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Abstract: Extracellular vesicles (EVs) are small vesicles ranging from 20–200 nm to 10 µm in diameter
that are discharged and taken in by many different types of cells. Depending on the nature and
quantity of their content—which generally includes proteins, lipids as well as microRNAs (miRNAs),
messenger-RNA (mRNA), and DNA—these particles can bring about functional modifications in the
receiving cells. During pregnancy, placenta and/or fetal-derived EVs have recently been isolated,
eliciting interest in discovering their clinical significance. To date, various studies have associated
variations in the circulating levels of maternal and fetal EVs and their contents, with complications
including gestational diabetes and preeclampsia, ultimately leading to adverse pregnancy outcomes.
Furthermore, EVs have also been identified as messengers and important players in viral infections
during pregnancy, as well as in various congenital malformations. Their presence can be detected
in the maternal blood from the first trimester and their level increases towards term, thus acting as
liquid biopsies that give invaluable insight into the status of the feto-placental unit. However, their
exact roles in the metabolic and vascular adaptations associated with physiological and pathological
pregnancy is still under investigation. Analyzing peer-reviewed journal articles available in online
databases, the purpose of this review is to synthesize current knowledge regarding the utility of
quantification of pregnancy related EVs in general and placental EVs in particular as non-invasive
evidence of placental dysfunction and adverse pregnancy outcomes, and to develop the current
understanding of these particles and their applicability in clinical practice.

Keywords: extracellular vesicles; placenta; gestation; pregnancy disorders; liquid biopsy

1. Introduction

Pregnancy, an efficiently regulated physiological process by which women give birth
to offspring, is characterized by numerous adaptive changes—including, among others,
anatomical, hormonal, metabolic, immunological and cardiovascular adjustments. Perhaps
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the most substantial, changes in the endocrine system help ensure the proper development
of the growing fetus, particularly with the aid of the fetoplacental unit, which acts both as
a meaningful hormone source and an efficient tissue barrier [1].

While most pregnancies progress smoothly, culminating in successful delivery, the
wellbeing of the mother and/or the fetus can be affected by various abnormalities occur-
ring during gestation. The most common pregnancy complications refer to gestational
hypertension, gestational diabetes mellitus, maternal systemic inflammation, infections,
premature delivery, and fetal growth restriction [2–4]. Additionally, the physiological
evolution of pregnancy can also be adversely influenced by congenital anomalies occurring
during intrauterine life, such as structural chromosomal abnormalities, heart defects, and
neural tube defects [5–7]. Furthermore, these complications not only increase the odds of
adverse pregnancy outcomes, but also impact the later development of the newborn, and
may result in various maternal afflictions following parturition, such as hypertension or
diabetes [8–10]. At present, the diagnosis of these conditions mainly relies on hematological
tests and ultrasound screening, routine blood pressure monitoring and proteinuria tests for
hypertension and pre-eclampsia, along with blood glucose and fasting blood glucose levels
measuring for gestational diabetes [11]. While repeatedly proven reliable, it is not rare that,
by these means, anomalies are not detected in the optimal timeframe for ensuring favorable
outcome following clinical intervention. Therefore, the development and use of novel non-
invasive biomarkers for timely diagnosis of pregnancy-related complications and/or fetal
anomalies is critical in the current setting of increased perinatal morbidity and mortality
associated with pregnancy complications. To this extent, the quickly emerging field of
extracellular vesicle (EV) research holds strong evidence for the use of its components as
non-invasive, accurate biological signatures.

Extracellular vesicles are cell-derived particles sheathed in a lipid bilayer that are
naturally secreted into the extracellular space [12]. Though their functions often overlap,
various subtypes have been suggested, with the three main established categories consist-
ing of exosomes, ectosomes or microvesicles, and apoptotic bodies [13]. Exosomes vary
in size, typically ranging from 30 to 150 nm in diameter [14,15], and are generated by the
inward expansion of the endosome membrane, leading to the formation of multivesicular
bodies (MVBs) rich in intraluminal vesicles (ILVs). When the MVB binds to the plasma
membrane, ILVs are discharged in the form of exosomes [16,17]. Ectosomes, on the other
hand, are commonly larger in size, reaching up to 1 µm in diameter [14,18,19], and are
formed by the outward bulging of the plasma membrane, with the aid of cytoskeletal
filaments [20,21]. Apoptotic bodies have been reported to reach up to 5000 nm in size [22],
occurring as a result of cellular death accompanied by structural changes such as contrac-
tion and apoptotic blebbing [23]. The formation and discharge of MVBs and exosomes take
place under the strict control of the endosomal sorting complexes required for transport
(ESCRT) proteins [24–26], and are thought to be facilitated by certain growth factors [27].
Apart from ESCRT proteins, EVs also contain a group of marker proteins with no relation
to the origin cell, including programmed cell death 6-interacting protein (PDCD6IP/Alix),
tumor susceptibility gene 101 (TSG101), heat shock cognate protein 70 (HSC70), heat shock
protein 90β (HSP90β), tetraspanin 28 (TSPAN28/CD81), tetraspanin 29 (TSPAN29/CD9),
and tetraspanin 30 (TSPAN30/CD63) [28,29]. Tetraspanins are membrane proteins con-
taining four transmembrane domains that play important roles in the fabrication and
biosynthesis of EVs [30,31]. Further on, within their cargo, they also carry certain bioactive
lipids and prostaglandins [32], along with RNA in the form of messenger RNA (mRNA),
microRNA (miRNA), and long non-coding RNA (lncRNA) [33], and interestingly, little
or no DNA. Ectosomes, on the other hand, differentiate themselves by markers such as
annexin V, selectin, membrane type 1-matrix metalloproteinase (MT1-MMP), CD40, and
flotillin-2 [19,34], while apoptotic bodies are rich in DNA fragments, intact organelles,
histones, and annexin V [21,35].

The International Society for Extracellular Vesicles (ISEV) currently recommends the
use of the generic term ‘extracellular vesicle’, since establishing the exact biogenesis of the
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discussed particle is a difficult task. Furthermore, it is also suggested that authors rather
describe the size, biochemical composition and origin of the EV, rather than erroneously
attributing it a subtype [17]. Additionally, in order to confirm the presence of EVs, ISEV
recommends identifying the presence of three categories of markers common to all EVs, as
highlighted in Table 1.

Table 1. Markers that confirm the presence of EVs.

Category I Category II Category III

GPI-anchored or
transmembrane proteins,
demonstrating the lipid

bilayer of the EV

Cytosolic proteins in
eukaryotic cells and

Gram-positive bacteria
Periplasmic proteins in
Gram-negative bacteria

Constituents of non-EV
factors that help evaluate the
degree of contamination of the

sample (e.g., APOA1/2,
APOB, albumin, UMOD)

GPI: glycosylphosphatidylinositol; APOA1/2, APOB: apolipoproteins A1/2 and B; UMOD: uromodulin.

Due to high degree of heterogeny of these molecules, numerous isolation and iden-
tification methods have been developed, including labeling technologies such as flow
cytometry, immunoelectron microscopy, or western blot for specific markers [36,37]. Some
of the most common isolation and detection approaches used to evaluate the pregnancy-
related nanovesicles have been summarized in Tables 2 and 3, along with some of their
advantages and disadvantages.

Table 2. Isolation methods used in the detection of pregnancy-related EVs.

Biological Sample Potential Interfering
Factors

Isolation, Separation and
Concentration Techniques Characteristics References

Plasma/serum of
pregnant women

Pre-/postprandial
status

Medication
Sample volume
Container type

Processing time Choice
of anticoagulant

Differential centrifugation
Sequential centrifugation

Ultracentrifugation
Ultrafiltration

Standard protocol for EVs
isolation from biological

fluids.
Requires additional steps

for purification of
pregnancy-associated EVs

from other vesicles and
co-isolated proteins

[38–40]

Fluid from cultured
placental tissue

explants
Syncytiotrophoblast

Specific infectious and
noninfectious diseases

Technical factors
Storage and processing

Differential centrifugations
Ultracentrifugation

Ultrafiltration
Chromatographic/immunosorbent

procedure
Size exclusion chromatography

Precipitation
Immunoaffinity-based capture

Used to study the
composition and biological

roles of placental EVs in
normal and pathological

pregnancies.
Requires ex vivo cultures
of placental explants at

different
gestational ages.

