pathologist but at different times (intra-rater) are
somewhat common challenges with these datasets13,14. To over-
come these challenges, we developed a quantitative measure of
immune phenotypes (TILS/NTILS) and applied it to our image
processing algorithm-based model in an automated AI-driven
fashion to reduce inter-rater and intra-rater variance in immune
phenotype classification.
2. Materials and methods

2.1. Archival formalin-fixed, paraffin-embedded (FFPE) tumor
blocks

110 individual tumors mounted in FFPE comprising colorectal
cancer (CRC, n Z 30), bladder cancer (BC, n Z 20), ovarian
cancer (OC, n Z 20), head and neck squamous cell carcinoma
(HNSCC, nZ 20), and gastric cancer (GC, nZ 20) were selected
based on a pathologist review of available blocks for cases with a
balance of tumor and stroma represented and low necrosis.
Selected blocks were purchased from a commercial vendor
(Asterand) who obtained informed consent for collection and
research use from each donor and the respective IRB of the
participating institutions. Sectioning and staining of FFPE blocks
for IHC analysis were performed by Indivumed GmbH (Hamburg,
Germany). An additional set of 5-mm sections were collected as
FFPE curls for RNA isolation and RNAseq analysis. Of those
initial 110 blocks, 105 passed QC after staining and were used for
the subsequent analyses. Additional details of the tumor tissue
have been summarized in Table 1.

2.2. Multiplex immunohistochemistry (IHC) assay and digital
pathology

A multiplex fluorescent IHC assay was developed by Indivumed
GmbH for PanCK (polyclonal)/CD3 (clone F7.2.38)/CD8 (clone
SP16), and 40,6-diamidino-2-phenylindole (DAPI). Image analysis
was optimized to detect localization of CD3þ and CD8þ lym-
phocytes on the procured tumor slides. The multiplex immuno-
fluorescent slide with a hematoxylin counterstain were scanned at
20 � magnification for the image analysis. Pathologist annotations
were used to determine tumor and stroma regions in each sample
based on the distribution of the T-cells and PanCK staining. The
spatial localization of lymphocyte subsets as defined by the CD8þ

staining was used to assign each case to one of the three infil-
tration phenotypes (immune desert, immune excluded or immune
inflamed). In addition, the digital imaging analysis platform for

http://creativecommons.org/licenses/by-nc-nd/4.0/


Table 1 Summary of procured tumor biopsies from five indications.

Case CRC HNSCC Ovarian Bladder Gastric

Female cases

(mean age years at time of biopsy [range])

20 4 20 8 9

(64.25 [50e85]) (68 [58e82]) (63.8 [43e78]) (69 [37e82]) (65.4 [43e80])
Male cases

(mean age years at time of biopsy [range])

10 15 Not applicable 12 11

(64 [45e84]) (64.3 [56e88]) (62 [46e81]) (61.2 [27e77])

AJCC/UI tumor stage group (% of cases) IIIB (70%) III (60%) IIIC (80%) G2 (20%) G1 (15%)

IV (20%) IVA (20%) IV (20%) G3 (80%) G2 (15%)

IVA (7%) IVC (20%) G3 (70%)

IVB (3%)
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quantitative assessment of immune phenotypes has been devel-
oped and applied to 103 tumor samples.

2.3. Development and refinement of the artificial intelligence
digital pathology algorithm

The full set of the CD8þ fluorescent images from the 103 tumor
samples were first split into a training and an independent test
dataset based on different tumor types to better understand the
generalizability of the immune phenotyping model. Image data
from colorectal cancer, gastric, and bladder cancer indications
were input as the training set (n Z 68), while HNSCC and OC
data were used as the test data set (n Z 35) (Fig. 3A).