Techniques for biological
samples collection may
damage the products of

conception

[38,41,42]

Placental perfusate
Placental homogenate

Specific infectious and
noninfectious diseases

Technical factors
Storage and processing

Differential centrifugation
Gel filtration

Ultrafiltration
Affinity chromatography
Microfluidic technology

Biological products
accessible only after

delivery
Enrichment of EV

preparations requires
purification steps

[38,43–45]
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Table 3. Methods for the detection and confirmation of pregnancy-related EVs.

Detection/Confirmation Techniques Characteristics References

Flow cytometry

Not selective enough to analyze membrane and
non-membrane structures, as it detects all particles with

CD81, CD9, and CD63 markers
It is recommended to use appropriate negative controls

(antibodies, isotype controls, etc.)

[36–38,46]

Western blot

Most commonly used technique, although not selective
enough

Employs the use of STB marker PLAP, as well as
exosomal markers Alix and CD63, and potential

contaminating markers such as platelet, red blood cell,
and leucocyte markers

[37,38,46]

Fluorescence nanoparticle tracking analysis
(fl-NTA)

Typically used to determine PLAP-positive EVs, thus
reliably identifying STBMV

Facilitates counting, sizing, and phenotyping of EVs
[47]

Imaging techniques such as electron
microscopy, immunoelectron microscopy,

scanning electron microscope (SEM),
transmission electron microscope (TEM),
cryogenic electron microscopy (cryo-EM),
scanning probe microscopy (SPM), atomic
force microscopy (AFM), super-resolution

microscopy (SRM)

Used to visualize single EVs at high resolution,
providing information on their structure and
composition, especially when combined with

antibody-mediated detection of EVs components
Allows the detection of exosomal markers directly on

the nanovesicle surface
These techniques are not interchangeable as they do not

offer information about EVs of comparable
characteristics

When dealing with insufficiently purified preparations,
co-isolated impurities can lead to misinterpretation of

biochemical contents

[38,48–51]

While initially regarded as debris, lacking any biological purpose, EVs have over time
been demonstrated to play significant roles in intercellular communication, carrying both
autocrine and paracrine functions following their secretion [52]. Additionally, due to their
immune properties consisting of their behaving as antigen-presenting agents, exosomes
especially have been shown to trigger immune responses [53,54]. Moreover, in the central
nervous system, EVs have been reported to maintain the myelin coating and promote
endogenous brain repair processes, thus making them valuable players in the post stroke
recovery period [55,56]. In cancer disease, exosomes released by tumor cells can act as signal
transduction mediators while facilitating not only neoplastic development, growth, and
metastasis, but also chemoresistance [57,58]. However, above all, the most common interest
in the field of EVs probably resides in their potential to serve as biomarkers due to their
heterogeneous cargoes unique to specific conditions. To this extent, onco-hematological
diseases such as acute myeloid leukemia can be diagnosed by identifying specific mutations
in plasma EVs identical to those observed in leukemia cells [59,60]. The use of EVs as
biomarkers in disorders of the central nervous system such as Alzheimer’s and Parkinson’s
disease has also been reported [61,62], while accumulating evidence points towards a
similar use of EVs in coronary artery disease [63,64]. Perhaps the most significant progress
has, however, been made in cancer, with clinical trials already on the way, regarding their
use as diagnostic tools and/or therapeutic instruments [65–67]. Still, more and more data
supports the utilization of EVs as biomarkers in pregnancy-related complications, exosome
analysis posing advantages such as the accessibility of blood sampling and detection in
early pregnancy [11,52,68]. In this regard, a brief exemplification of the multitude of roles
that EVs play in both normal and pregnancy-related disorders is summarized in Table 4,
and further discussed in the following sections.
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Table 4. Role of placental EVs during different pregnancy states.

Pregnancy State Role of Placental Extracellular Vesicles

Normal pregnancy

Promotion of embryonic implantation and placental
development

Maternal immune response modulation
Induction of fetal vasculogenesis

Induction of inflammatory response during parturition

Systemic inflammation

Induction of inflammation through altered cargo composition
Increased inclusion of inflammation inducing agents, such as

HMG nuclear proteins, TNF-α, GM-CSF, IFN-γ, IL-6, IL-8,
miR-155, miR-494, miR-181a, and miR-210

Diminished inclusion of anti-inflammatory agents, such as
miR-548c-5p

Gestational hypertension Increased release during PE
Induction of MSIR

Gestational diabetes mellitus

Increased release during GDM
Increased inclusion of IR implicated miRNAs, such as

hsa-miR-125a-3p, hsa-miR-99b-5p, hsa-miR-197-3p,
hsa-miR-22-3p and hsa-miR-224-5p

Differential inclusion of miRNAs, such as miR-16-5p, miR-17-5p,
and miR-20a-5p

Viral infections

Inclusion of anti-viral agents, such as LC3, UVRAG, ATG4C,
and IFN-λ1

Speculated beneficial role for viral spread through immune
evasion

Viral sheathing by exosomes

Fetal growth restriction
Increased ratio of placental to total exosomes

Increased inclusion of miRNAs, such as miR-942-5p,
miR-223-5p, miR-20b-5p, miR-324-3p, and miR-127-3p

HMG: high mobility group; TNF-α: tumor necrosis factor α; GM-CSF: granulocyte-macrophage colony-stimulating factor; IFN-γ: interferon
γ; IL: interleukin; PE: preeclampsia; MSIR: maternal systemic inflammatory response; GDM: gestational diabetes mellitus; IR: insulin
resistance; LC3: microtubule-associated protein 1 light chain 3; UVRAG: UV radiation resistance-associated gene; ATG4C: autophagy
related 4C cysteine peptidase.

2. Extracellular Vesicles in Normal Pregnancy

In physiological pregnancy, EVs and exosomes in particular have time and again been
indicated to act as components of the fetal-maternal communication during implantation
and placentation [69–71], while also modulating the maternal immune response [72–75],
maintaining cellular metabolic homeostasis [76–78], promoting fetal vasculogenesis to-
gether with maternal uterine vascular adaptation [79–81], and preparing the uterus for in
the delivery process [82,83].

Attached to the wall of the uterus, the placenta constitutes the interface between the
mother and fetus in the gestational period, ensuring gas exchange, nutrient and waste
transfer, immunoglobulin transport, and hormone secretion. The maternal-fetal commu-
nication is possible either through simple or facilitated diffusion, active transport, or by
means of EVs [45,84,85]. Through their content, embryonic EVs that are engulfed by
specific maternal cells, end up regulating maternal adjustments. Further on, placental
EVs aid the vascular changes brought about by the pregnancy, while also reflecting the
placental function and fetal growth [86]. Placental-derived EVs distinguish themselves
mainly through their positivity for the syncytiotrophoblast (STB) marker placental alkaline
phosphatase (PLAP), among other STB-derived EVs (STBEVs) [37,86], while both early and
term placental cytotrophoblast cells have been demonstrated to secrete, by means of exo-
somes, members of the B7 family of immunomodulatory molecules, namely B7-H1 (CD274),
B7-H3 (CD276), and human leukocyte antigen-G5 molecules (HLA-G5) [87]. Maternal
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and fetal exosome transfer in both directions has been demonstrated using fluorescently
labeled exosomes in pregnant mouse models, thus reinforcing the isolation of exosomes
from maternal blood samples as a non-invasive liquid biopsy [85,88].

Similar to other EVs, placenta-derived EVs are abundant in miRNAs, regulators of
gene expression at post-transcriptional level, exerting their effects by targeting multiple
mRNAs [89]. By these means, miRNAs carried by EVs and transported to specific cells end
up modifying the gene expression pattern of the recipient cells. Among placenta-associated
miRNAs, 46 miRNAs belonging to the chromosome 19miRNA cluster (C19MC) have been
identified, being expressed in villous trophoblasts [90,91]. Among these, miR-517b favors
TNFα expression [92], while miR-516b-5p, miR-517-5p, and miR-518a-3p have been shown
to impact the PI3K-Akt and the insulin signaling pathways, their expression levels being
regulated by various stimuli, including oxidative stress and blood glucose levels [93].
Furthermore, in healthy dairy cow pregnancy models, placental exosome-derived miR-
499 has been shown to downregulate NF-κB activation by targeting the Lin28B/let-7-ras
signaling axis, therefore maintaining a slight proinflammatory profile [94].

2.1. EVs in Embryo Implantation

Embryo implantation, first in the series of events required for a prosperous preg-
nancy, is a crucial process necessitating a chain of molecular operations that ultimately
accomplish the adhesion of the trophectoderm to the endometrial epithelial cells [95,96].
While mediators such as adhesion molecules, growth factors, hormones, and cytokines
are known as crucial for endometrial receptivity, EVs have more recently been shown to
aid the implantation process [97–99]. To this extent, it has been proposed and reported
that endometrium-derived EVs are assimilated and internalized by both trophoblasts and
surrounding endometrial cells, eventually enhancing their adhesive capacity, especially
by means of gene expression modulation due to their content in miRNA [100]. In this
regard, Ng YH, and colleagues have analyzed a panel of 227 endometrial exosomal miR-
NAs and showed that numerous of their target genes were in fact crucial for implantation,
since they were responsible for regulating not only essential pathways, such as the VEGF
pathway, the Toll-like receptor pathway and the Jak-STAT pathway, but also extracellular
matrix (ECM)-receptor interactions and adherens junctions [100]. On the same note, Vilella
et al. have shown that endometrium exosome-derived hsa-miR-30d, when taken up by
trophoblasts, enhances the gene expression of Integrin Subunit Alpha 7 (Itg7), Integrin
Subunit Beta-3 (Itgb3), and Cadherin 5 (Cdh5) proteins, all three required for blastocyst im-
plantation [101], while Greening and colleagues have later demonstrated that endometrial
EVs, when internalized by the trophectoderm, augment their adhesiveness via the focal
adhesion kinase (FAK) signaling pathway [102].

2.2. EVs in Spiral Artery Remodeling

Following successful implantation, decidualization and placentation take place, the
resulting placenta ensuring the necessary resources for the optimal development of the
embryo [103]. The nutrient supply is facilitated by the uterine spiral arteries, which go
through substantial transformation under the influence of adaptive mechanisms carried
out by cellular and molecular factors [104]. Specifically, both cellular and extracellular
components of the maternal uterine spiral arteries undergo modifications such as apoptosis,
hyperplasia and hypertrophy, migration, and ECM remodeling, all under the rigorous
coordination of invasive cytotrophoblast cells and decidual natural killer (NK) cells [105].
Trophoblast cells end up replacing the distal endothelial cells, acquiring a low-resistance
vascular bed phenotype, fitting for unrestricted blood flow [106]. During placental develop-
ment, the migration of vascular smooth muscle cells (VSMC) plays a key role in spiral artery
remodeling, a movement which has been demonstrated to be in part promoted by EVs
released by extravillous trophoblast (EVT) cells via a novel EVT-VSMC exosomal communi-
cation pathway [107]. Furthermore, exosomal miRNAs together with vascular endothelial
growth factor A (VEGFA) have been reported to be discharged by the implanted embryo,
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so as to adjust blood flow [79,108]. Dependent upon oxygen levels, placental EVs have
also been reported to stimulate vasculo-angiogenesis, especially in hypoxic conditions [71].
On the same note, Jia and colleagues have researched the role of maternal and umbilical
cord blood exosomes on angiogenesis. By analyzing healthy pregnant women, they found
that both maternal and umbilical exosomes promoted human umbilical vein endothelial
cells (HUVEC) proliferation and migration, along with angiogenesis, with 258 miRNAs
being upregulated in both types of exosomes [80]. Other trophoblast cells derived-EVs that
have also been reported to have pro-angiogenic effects by enhancing the proliferation of
maternal endothelial cells via particular angiogenesis-related miRNA regulation have been
identified in umbilical cord blood [109].

2.3. EVs in Parturition

Provided that the course of pregnancy is not impaired, delivery is set to take place
following fetal maturation, as a result of a parturition cascade involving proinflammatory
events that ultimately trigger labor [110]. Still, the precise mechanism that leads to the
initiation of the delivery process has not been completely elucidated, but EVs are thought to
act as mediators that, mainly due to their content rich in complex molecules, end up repro-
gramming the phenotype of surrounding cells, eventually regulating their function [111].
In this regard, Menon and colleagues have analyzed placental EVs during pregnancy
and at delivery, and found that samples at term associated a group of upregulated genes
known to be regulators of epithelial mesenchymal transition (EMT). They hypothesized
that, when approaching term, fetal components of the placenta undergo EMT, which leads
to an increase in mesenchymal cells susceptible to oxidative stress followed by subsequent
inflammation that precipitates delivery [112,113]. Moreover, as a response to increased
oxidative stress, it has been demonstrated that phosphorylation of p38 mitogen-activated
protein kinase (MAPK), an indicator of term parturition, takes place in amniotic epithelial
cell (AEC)-derived exosomes [114]. Along the same lines, Hadley et al. later investigated
whether oxidative stress prompted the production of exosomes by AEC, and found that
indeed AEC undergoing oxidative stress released around seven times more exosomes than
control cells, which, in turn, lead to the activation of the NF-κβ protein complex along with
an increase in PGE2, IL-6, and IL-8 in endometrial and myometrial cells [115]. On a similar
note, Sheller-Miller et al. have revealed that, predictably, maternal plasma EV concentration
enhanced with gestational age, while EVs rich in particles promoting inflammation—e.g.,
plasminogen (PLG), catalase, TNF-α— were dominant ahead of parturition [82].

3. Systemic Inflammation in Pregnancy
3.1. Definition, Implications

Inflammation represents one of the many core processes involved in the success of
every procreation endeavor. More than 2000 years have passed since Celsius coined the
description of the inflammation’s cardinal signs, known as “rubor et tumor cum calore
et dolore” (redness and swelling with heat and pain), and throughout history, extensive
research has been conducted in order to decipher the true nature of this pathological ex-
pression in terms of cellular or molecular events [116,117]. Even though the definition of
inflammation has suffered several adjustments over time, we recognize today that it should
embrace not only the variability of the context in which is used but also the lens of detail
related to molecular characterization, in order to avoid misinterpretations when it comes
to defining the cascade of events [118]. In this regard, inflammation is viewed to date
as a complex biological response of injured tissues to various traumatic agents, and can
be described from a clinical, histopathological, and molecular standpoint. Outlining the
clinical aspect of inflammation as increased local temperature and erythema due to vasodi-
lation, tumescence due to increased vascular permeability and pain due to stimulation of
nociceptors, was finally complete when Galen, Sydenham, and Virchow promulgated the
notion of “functio laesa”, ultimately leading the way towards molecular exploration of this
pathological event [119–121]. Major limitations have been uplifted while defining inflam-
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mation just on clinical terms, when pathologists characterized this process by a complex
interplay of cellular interactions that evolve in successive and particular phases, that lead
to healing. Consequently, the initiation of an inflammatory response translates into cellular
release of molecules as a response to injury, that alter the vascular permeability, facilitat-
ing the passage of plasma, inflammatory cells such as neutrophils, platelets, cytokines,
chemokines, and coagulation factors [122,123]. Following chemotaxis and diapedesis of
specific elements such as macrophages into the injured tissue, the enzymatic digestion and
phagocytosis begins, allowing the clearance of foreign material/infectious organisms and
damaged tissue components, thus preparing the site of trauma to repair processes that
ultimately and hopefully restore the normal biological constants and functions [124,125].

Inflammation and specifically sterile inflammation is a major regulator from early
pregnancy to parturition [126]. During early pregnancy and labor, inflammation is im-
portant for blastocyst implantation and myometrial activation respectively, whereas its
inactivation during placental development has a key role for the maternal tolerance of the
paternal origin fetal antigens. Dysregulated inflammatory maternal responses can lead
to a lot of morbid gestational conditions, such as fetal growth restriction [127], preterm
birth [128], miscarriage [129], and preeclampsia [130]. Pattern recognition receptors (PRRs),
such as Toll-like receptors 1–11 (TLRs) and NOD-like receptors, have the ability to induce
inflammatory responses mediated by cytokines [131,132]. Thus, effector ligands for these
receptors with damage associated molecular patterns (DAMPs) or pathogen associated
molecular patterns (PAMs) can regulate the maternal inflammatory state during gestation
and labor. DAMPs which have been also referred to as alarmins, such as cfDNA, uric acid,
high-mobility group box 1 and interleukin-1α, can trigger inflammatory responses through
PRRs, RAGE, and IL-1R [133–136]. The inflammatory response which has been attributed
to cfDNA, is carried out though activation of TLR9, which is a PRR that likewise exerts
its action after binding of unmethylated CpG fragments of bacterial or viral origin [137].
The activation of TLR9 can be performed as well by circulating mitochondrial DNA and
cell free fetal DNA (cffDNA) [138]. As TLR9 is present inside the cytoplasm, its activation
requires the endocytosis of cffDNA [139]. This procedure seems to be facilitated by placen-
tal syncytiotrophoblast microvesicles (SCTMs) which include cffDNA and get engulfed
through phagocytosis by placental or circulating granulocytes. The increase of cffDNA
has been implicated in normal pregnancies, as it significantly rises at the end of gestation
during parturition, as well as in pathological conditions such as preeclampsia [140,141].