Multiple digital image morphology operations were combined
to preprocess and normalize each image. Several methods were
considered: Otsu’s thresholding15, fixed thresholding, median and
variance based thresholding. For each channel a median and
standard deviation-based thresholding to separate signal from
noise was used: threshold Z (median of positive pixel value
within tissue level tumor mask) þ 1.5 (standard deviation of
positive pixel value within tissue level tumor mask) and each
channel had its own global threshold which was applied to all
tiles. The size of the tile was chosen to be able to cover several
tumor nests but not too large such that it could not be read into the
computer due to memory constraints. The chosen size for this
project was 2500 � 2500. Four types of stains were used to stain
the four channels of the immunofluorescence images. The pan-CK
stains epithelial cells, majority of which are tumor cells in the
images since they are from tumor biopsy samples. DAPI stains
cell nuclei, but sometimes there are staining artifacts.
Figure 1 Characterization of the spatial distribution of tumor infiltratin

fluorescence assay. Representative multiplex immunofluorescent image of

Panel A: Immune rich phenotype. T lymphocytes are numerous both in

Immune excluded pattern. T lymphocytes are restricted in the stroma ar

lymphocytes are scarce both in stroma (white arrow) and between tumor
The probes for CD3 and CD8 positive lymphocytes, can also
stain red blood cells so these two stains and the cell nuclei
channel were used to exclude false CD3, CD8 staining. In the
phenotype classification, only three channels were used: CD8,
pan-CK and DAPI. Top-hat image morphology operation was
used to correct out-of-focus region and staining artifacts16. A
kernel size of 75 was used for the top-hat operation and was
chosen to be larger than the size of largest cells but smaller than
the smallest artifact or region out-of-focus such that it removes
the artifacts but not the cells. The opening image morphology
operation was used with a kernel that is just right size, bigger
than largest size of the small artifacts but smaller than the
smallest cells. A kernel size of 20 was used for the epithelial
channel while a size of five was used for the rest of channels.
The closing image morphology operation was used with a kernel
that is just right size. A kernel size of 35 was used for the
epithelial channel while a size of 10 was used for the nuclei
channel. The watershed image morphology operation was used
to segment CD8þ lymphocytes.

2.4. TGFb pathway activation gene signature

TGFb-stimulated and anti-TGFb-treated MDA-MB-231 human
breast cancer cell lines were cultured in vitro and used to derive a
gene signature for TGFb pathway activation. This resulted in a
159 gene expression signature that was validated in vivo by RNA
profiling of the MDA-MD-231 xenograft model17. In silico vali-
dation was accomplished through comparison to other TGFb
signature scores18,19. The full gene signature and the gene list has
been disclosed previously20.
g T lymphocytes using multiplex immunohistochemistry and immune

colorectal cancer illustrating localization of CD3þ and CD8þ T cells.

stroma (white arrow) and between tumor cells (red arrow). Panel B:

ound tumor cells (white arrows). Panel C: Immune desert pattern. T

cells (red arrow).



Figure 2 Distribution and frequency by tumor type for each im-

mune cell phenotype for the cases in this study.
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2.5. Gene expression profiling

Total RNAs of individual CRC samples (n Z 29) were isolated
from 5-mm thick FFPE sections of tumor blocks. Gene expression
profiling was then performed using next-generation sequencing,
briefly as follows: whole-transcriptome libraries were generated
from the isolated RNA using a single-stranded protocol (NuGen),
sequencing was performed using the Illumina HiSeq2000 plat-
form, sequencing reads were then informatically mapped to
transcripts, and relative abundances computed as transcripts per
million (TPMs). Median sequencing depth was 14.7 million, with
median mapping rate to the genome of 79%. Of mapped reads, on
median 87% mapped to exonic sequences.