3.2. EVs in Inflammation

As the course of pregnancy is determined by the balance between pro-inflammatory
and anti-inflammatory agents, the concentration and composition of placental EVs have
a significant effect, due to their regulating roles in inflammation. As chronic systemic in-
flammation during pregnancy has been linked to various adverse outcomes, including pre-
mature rupture of membranes (PROM), neurodevelopmental delays and long-term brain
impact [142,143], early treatment options ensured by timely detection could help reduce the
overall impact of inflammation. For instance, since pre-eclampsia is knowingly associated
with an immune imbalance characterized by an abundance in pro-inflammatory T cells
cytokines coupled with diminished immunoregulatory agents [144], trophoblast-derived
EVs have been found to be rich in high mobility group (HMG) nuclear proteins acting as
endogenous danger signals reflecting cell and tissue damage [145]. Similarly, preeclamptic
patients have been shown to carry low levels of miR-548c-5p both in placental mononuclear
blood cells and serum EVs. The significance of this finding lies in the fact that miR-548c-5p
is an established anti-inflammatory factor that targets the receptor-type tyrosine-protein
phosphatase O (PTPRO) via the NF-κB signaling pathway, thus inhibiting macrophage
activation and proliferation [146]. The proinflammatory state characteristic of preeclamptic
patients can further be reflected by the upregulated exosomal miRNAs that encourage
inflammatory responses, such as miR-155, involved in the IL-17A pathway [147], miR-494
which, by inhibiting prostaglandin E2 (PGE2), blocks the polarization of macrophages into
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an M2-type, promotors of inflammation resolution [148,149], miR-181a, regulator of the
TGFβ pathway [150], and miR-210, which, by targeting the signal transducer and activator
of transcription 6 (STAT6), leads to a decline in anti-inflammatory IL-4 secretion [151]. In a
similar fashion, GDM patients have also been shown to associate a proinflammatory state,
with GDM placenta-derived EVs rich in proinflammatory cytokines releasing significant
amounts of tumor necrosis factor α (TNF-α), granulocyte macrophage colony-stimulating
factor (GM-CSF), interferon-γ (IFN-γ), IL-6, and IL-8 [152]. Furthermore, high blood glu-
cose levels have been shown to trigger the release of EVs from trophoblast cells which, in
turn, increase the release of proinflammatory cytokines such as GM-CSF, IL-6. IL-8, IL-10,
and TNF-α, from endothelial cells [153,154]. During pregnancy, the inflammatory immune
response is additionally promoted by infection, be it intrauterine, referring to abnormal
genital tract colonization [155], or remote, including, among others, periodontitis, and
urinary tract infections [142,156]. Moreover, factors such as low socioeconomic status, poor
diet, high levels of stress can also elicit maternal inflammatory responses expressed by
elevated IL-6 levels [143], that do not necessarily culminate in preterm birth [157], but
rather in altered neurodevelopment in infants, ascertained by decreased working memory
performance as an aspect of impaired executive function [143,158,159].

4. Gestational Hypertension
4.1. Definition, Etiology, Epidemiology

Hypertension is a common morbidity among women of reproductive age (15–49 years)
in modern societies, having a prevalence of around 8% in the United States [160]. During
pregnancy, hypertensive disorders of different severity levels have been described—such
as gestational hypertension, preeclampsia, and eclampsia—which can confer health com-
plications to the mother and the child, prepartum as well as postpartum. The diagnostic
criteria for hypertension in pregnancy, as set by different organizations, are similar and
stratify hypertension according to its severity (Table 5). Gestational hypertension is de-
fined as a maternal first-time diagnosis of hypertension after 20 weeks of gestation, which
resolves postpartum. On the other hand, preeclampsia is defined as a gestational hyper-
tension accompanied by proteinuria or end-organ damage, such as kidney or liver injury,
uteroplacental dysfunction, hematological abnormalities, or neurological complications.
These neurological complications can include grand mal seizures, which are referred to
as eclampsia [8].

Table 5. Diagnostic criteria for hypertension.

Organization Number of
Measure-Ments Hyper-Tension Mild Moderate Severe Emergent

ACOG, 2019
[161]

2 (minimum 4 h
apart)

SBP ≥ 140 mmHg
and/or DBP ≥ 90

mmHg

- -
SBP ≥ 160 mmHg

and/or DBP ≥
110 mmHg

-

Regitz-Zagrosek,
V.; et al. ESC, 2018

[162]
-

SBP ≥ 140–159
and DBP ≥

90–109 mmHg
-

SBP ≥ 160 mmHg
or DBP ≥ 110

mmHg

SBP ≥ 170 mmHg
or DBP ≥ 110

mmHg

Magee, L.A.; et al.
SOGC, 2014

[163]

2 (minimum 15
min apart) - -

SBP ≥ 160 mmHg
and/or DBP ≥

110 mmHg
-

Redman, C.W.
RCOG, 2011

[164]
-

SBP ≥ 140–149
and DBP ≥ 90–99

mmHg

SBP ≥ 150–159
and DBP ≥

100–109 mmHg

SBP ≥ 160 and
DBP ≥ 110

mmHg
-

Diagnostic thresholds for the classification of hypertension as mild, moderate, severe or emergent. ACOG: American College of Obstetricians
and Gynecologists, ESC: European Society of Cardiology, SOGC: Society of Obstetricians and Gynecologists of Canada, ISSHP: International
Society for the Study of Hypertension in Pregnancy, RCOG: Royal College of Obstetricians and Gynecologists.

Preeclampsia can be triggered by hypertension in pregnancy, as it has been estimated
to emerge in 35% and 25% of women with gestational hypertension or chronic hypertension
respectively [165,166]. Moreover, risk factors are considered the genetic predisposition,
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such as mutations in the fms related receptor tyrosine kinase 1 (FLT1) gene and trisomy
13, immunological abnormalities, such as imbalance between decidual natural killers and
regulatory T cells, maternal comorbidities—such as diabetes, obesity, and chronic kidney
disease, in vitro fertilization, as well as older maternal age [167,168]. The pathogenesis
of preeclampsia can be separated into two stages, including aberrant placental perfusion
and placental dysfunction during the first stage and systemic endothelial dysfunction of
the vessels that leads to the development of the maternal syndrome during the second
stage [169]. In Stage I, which occurs during the first and second trimesters, an ineffective
invasion of uterine spiral arteries induces placental hypoxia, endoplasmic reticulum dys-
function and oxidative stress that triggers a cascade of inflammatory events. In Stage II,
which occurs during the third trimester, an imbalance is observed between angiogenic and
anti-angiogenic factors, while inflammatory mediators are released. Angiogenic factors
such as vascular endothelial growth factor (VEGF) and placental growth factor (PIGF) are
downregulated; while anti-angiogenic factors such as soluble fms-like tyrosine kinase 1
(sFLT1), and soluble endoglin (sENG) are upregulated [169,170]. The induced systemic
vascular dysfunction gives rise to the clinical manifestations of preeclampsia as well as
eclampsia when cerebral oedema is produced [169]. Preeclampsia can be classified as early
onset (EOPE), when it occurs before the 34th week of gestation, and late onset (LOPE),
when it occurs after the 34th week. The development of EOPE has been attributed to the
placental dysfunction and it has a higher possibility of being accompanied by intrauterine
fetal growth restriction, whereas LOPE has been imputed to the outgrowth of placental
circulatory system [171,172].

The burden of preeclampsia and eclampsia on public wealth is apparent and they
are considered leading direct causes of maternal morbidity and mortality. On a world-
wide scale, it has been estimated that they are the cause of around 50.000 maternal deaths
annually [173]. Their prevalence differs around the world, having increased values in
industrialized countries. In a study including data from NIS database (1,071,145 women),
regarding patients with diagnosed preeclampsia or eclampsia between 2004–2012, a cor-
relation has been found between the morbidity and/or mortality of the disorder and the
racial descent of the women. In particular, an increased adjusted risk has been found for
African American women compared to Hispanic or Caucasian women [174]. In Europe,
the prevalence of preeclampsia has been estimated around 5.3% (95% CI: 1.8–9.3) and
eclampsia 0.1% (95% CI: 0.0–0.4) [175].

4.2. EVs in Preeclampsia

During pregnancy, a major contributor for the maternal-fetal cell communication are
placenta-derived EVs (PdEVs), which are released in the maternal circulation through the
lysosomal pathway from the syncytiotrophoblast (STB) cells of the placenta. These parti-
cles contain genetic information, such as mRNA and miRNA molecules, which has been
speculated to bear a diagnostic and prognostic value for pregnancy related morbidities,
such as PE [176]. For the EVs identification, specific tetraspanins have been targeted in
the past—such as CD63, CD70, CD81, and CD9—whereas for the identification of PdEVs,
the PLAP protein is usually used [177,178]. PdEVs have been deemed to have an im-
munomodulatory role during placental development, through locally inducing apoptosis
of the activated maternal lymphocytes which target placental paternal antigens [179]. Thus,
PdEVs can promote the invasion of trophoblastic cells and serve towards maternal im-
munotolerance [180]. Nevertheless, aberrant production of PdEVs, such as their increased
release in EOPE, can perturb the balance between Th1/Th2 and trigger a maternal systemic
inflammatory response (MSIR) during stage II of PE [181].

Promising biomarkers of PE are the miRNAs which are enclosed in EVs. The elevated
expression of exosomal hsa-miR-486-1-5p and hsa-miR-486-2-5p, irrespectively of gesta-
tional age, in pregnant women with PE could be used as an indication for early detection
of the condition [182]. Moreover, in pregnant women with PE statistically significant
difference has been found in the expression of the exosomal miRNAs hsa-miR-423-5p,
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hsa-miR-451a, hsa-miR-107, hsa-miR-15a-5p, hsa-miR-335-5p, hsa-miR-92a-2-3p, hsa-miR-
103a-1-3p, hsa-miR-103a-2-3p, hsa-miR-92a-1-3p, and hsa-miR-126-3p [182]. The miRNAs
miR-376c and miR-520g, which seem to have a significant role in cell migration and prolif-
eration of the trophoblast cells, have been indicated as differentially expressed between
pregnant women with PE and healthy ones [183,184].

5. Gestational Diabetes Mellitus
5.1. Definition, Etiology, Epidemiology

The hyperglycemic state that emerges in some pregnant women during the late
second trimester or in the beginning of the next trimester has been referred in the past
literature as gestational diabetes mellitus (GDM). This term was first mentioned and
described by Carrington in 1957 [185]. Although GDM is more likely to develop after
24 weeks of gestation, it can exhibit its onset anytime during a pregnancy [186]. Based on
the FIGO and WHO organizations, a hyperglycemic condition during pregnancy (HIP)
can be characterized as GDM if it is a first-time diagnosis for a pregnant woman. On
the other hand, if a pregnant woman has a previous diagnosis of diabetes or the HIP
meets the criteria of WHO for diabetes, the condition is classified as diabetes in pregnancy
(DIP) [187,188]. Nevertheless, the majority of HIP instances have been found to be classified
as GDM [189]. The diagnostic criteria for GDM are not universally accepted, which is
a factor that renders tough to compare the GDM prevalence on a global scale. Over
the years and between different organizations, the diagnostic thresholds above which a
hyperglycemia is considered overt diabetes, differ slightly. The most prominent criteria are
the ones defined by IADPSG in 2010 [190] and adopted by WHO in 2013 [187] (Table 6).

Table 6. Diagnostic criteria for GDM.

Organization Year Fasting (mg/dL) 1 h (mg/dL) 2 h (mg/dL)

ADA 2018 [191] 95 180 155

ADIPS 2014 [192] 92 180 153

FIGO 2015 [188] 92 180 153

WHO 1998 [193] 126 – 140

WHO 2013 [187] 92 180 153

IADPSG 2010 [190] 92 180 153
Glucose concentration thresholds in serum, above which a hyperglycemia is considered overt diabetes. The
diagnostic Oral Glucose Tolerance Test (OGTT) is performed during a fasting period and after injection of 75 g
of glucose (after 1 and 2 h). ADA: American Diabetes Association, ADIPS: Australasian Diabetes in Pregnancy
Society, FIGO: International Federation of Gynecology and Obstetrics, WHO: World Health Organization, IADPSG:
International Association of the Diabetes and Pregnancy Study Groups.

Apart from hyperglycemia during pregnancy, GDM can be developed due to insulin
resistance, which can be triggered by placental hormone production [194]. Among others,
the GDM phenotype can be promoted by risk factors of pregnant women, such as older
age, increased body mass index (BMI), personal or family history of diabetes, obesity,
smoking, and polycystic ovary syndrome (PCOS). Although GDM is usually a transient
disorder that recedes after pregnancy, it can confer an increased risk for GDM in subsequent
pregnancies, while it also increases the possibility for the mother and the child to develop
type 2 diabetes (T2D) in the future [195,196]. On top of that, ethnicity has been described as
a significant factor for GDM prevalence [197]. The prevalence of GDM worldwide ranges
between 1% and more than 30%, having regions or countries with significantly increased
or decreased prevalence compared to the global mean. For instance, among the regions
with high prevalence are countries of Middle East and North Africa, whereas Europe has
the lowest prevalence values together with the highest variation across the continent [197].
According to data from the meta-analysis of Claire et al. [198], while the prevalence of GDM
in Southern countries such as Italy, Greece and Spain is considerably high, in Northern
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countries such as Sweden and Finland is low (Figures 1 and 2a). The mean prevalence
values and the 95% CI between the Northern and Southern countries indicate a statistically
significant difference between these regions of Europe (Figure 2b).

5.2. EVs in Gestational Diabetes Mellitus

The significance of EVs in pregnancy has been described is several studies, as their
concentration increases in plasma during gestation [177,199]. Notably, pathologic con-
ditions during pregnancy, such as GDM and PE, induce an increased concentration of
placenta-derived EVs (PdEVs) in the circulation. The concentration of PdEVs has been
found to be positively correlated with the maternal serum glucose levels, BMI and the
weight of the fetus [200]. Increased PdEVs concentrations seem to trigger the proinflam-
matory state during pregnancy [76,201]. Moreover, an increased secretion of EVs from
adipose tissue in GDM appear to be associated with the glucose metabolism of placenta
and therefore it could be a regulating factor for the fetal growth [202]. These EVs seem to
promote insulin resistance (IR) in obese women and contribute towards the development
of GDM [154]. In parallel, the increased glucose levels in maternal circulation appear to
induce the release of EVs from trophoblast cells and the secretion of proinflammatory
cytokines from endothelial cells of the umbilical vein [153,203]. As described by Salomon
et al. [152], the increased concentration in the circulation of PdEVs and total EVs could be
used as indicative marker of GDM. Among the most interesting biomarkers of exosomes
are the miRNAs, as in GDM cases specific miRNAs have been found to be associated
with IR in skeletal muscle cells, namely hsa-miR-125a-3p, hsa-miR-99b-5p, hsa-miR-197-3p,
hsa-miR-22-3p, and hsa-miR-224-5p [76]. Certain miRNAs have been implicated in the
development of GDM [204], while miRNA such as mRNA-16-5p, -17-5p, and -20a-5p have
been pointed out for their diagnostic significance in GDM [205]. Notably, miRNAs such as
miR-222 from adipose tissue have been proposed as potential therapeutic targets [206].
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6. Viral Infections during Pregnancy
6.1. Implications

It has been shown that viral infections occurring during pregnancy can induce a high
risk of pregnancy loss by spontaneous abortion or fetal infection as an effect of subsequent
congenital viral syndromes. In today’s practice, we face the lack of a real standard of
prenatal care of viral infections during pregnancy except for a small range of pathogens
known under the TORCH acronym, which include Toxoplasma gondii, Rubella virus, Cy-
tomegalovirus (CMV), and Herpes simplex virus (HSV). While these guidelines allow
doctors to early diagnose an infection, it is still unknown how to prevent adverse preg-
nancy effects [207,208]. A high predisposition to preterm labor or delivery is associated
with viral infections. In consequence, understanding the higher risk to which pregnant
women are subjected to is essential in designing an appropriate treatment or prevention
plan [209]. In a developing fetus, the vertical infection can take place by trans- or para-
cellular transport from maternal blood into the fetal capillaries and over the villous trees,
through the infected endothelial cells that spread to invasive the extravillous trophoblast,
by ascension from the vagina, by transfer across the placental barrier of infected maternal
immune cells or by breaches in the syncytiotrophoblast. Except for the infections deter-
mined by specific pathogens comprised in the TORCH complex, during pregnancy, viral
infections express little concern from clinical perspective [210].