A regulated KolmogoroveSmirnov analysis was used to
generate enrichment scores for the TGFb pathway activation
signature according to a previously disclosed approach20. The
profiles arising from each study were independently quantile-
normalized, log2 transformed, and then Z transformed (standard-
ized) on a gene-by-gene basis, before being used to generate the
enrichment scores. The final enrichment scores were expressed in
terms of “log2C” scores, with sign equal to the inferred relative
activation state of the pathway (“on” Z 1, “off” Z �1) and
Figure 3 Digital image analysis pipeline for the quantitative evaluatio

images. (A) Overview of workflow for digital image analysis pipeline.

determination of immune cell phenotype.
magnitude equal to log2 of the largest of the left or right leading-
edge slopes of the regulated sample distribution relative to the
global gene population rank distribution.
2.6. Statistical analysis

A trend test21 was used to compute global significance of differ-
ences between cancer immune phenotype groups in the analysis of
the TGFb pathway activation score. A two-sided t-test against
0 was conducted to determine whether there is an increasing trend
of TGFb pathway activation score from inflamed phenotype to
excluded and desert phenotype.
3. Results
3.1. Characterization and spatial distribution of tumor-
infiltrating T cells and profile the immune topographies across five
different solid tumors by multiplex immunohistochemistry

Of the 110 cases analyzed, 105 yielded staining and images of
sufficient quality to support further analysis. Five (1 CRC, one
HNSCC, one OC and 2 GC) cases failed due to quality issues
mostly related to the sample not adhering to the slide during
processing and files from two other cases were corrupted during
data transfer and were excluded from the study. Multiplex fluo-
rescent images from 103 cases from the five tumor types were
collected. A set of CRC tumors from individual cases provided
representative examples of each immune cell infiltration pheno-
type and are depicted in Fig. 1. The immune rich or inflamed
phenotype is illustrated by CD3 and CD8 positive cell staining
throughout the sample, indicating an immune infiltration across
the boundaries of the tumor and adjacent stroma. Given CD8þ T
cells are one of the primary tumor infiltrating lymphocytes that
play a key role in anti-tumor responses and CD8 T cells are
considered as a useful biomarker for prediction of prognosis and
response to immunotherapy22,23, as we move forward with the
digital pathology platform establishment, CD8 staining was
n of tumor immune cell phenotypes using CD8þ immunofluorescent

(B) Phenotype classification rule applied to sample images in the
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prioritized as the leading marker to distinguish the cancer-immune
cell distribution within TME.

The resulting multiplex images were reviewed and annotated
by one Board Certified Medical Pathologist (BC) and one PhD in
Molecular Histopathology (AC) which resulted in a “manual”
classification of each case into one of the three immune cell
phenotypes. The distribution of each phenotype by tumor type
studied is depicted in Fig. 2. The profile of T cell infiltration
phenotypes across the five different tumor types (Bladder, CRC,
HNSCC, Gastric Cancer, and Ovarian Cancer) showed a distinct
distribution pattern of CD 8þ T lymphocytes in these biopsies
(n Z 103). Of interest is that the excluded phenotype exists as the
majority phenotype in all but the gastric cases (40%) and is pre-
dominant in the colorectal cases in our study (79%). This obser-
vation is supported by similar findings in CRC by image analysis
whereby a majority of cases were also found to have the lowest
amount of tumor infiltrating lymphocytes and highest tumor-
stroma ratio coinciding with the CMS-4 (mesenchymal) pheno-
type24. Overall, the gastric tumors had the highest percentage of
the immune inflamed phenotype whereby ovarian and colorectal
the lowest (12% and 14% respectively) (Fig. 2).

3.2. Development of digital image analysis platform for
quantitative evaluation of tumor immune phenotypes

Due to heterogeneities of immunofluorescence images, an image
preprocess procedure was conducted to remove staining artifacts,
such as out-of-focus regions, false positive background staining
and false positive red blood cell staining. Also included as part of
the preprocessing process, tumor regions were annotated by a
pathologist, which were utilized later to rule out PanCK stained
normal epithelial cells when PanCK staining was used to segment
out tumor regions. The annotation also helped the determination
of the tumor margin for which distribution of CD8þ lymphocytes
were evaluated. After preprocessing, each image went through
into a tiling process and only tiles contain enough nuclei were
included for the rest of the analysis. To localize CD8þ lympho-
cytes, a whole slide specific threshold was determined based on
the mean and variance of the pixel values of the CD8 staining
channel to segment out CD8 positive lymphocytes. Once seg-
mentation was completed with watershed, a bounding box was
generated for each segmented cell to locate each cell (summarized
in Fig. 3A), which can be useful for both visual validation and the
determination of the size of each cell to rule out large size staining
artifacts that were removed during the preprocessing process.
Similar thresholding and segmentation procedures were carried
out for the rest of the channels of an image. Continuous scores
were obtained to quantify spatial distribution of CD8þ tumor
infiltrating lymphocytes (TILs) for up to three compartments of
each tile of an image, tumor compartment, stroma compartment
and tumor margin compartment. If the area of a tile covered by the
tumor compartment is greater than a prespecified threshold (say
5%), the percentage of tumor area covered by CD8þ TILs will be
evaluated and denoted as tumor infiltrating lymphocyte score
(TILS) for that tile. If the area of a tile covered by the stroma
compartment is greater than a prespecified threshold (say 0.1%),
the percentage of stroma area covered by CD8þ TILs will be
evaluated and denoted as non-tumor-infiltrating-lymphocyte score
(NTILS). If the area of a tile covered by tumor margin compart-
ment is greater than a prespecified percentage (say 10%), the
percentage of tumor margin area covered by CD8þ TILs will be
evaluated and denoted by NTILS_margin. For the calculation of
all these scores, CD8þ area was calculated as an aggregated sum
of each segmented CD8þ lymphocytes inside the compartment
associated with each score. The scores were aggregated by taking
the median of the scores of each tile to obtain the corresponding
patient level TILS, NTILS and NTILS_margin scores. Based on
these scores, a slide can be classified into one of the three immune
phenotypes based on a tree decision rule outlined in Fig. 3B. The
current method was found to be applicable to the five cancer types
tested in the present study with decent performance. Sensitivity
analysis on the impact of tile size to the phenotype classification
has also been performed which confirms the robustness of current
approach regarding to the choice of tile sizes as indicated in Table
2. Comparisons of digital to manual annotation were performed on
a training set of tumors to refine thresholds and hyperparameters
and applied to a testing set of tumors to derive specificity and
sensitivity of the digital image analysis method. The refined
thresholds for the immune phenotype classification rule in Fig. 3B
are cutoffTILS Z 0.6%, which can be interpreted as about 212
CD8þ TILs per mm2 of tumor cells, and cutoffNTILS Z 0.3%,
which can be interpreted as about 106 CD8þ TILs per mm2 of
tumor cells, assuming the average diameter of a CD8þ TIL is
6 mm.

3.3. Performance of the AI digital pathology algorithm

Hyperparameters for the digital pathology algorithm was trained
and finetuned on the training set (Fig. 4A) and its performance
was evaluated in the independent test set to derive specificity and
sensitivity of the method (Fig. 4B). Our approach is different from
the standard deep learning type of training process, where the
training dataset and testing dataset use the samples from the same
type of disease. In contrast, we used CRC and gastric cancer
images for the training set while the images from HNSCC, ovarian
and bladder cancers were used as the testing dataset. The purpose
of creating training set and testing set with different cancer types
was to examine the generalizability of the digital pathology al-
gorithm to cancer types for which it was not trained on. The
Receiver Operating Characteristic (ROC) curves, a commonly
used metrics for evaluating performance of a classifier in machine
learning, for predicting inflamed vs. non-inflamed phenotypes
were visualized together with the ROC curves for predicting
excluded vs. desert phenotypes in Fig. 4. Both ROC curves have
more than 85% area under the curve (AUC) and demonstrated the
applicability of the algorithm to support accurate characterization
across the tumor types studied (Fig. 4C).