6.1.1. Herpes Simplex Virus (HSV)

The mean HSV seroprevalence is 72% in pregnant women, including both HSV-1
and HSV-2 viral infections that result in antibody formation. Throughout the pregnancy,
it has been shown that HSV exposure, besides neonatal HSV infection, can also cause
spontaneous abortion, preterm labor, and intrauterine growth restriction [211]. To coun-
teract these effects, clinical practice seeks to reduce vertical fetal transmission, reducing
the risk of neonatal HSV infection. However, minimal risks of perinatal transmission were
registered if antibodies are present at the onset of pregnancy, while it has been shown
that there is a risk of 30% to 50% of neonatal infection if the primary infection occurs
during late pregnancy [212]. Neonatal HSV infection can be classified into three categories,
including localized infection affecting the skin, eyes and mouth (SEM), central nervous
system (CNS) infection, and the most severe form, disseminated disease which can cause
fatality in 80% of cases, if left untreated [213]. If infected, newborns can exhibit numerous
neurologic dysfunctions such as seizures, blindness or learning disabilities. Antiviral
treatment in the last month or pregnancy can reduce the frequency of asymptomatic viral
shedding, while caesarean delivery is recommended when lesions are present at the onset
of labor, in order to reduce the risk of viral transmission even if suppressive therapy was
previously used [214].
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6.1.2. Varicella Zoster Virus

Varicella zoster virus (VZV) causes an acute, highly contagious disease, commonly
referred to as chickenpox, often encountered in childhood. The virus typically incubates
for about 15 days and is contagious for 2 days before the onset of the rash until the lesions
are crusted and/or cured. After initial infection, the virus may persist latently in the dorsal
root ganglia for several years, reactivation of the virus causing herpes zoster, a disease
more often encountered in adults [215]. The frequency rate of varicella in pregnancy is
0.7/1000. As varicella is mostly encountered in childhood, many women are already
immune before they become pregnant, so that the frequency rate of infection in pregnant
women lies between 0.7 and 3 per 1000 cases [216]. However, primary varicella infection
during pregnancy is known to cause serious fetal and maternal morbidity and even fetal
death. Compared to other childhood illnesses that associate limited and mild symptoms, in
the majority of cases, if varicella pneumonia occurs during pregnancy, it can have a much
more serious outcome. Statistically, 10% to 20% of pregnant women who contract varicella
develop pneumonia, with a death rate of up to 40% [216,217]. On the other hand, fetal
morbidity related to congenital varicella syndrome is characterized by intrauterine growth
restriction, limb hypoplasia, hydrocephaly, microcephaly, cataracts, and mental retardation.
It is believed that the development of this syndrome can be a result of reactivation of the
varicella virus in utero, unlike the primary infection of the fetus [218].

6.1.3. Cytomegalovirus

Cytomegalovirus (CMV) is an omnipresent virus that leads to the development of a
variety of clinical manifestations, its seroprevalence differing based on geographic area,
socioeconomic status and age. Statistically, around 60% of adult women in developed
countries are infected with CMV and a greater percentage of almost 90% occurs in women
living in developing countries [219]. In order to combat congenital CMV infection, it is
important to investigate the maternal CMV antibody positivity. If the infection develops
during pregnancy, it can develop numerous comorbidities during pregnancy. Primary
maternal infections vary from 1% to 4% of susceptible women and reactivation arises in
almost 10% of seropositive women. Regarding the effects on the fetus related to maternal
infection, CMV is statistically the most common congenital infection, with an ubiquity of
approximately 0.5–2% of live births [220]. CMV affects the lateral ventricles, the organ of
Corti and the eighth cranial nerve, thus explaining the frequency of congenital hearing loss
among affected individuals. Additionally, human neuronal cells are susceptible to in vitro
infection with CMV, which explains the abnormalities in fetal development of the central
nervous system [221,222].

6.1.4. Rubella

Rubella is commonly asymptomatic in 25% to 50% of patients. If maternal infection
develops in the first trimester, the risk of fetal infection ranges from 50% with a decrease to
<1% after 12 weeks, while the risk of congenital rubella syndrome (CRS) is not increased by
peripartum maternal infection [223]. Serologic tests must be used in order to diagnose the
primary maternal infection. For fetal infection diagnosis, fetal serum IgM detection, and/or
amniotic fluid viral culture are advised. Pregnancy abnormalities caused by maternal
rubella infection are comprised of fetal infection, fetal growth restriction, stillbirth, CRS, or
even spontaneous abortion [224]. CRS represents the neonatal manifestations of antenatal
rubella virus infection, and includes, among others, cataract, deafness, neurological, and
cardiac defects. However, the risk depends on the gestational age at which maternal infec-
tion occurs. Consequently, individualized counseling related to fetal risks and management
must be applied [225].

6.2. EVs Roles during Antiviral Response

EVs play a role in immune responses by acting as modulators, with antigen-presenting
cells derived EVs either activating or modulating immune responses. Moreover, EVs de-
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rived from syncytiotrophoblast in nonpathological placenta seem to have an impact in
resistance pathways of pathogen infection, and, similar to those from epithelial cells and
tumors, they can be either tolerogenic or suppressive [226]. Embryo-derived EVs encapsu-
late nucleic acids including DNA fragments, microRNA, long non-coding RNA, messenger
RNA, and a variety of proteins that can be taken over by cells of the maternal vascular and
immune systems and subsequently modulate the pregnancy changes related to maternal
physiology [227]. Various studies have demonstrated that the transmission of some viruses
to the fibroblast and endothelial compartments is mediated by the miRNA cluster of the
chromosome 19, a cluster which is only expressed in the human placenta, overall limiting
the infection by induced autophagy in recipient cells [228]. Similarly, Delorme–Axford and
colleagues have recently demonstrated the involvement of trophoblast-derived exosomes in
impeding viral replication by their upregulating of key proteins involved in the autophagy
process, such as light chain 3 (LC3), the ultraviolet irradiation resistance-associated gene
(UVRAG) and autophagy related 4C cysteine peptidase (ATG4C) [229]. Furthermore, EVs
derived from trophoblast cells have also been speculated to release IFNλ1, thus protecting
the fetal compartment from infection caused by pathogens such as the Zika virus [230].
Extracellular vesicles also have a role in the antiviral response by means of transferring
nucleic acids. In this way, cells can be reached by signals of viral infection, even when they
are not directly infected by the virus, since they can be devoid of the specific receptors [231].
On the other hand, exosomal trafficking can also act in favor of the pathogen, promoting
its immune evasion by sheathing it within a secure vesicle, ultimately facilitating the viral
spread and the overall infectivity [232,233].