3.4. Association between TGFb pathway activation signature
score and the infiltration phenotypes

The RNAseq output of RNA derived from the 29 archival CRC
cases was analyzed using the 159-gene expression signature rep-
resenting TGFb pathway activation20 to generate a gene set
enrichment score using a regulated KolmogoroveSmirnov anal-
ysis for each case. Published studies have demonstrated TGFb
upregulation as a key mechanism of tumor immune evasion by
contributing to a tumor microenvironment that is characterized by
an immune cell exclusionary zone25,26. Previous analysis by our
group confirmed that TGFb pathway activation is significantly
higher in a patient population that was unresponsive to anti-PD-L1
or anti-PD-1 checkpoint therapies20 contributing to a resistance
mechanism in these tumors. In this current study when we
compared to the number of TILs in the archival CRC tumor



Table 2 Sensitivity analysis on the impact of tile size to the cancer immune phenotype classifications.

Tile size (# of pixels) AUC for inflamed vs. non-inflamed (95% C.I.) AUC for excluded vs. desert (95% C.I.)

1500 89.6% (72.9%, 100%) 86.8% (72.3%, 100%)

2500 86.1% (63.7%, 100%) 89.5% (77.4%, 100%)

3500 87.5% (66.8%, 100%) 88.2% (74.9%, 100%)

Figure 4 ROC curves depicting performance of the approach demonstrates the improvement in AUC from the (A) training data set to the (B)

testing data set in correctly determining immune cell phenotype and the (C) overall generalizability to the five different tumor types studied. X-

axis and Y-axis depict specificity and sensitivity, respectively.
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sample to their respective TGFb pathway activation signature
score, there is a clear and inverse relationship between the TGFb
pathway activation score and number of TILS in the sample,
especially in the tumors exhibiting an immune excluded or desert
phenotype. This relationship was further extended to the level of
TGFb in the sample as a predictor of the immune phenotype
exhibited by the sample. On average, higher TGF-b pathway
activation score is observed in tumors with an excluded or desert
phenotype. A trend test was conducted to test the increasing trend
of TGFb across three phenotypes, and two-sided P-value Z 0.32
(Fig. 5).

4. Discussion

Assessing immune cell infiltration is an important component of
the “Cancer Immunogram” for patient stratification in future
immunotherapy trials27. However, robustly classifying tumor-
immune phenotypes on a tumor and case by case basis with
histological metrics has been challenging. Herein we have pro-
posed the incorporation of a quantitative measure of immune
phenotypes (TILS/NTILS) that can be automatically determined
by our digital image process-based model to reduce inter-rater
and intra-rater variance in immune phenotype classification.
Traditional methods focus on discriminating the immune infil-
tration phenotypes based on the location of TILs in tumor or
stroma areas, which can distinguish inflamed vs. non-inflamed
phenotypes successfully but might be challenging to correctly
differentiate between tumors with an excluded vs. desert
phenotype.

In addition, as an important immune cell in tumor infiltrated
lymphocytes, CD8þ T cell has been regarded as a predictive
biomarker and a key player in characterizing cancer-immune
phenotypes23,28. However, with increasing studies pointing out
that the heterogeneous distribution of CD8 T cells within a single
tumor and across different tumors could complicate quantification
of CD8 expression. Moreover, CD8 TIL is typically measured by
immunohistochemistry for expression quantification purpose,
thus, inter-observer variation between examining pathologists is
another factor that contributing to the inconsistency of TIL
quantification in clinical practice22,29,30. Taken together, intra- and
inter-tumoral heterogeneity could distort the TIL quantification
using CD8 IHC on single FFPE biopsy slide. Consequently,
numerous studies have investigated novel cutting-edge technol-
ogy, such as digital pathology analysis to quantify spatial het-
erogeneity of immune markers (CD8, PD-L1, etc.)31, to pave the
road for comprehensively studying tumor heterogeneity across
multiple studies. Herein, our methodology goes beyond the tumor
and non-tumor compartments and assesses the TILs in the tumor
invasive-margin boundary which is defined as the region centered
on the border between the tumor nest and host tissue if there is
any. This allows for the measurement of TILs in the tumor mar-
gins which can indicate whether the tumor core is surrounded by
TILs and thus specify the phenotype is excluded or desert based
on their presence or absence, respectively. Additionally we
developed a quantitative, continuous and automated analysis al-
gorithm that is similar to the automated quantitative analysis
technology that allows the detection of biomarker expression
within specific compartment area to produce quantitative and
reproducible score for each field of view32. This is consistent with
the way that pathologists evaluate the tumor-immune phenotypes,
and thus more accurate than using a simple cell count since tumor
cells are known to have morphologic heterogeneity even within an
individual tumor33. It is also worth noting that the present algo-
rithm has high level of generalizability without the excessive
overfitting need34 which has the potential to be developed as an
independent, pan-cancer approach: the algorithm was developed
using a training dataset that included CRC, gastric and bladder
cancer and then was applied to the test dataset that included
HNSCC and ovarian cancer, with the results suggesting good
accuracy in both the training and the independent test set. Last but
not least, this AI type of digital pathology algorithm has an
advantage over the more popular and widespread methods such as
neural network as there isn’t a need for upfront intensive anno-
tation by a pathologist35.