7. Preterm Birth
7.1. Definition, Etiology, Epidemiology

The World Health Organization estimates that approximately 15 million infants per
year are born too early. Preterm delivery is defined as delivery prior to 37 completed weeks
of gestation, and is the main cause of neonatal morbidity and mortality [234]. Premature
infants, if they survive, are subjected to long-term chronic health problems and even neu-
rological impairment. Regarding maternal consequences, they may vary from cesarean
delivery, which subjects the mother to higher obstetrical risks during subsequent pregnan-
cies, to negative psychological outcomes such as anxiety, requiring special attention [235].
Premature birth has multifactorial causes, and for most cases, the precise etiology is still
unclear. Some risk factors include: high blood pressure, diabetes, obesity or being under-
weight, multiple pregnancy, less than six months between pregnancies, previous premature
birth, vaginal infections, psychological stress, and tobacco smoking. Furthermore, some
studies have also added dyslipidemia and inflammation during pregnancy as contribut-
ing factors to premature birth [236]. Clinical events occurring during preterm labor are
similar to those in term labor, and consist in increased uterine contractility, dilatation of
the cervix, and chorioamniotic membranes rupture. These events are triggered by the
switch of the myometrium state from quiescent to intermittent contractions, determined
by an imbalance in the pro-inflammatory and anti-inflammatory factors [234]. Among the
pro-inflammatory factors there are cytokines such as IL-1 and IL-6, contraction associated
proteins including connexin 43 (Cx43), oxytocin receptors (OXT-R), and prostaglandin
F2 alpha receptors (PGF2 alpha-R) and chemokines. Uterine quiescence is maintained
by progesterone, which represses the expression of these factors. Labor is further pro-
moted by the increasing expressions of the miR-200 family, which favor the catabolism of
progesterone and derepresses contractile genes near term [208,237].

7.2. EVs in Preterm Birth

One of the indicators of preterm birth (PTB) consists of the isolation and analysis of
extracellular vesicles. In a longitudinal study on a group of patients with term and preterm
birth, Menon et al. have observed a total of 173 miRNAs with notable changes in circulating
exosomes across three gestational periods by using next-generation sequencing. The altered
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miRNAs could be separated into several groups with different change tendencies over
time, essentially showing that the miRNA content of maternal exosomes could be used
as a biomolecular identification method of pregnancy progression [238]. Furthermore, a
phenomenon associated with infections that can lead to PTB is hyperresponsiveness to low
concentrations of bacterial endotoxin, and it can, at least in theory, be predicted with the aid
of exosomes. Certain infections can modify the function of pattern recognition receptors
(PRRs) at molecular level, including Toll-like receptors (TLRs), both in quality and quantity.
In this regard, it has been demonstrated that placental type I IFN β was downregulated by
the virus, followed by intrinsic TLR4 mediated proinflammatory cytokines regulation in
the trophoblast and enabling its cells to create an endotoxin response. Judging by these
findings, it can be deduced that multiple infection-related pregnancy complications are of
polymicrobial nature, evolving from an initial infection. The first stage of the infection is
viral, which negatively impacts the PRRs’ response, thus facilitating a second stage of the
infection, bacterial. The cumulative action of these pathogens can induce preterm delivery
by causing a dysregulated inflammatory response [239]. Additional studies, such as the
one conducted by Menon and colleagues, have looked at groups of patients including term
not in labor, term in labor, preterm premature rupture of membranes, and PTB patients,
comparing the proteomes of maternal plasma exosomes. Menon et al. identified 72 proteins
that displayed notable changes among these four groups, leading to the hypothesis that
the main instigator of PTB relates to hematological dysfunctions rather than inflammation,
which instead occurs as a result of functional changes such as complement activation, acute
phase signaling, liver X receptor (LXR)/ retinoid X receptor (RXR) activation [240]. In
a similar manner, Cantonwine et al. focused their study on a group of women ranging
between 10 and 12 weeks of gestation who developed spontaneous PTB at 34 weeks, at
which time they analyzed circulating MVs. A total of 62 proteins qualified for diagnosis
from 132 proteins evaluated through ROC analysis, of which a group of three exosomal
proteins, namely alpha-2-macroglobulin (α2M), human endogenous medium-reiteration-
frequency-family-34 ORF (HEMO), and mannose binding lectin 2 (MBL2), displayed a
specificity of 83% with median AUC of 0.89. This group, if validated, would enable the
stratification of patients which are subject to a high risk of spontaneous PTB before clinical
symptoms appear [241].

8. Fetal Growth Restriction
8.1. Definition, Etiology, Epidemiology

Fetal growth restriction (FGR) takes place when the fetus is unable to reach its in-
trauterine growth potential and frequently occurs as a result of placental malfunctions. It
is currently considered that fetuses with FGR have a greater risk of developing long-term
health defects, morbidity, and even mortality. After birth they can suffer from impaired
neurological and cognitive development and, in adulthood, there are high chances of
developing cardiovascular or endocrine diseases [242]. Statistically, FGR occurs in 5–10%
of total pregnancies, and it is worldwide considered as the first cause of perinatal mortality.
Moreover, it is also thought to be the main cause of premature birth and intrapartum
asphyxia [243]. Currently, there is no worldwide standard for FGR diagnosis. In clinical
practice, FGR is diagnosed by using a statistical deviation from the fetal size having a
population of reference. The percentile limits are 10, 5, or 3. However, these limits are con-
sidered to indicate if a fetus is small for gestational age (SGA). As opposed to fetuses that
are FGR positive, SGA fetuses include healthy ones with low risk for abnormal perinatal
outcomes, based on a rather small physical constitution. On average, 70% of fetuses are
considered weighing below the 10th percentile due to inherited physical factors and parent
ethnicity [244]. There are multiple factors involved in the etiology of FGR, and they are
typically divided into maternal and fetal causes that result in uteroplacental vascular insuf-
ficiency. Fetal factors include chromosomal abnormalities such as trisomy 13, 18, and 21, in
particular, genetic syndromes such as mutations in the gene responsible for insulin-like
growth factor production, intrauterine infections, especially with certain viruses that can



Int. J. Mol. Sci. 2021, 22, 3904 17 of 30

cause placentitis, multiple gestation pregnancies, inborn errors of metabolism. Maternal
factors on the other hand generally include clinical diseases, all types of hypertensive
pregnancy diseases, insulin-dependent diabetes mellitus with vasculopathy, autoimmune
diseases, alcohol and drug use, smoking, and nutritional disorders including chronic mal-
nutrition. Uteroplacental factors refer to structural abnormalities, inadequate placentation,
which refers to the existence of an area with high resistance to blood flow that results in
decreased nutrition of the intervillous space, and changes in placental implantation and
attachment [245]. At this point, there is no treatment that can reverse or stop placental
insufficiency, with strategies in the management of the fetus suffering from FGR including
evaluating its vitality and planning when the delivery should take place [246].

8.2. EVs in Fetal Growth Restriction

As studies have shown that EVs have specific roles in the communication between the
endometrium and the embryo, they also promote proinflammatory cytokine release with
an important role in altering inflammatory responses during pregnancy by suppressing nat-
ural killer cells and macrophages activation [247]. In a group study conducted by Miranda
et al. targeting women who gave birth to small fetuses, concentrations of total and placental
EVs in circulation were detected, using CD63 and PLAP labelling. PLAP+ CD63+ exosomes
to PLAP− CD63+ ratio was used to show the contribution of relative placental exosomes to
the total. A trend according to the severity of the disease could be deduced by correlating
the above ratio with the percentile of birth weight. Therefore, the relative concentration of
placental EVs could act as a fetal growth marker [86]. Another study conducted by Rodos-
thenous et al. reported higher expression levels of miR-942-5p, miR-223-5p, miR-20b-5p,
miR-324-3p, and miR127-3p in second trimester patients that later gave birth to SGA infants.
Of these, miR-127-3p was also linked to abnormal fetal growth [241,248].