Figure 5 Integrative approach suggests association between TGFb

pathway activity and T cell infiltration phenotypes. Higher TGFb

pathway activation score tends to be observed in tumors with an

excluded or desert phenotype.
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To further evaluate the association of TGFb pathway in tumor-
immune microenvironment, we performed transcriptomic analysis
in the CRC biopsy samples and then correlated the TGFb pathway
activity with TIL level as well as the tumor-immune phenotypes.
Our results suggest that 1) the levels of CD8þ T cell infiltration
negatively correlate with TGFb pathway activation and 2) tumors
presenting excluded or desert phenotypes have higher level of
TGFb pathway activity than the inflamed phenotype; which are all
consistent with the previous reports on the pivotal role of TGFb in
immune suppression and cancer progression12,24,36. Additionally,
the present study confirms the link between TGFb-signaling and
immunosuppressive tumor phenotypes, which provides supportive
information on using them as enrichment biomarkers to select
patients, with higher TGFb activation or excluded/desert cancer-
immune phenotypes, who may benefit from TGFb blockade
therapy37e39.

Nevertheless, some limitations to the present study must be
acknowledged. First, the machine-learning model for tumor-
immune phenotype classification was established using a small
number of archived tumor FFPE blocks involving five tumor types
and would benefit from a further validation in a prospective
clinical study in greater numbers of cases. Second, the cut-off
value of the TGFb activation gene signature and the correlation to
the phenotypes established in the present study would benefit
being applied in a larger cohort study allowing further optimiza-
tion. Last, it remains a big challenge to reveal cancer-immune
phenotypes due to complex spatial distribution of infiltrated
CD8þ T cells and the coexistence of various phenotypic and
genotypic profiles caused by inter- and intra-tumoral heteroge-
neity. Thus, it is worth mentioning that further exploration is
ongoing to validate the current integrative platform of digital
pathology and transcriptomics in a large-scale analysis using
dataset including procured and clinical tumor biopsies, which, we
believe, may pave the road for implementing this approach to
clinical study.
5. Conclusions

In this study, we established an image morphology operation-
based automated digital pathology analysis approach that can
characterize and classify the cancer immune phenotypes in an
artificial intelligence fashion. In addition, the gene expression
analysis revealed the association between TGFb activation
signature and immune phenotypes further demonstrates their po-
tential as predictive biomarkers to identify appropriate patients
that may benefit from TGFb blockade.
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Tumor infiltrating lymphocyte clusters are associated with response to

immune checkpoint inhibition in BRAF V600 E/K mutated malignant

melanomas. Sci Rep 2021;11:1834.
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10. Ganesh K, Massagué J. TGF-b inhibition and immunotherapy:

checkmate. Immunity 2018;48:626e8.
11. Gordian E, Welsh EA, Gimbrone N, Siegel EM, Shibata D,

Creelan BC, et al. Transforming growth factor b-induced epithelial-to-

mesenchymal signature predicts metastasis-free survival in non-small

cell lung cancer. Oncotarget 2019;10:810e24.
12. Desbois M, Udyavar AR, Ryner L, Kozlowski C, Guan Y,
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