9. Congenital Anomalies

Congenital anomalies refer to the existence of some defects which manifest as struc-
tural or functional abnormalities that occur during intrauterine development and are
detected either prenatally using current imaging techniques and / or molecular biology
techniques, at birth or later in childhood [249]. Although almost half of all congenital
anomalies cannot be correlated with one single specific cause, there is evidence point-
ing to specific risk factors linked to the occurrence of congenital anomalies, with genetic
aberrations and gene mutations playing important roles in this regard. Other important
risk factors refer to socioeconomic and demographic factors, environmental factors and
maternal infections during pregnancy [250]. Around 6% of babies worldwide are affected
by these anomalies, which could lead to long-term disabilities, chronic illness or even infant
and/ or childhood death [251]. While some congenital abnormalities such as hernias, cleft
lip and cleft palate, or foot deformities can quite easily be treated by means of surgery,
more complex defects—such as cystic fibrosis, thalassemia, and hemophilia—can only
be managed using non-surgical options with less favorable results. Together with the
most common and severe birth defects, including heart defects, neural tube defects, and
chromosomal aneuploidies, congenital anomalies are one of the main causes of global
burden of disease, posing significant impact not only on the individual and their family,
but also on the health care system and society [252]. For this reason, several studies have
been conducted in recent decades on the assessment of causality and clinical presentation
of major birth defects, in which the biological significance of extracellular vesicles as media-
tors of intercellular signaling, especially in embryo-fetal/maternal communication through
the placenta, has been the main subject. With the development of molecular diagnostic
techniques, the possibility to study specific EVs has led to the discovery of biomarkers and
new methods that can be used for early diagnosis, prevention, and prognosis of pathologies
associated with pregnancy [253].
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9.1. Down Syndrome

Down syndrome (DS) is a chromosomal condition affecting around 1 in 800 births
worldwide, caused by human chromosome 21 (Hsa21) trisomy, and it is primarily asso-
ciated with intellectual disability and neurodevelopmental abnormalities occurring early
in the embryonic life [254,255]. Being the most common chromosomal disorder, intense
studies into its causes have been carried out, however, variations in clinical manifestations
have been correlated with the involvement of epigenetic factors [256]. In about 95% of cases,
the genetic mechanism to blame revolves around the process of meiotic nondisjunction
that results in the occurrence of 47 chromosomes. Other mechanisms involved refer to
the Robertsonian translocation of an additional chromosome 21 to chromosomes 13, 14,
15, or 22, or the duplication of a delimited segment of chromosome 21 [257]. In order to
better comprehend the processes that stand at the basis of DS, numerous studies have been
conducted, postulating the idea that both neural-derived and non-neuronal EVs contribute
to its development, due to their ability to facilitate intercellular communication at the level
of the CNS [258]. As the composition of the CNS broadly consists of several types of cells
with distinct morphologies and functions, EVs may contain different loads depending on
their origin. Through their cargo, they are capable of modulating signal transduction path-
ways, leading to subsequent changes in neurogenesis, gliogenesis, synaptogenesis, and the
formation of network circuits, as well as myelination and synaptic pruning [254]. Several
studies have shown that in the case of CNS dysfunctions, including DS, the composition of
EVs varies depending upon biogenetic pathways and parental cells [259]. In addition to
the endosomal sorting complexes required for transport (ESCRT), apoptosis-linked gene
2-interacting protein X (Alix), and tumor susceptibility gene 101 (TSG101) proteins, cur-
rently considered standard markers of exosomes, regardless of parental cells, several types
of membrane, cytosolic, and cytoskeletal proteins have commonly been found in exosomes
isolated from neuronal cells [254,260,261]. In the interest of facilitating non-invasive pre-
natal testing, Erturk et al. have analyzed miRNAs originating in trophoblast-derived EVs
from pregnant women with fetuses suffering from DS, and found that miR-99a and miR-
3156 levels were significantly higher compared to women carrying healthy fetuses [262].
Similarly, in a proof-of-concept study using high-throughput quantitative PCR (HT-qPCR)
on samples from DS pregnancies and controls, Kamhieh-Milz et al. managed to identify
36 mature miRNAs notably differentially expressed in affected pregnancies, emphasizing
their potential as stable biomarkers [263]. Similarly, using microarray-based genome-wide
expression profiling, Lim et al. analyzed placental samples from euploid and DS fetuses,
and found that miR-3196 and miR-1973 had higher expression levels in placentas from
affected fetuses [264].

9.2. Neural Tube Defects

Neural tube defects (NTDs) make up the second most common group of congenital
anomalies involving the CNS, with a prevalence of 1/1000 newborns worldwide. They
primarily occur as a result of a defective neural tube closure during neurulation in early
embryonic development [265]. Manifestations of this abnormality vary depending on loca-
tion, from cranial to more caudal regions, and include exencephaly, which eventually leads
to anencephaly, encephalocele, spina bifida, and myelomeningocele, among others [266].
Although the pathogenesis of NDT is not yet fully elucidated, it has been shown to be
multifactorial, involving both genetic and epigenetic factors [267]. Numerous signaling
pathways and genes that facilitate cell-to-cell communication are required for succesful
neural tube closure, including the wingless/integrated (Wnt) pathway, bone morpho-
genetic protein (BMP) signaling pathway, Sonic hedgehog (Shh) signaling pathway [268],
along with genes linked to neural patterning, growth, and cell intercalation, such as axis
inhibition protein 2 (AXIN2), lymphoid enhancer-binding factor 1 (LEF1), and paired box
gene 3 (PAX3) [269]. Epigenetic modifications of histones have also been reported, as well
as DNA methylation and aberrant metabolism of folate and related enzymes [270]. In a
recent study involving a fetal lamb model of spina bifida, Kumar and colleagues have
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analyzed the secretome of placenta-derived mesenchymal stromal cells (PMSC), and found
that PMSC-derived exosomes could mend limb paralysis through their cargo, found to
be rich in RNAs and proteins associated with neuronal survival, such as galectin 1, thus
highlighting their neuroprotective function [271]. In a similar manner, Gu et al. have
looked at the placental miRNA profiles of NTD pregnancies and, after analyzing a panel of
887 human miRNAs, found six upregulated miRNAs unique to these pregnancies [272].

9.3. Congenital Heart Defects

The most common birth defects and the leading cause of infant death from birth
defects, with an incidence of 8/ 1000 newborns, are congenital heart defects (CHDs).
These circulatory system abnormalities can be attributed in approximately 20% of cases
to genetic syndromes—including trisomies 13, 18, 21, and Turner syndrome—along with
submicroscopic deletions or duplications [273]. Despite abundant studies, the exact genetic
cause of these abnormalities has not been fully elucidated, but it has been shown that the
etiology of CHD is multifactorial, resulting from a constellation of non-coding genetic,
epigenetic and environmental factors [5]. Following extensive population-based studies
carried out in recent decades, it has been found that CHD pregnancies are associated with
an increased risk of developing pathologies linked with placental disease. This may be due
to the fact that, as vascular organs, both the heart and the placenta develop simultaneously,
thus potentially sharing common developmental pathways [274]. Studies published to
date on CVDs and the involvement of EVs in their occurrence do not provide a clear picture
of the molecular mechanisms and communication pathways involved in the etiology
of these syndromes. EVs are known to be involved in placental-related physiological
and pathological processes such as inflammation and vascular calcification, but they also
perform regulatory functions in the cardiovascular system that are related to thrombosis
and vasoactive reactions [5]. To this extent, as Jia and colleagues have demonstrated,
maternal and umbilical exosomes aid both angiogenesis by facilitating the proliferation
and migration of human umbilical vein endothelial cells (HUVECs), and the formation of
the heart tube, through their bioactive cargo. Specifically, they found a set of upregulated
miRNAs present in both types of EVs, which they could link to the modulation of cell
migration and proliferation [80]. Similarly, using microarray followed by RT-PCR, Gu
et al. have recently observed the miRNA expression of CHD pregnancies, and, based
on an elevated statistical significance level, found a panel of four miRNAs consistently
dysregulated among CHD pregnancies, supporting the potential role of exosome-miRNAs
as non-invasive biomarkers for CHDs [275].

10. Conclusions

The placenta is an ultra-specialized organ that establishes the connection between
the carrier mother and the developing fetus, and extracellular vesicles assist the intricated
interaction between the two organisms. Due to their unique molecular composition,
placenta-derived EVs are able to perform several functions, especially the transfer of
molecular signals between the fetus and mother, and any disturbances that may affect
these molecules can contribute to the occurrence of various pregnancy-related disorders.
To date, the involvement of these specialized messengers has been demonstrated both in
normal and pathological aspects of pregnancy, ranging from embryo implantation, vascular
remodeling and parturition, to maternal systemic inflammation, gestational hypertension
and diabetes mellitus, as well as preterm birth due to various pregnancy related conditions
and congenital anomalies. Due to the possibility to detect EVs and their contents in
the peripheral blood of women starting in early pregnancy, they can be used as timely
prediction or diagnostic biomarkers of pregnancy complications and fetal developmental
disorders. However, due to the lack of an established standardized detection method, the
analysis of placental EVs has yet to reach the end goal of clinical application. Nevertheless,
their non-invasiveness and accuracy prompt researchers to welcome further empirical
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evidence and experimental studies to validate the feasibility and clinical applicability of
EVs as circulating predictive biomarkers and, in time, EV-based therapies.
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