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We introduce a method for simultaneous prediction of microRNA–target interactions and their mediated competitive
endogenous RNA (ceRNA) interactions. Using high-throughput validation assays in breast cancer cell lines, we show that
our integrative approach significantly improves on microRNA–target prediction accuracy as assessed by both mRNA and
protein level measurements. Our biochemical assays support nearly 500 microRNA–target interactions with evidence for
regulation in breast cancer tumors. Moreover, these assays constitute the most extensive validation platform for com-
putationally inferred networks of microRNA–target interactions in breast cancer tumors, providing a useful benchmark to
ascertain future improvements.

[Supplemental material is available for this article.]

MicroRNAs (miRNAs) regulate RNA stability and mRNA translation

(Filipowicz et al. 2008) and their dysregulation has been implicated

in a wide range of human diseases including cancer (Garzon et al.

2009). Consequently, establishing accurate and comprehensive

repertoires of miRNA–target interactions is a necessary step toward

elucidating their mechanistic role in pathophysiology. Dissecting

miRNA regulation, however, has proven challenging because can-

didate miRNA binding sites are ubiquitous and their regulatory ef-

fects are context specific (Liu et al. 2005; Lu et al. 2005; Mukherji

et al. 2011). As a result, and despite their relatively low accuracy,

computational prediction methods that incorporate context-spe-

cific data are preferred for screening for miRNA–target interactions

in tumor contexts (Carroll et al. 2013; Erhard et al. 2014).

To address these challenges, we introduce Cupid, an in-

tegrative framework for the context-specific inference of miRNA

targets. Cupid integrates sequence-based evidence and functional

clues derived from RNA and miRNA expression analysis, predicting

candidate miRNA binding sites and associated target genes using

ensemble machine learning classifiers that are trained on validated

interactions. Candidate interactions emerging from this step are

then refined based on independent, context-specific clues, in-

cluding their predicted ability to mediate competitive endogenous

RNA (ceRNA) interactions, wheremRNA compete for sharedmiRNA

regulators (Fig. 1A; Tay et al. 2014). Thus, Cupid simultaneously

infers both interaction types (ceRNA and miRNA–target in-

teractions). In addition, we considered evidence for combinatorial

regulation by multiple miRNA species (Fig. 1B; Boissonneault et al.

2009; Xu et al. 2011) and for indirect miRNA regulation through

effector proteins (Fig. 1C). Taken individually, these clues are pre-

dictive of bona fidemiRNA–target interactions and can significantly

improve the tradeoff between precision and recall.

We show that Cupid predictions outperform other leading al-

gorithms, based on multiple experimental assays, including PAR-

CLIP data, miRNA perturbation followed by mRNA and protein

expression profiles, and 39 luciferase activity assays. Critically, while

Cupidpredicts fewer interactions thanothermethods (Fig. 1D–F), its

predictions aremuchmore likely to be consistentwith experimental

evidence. This is critical since high false-positive prediction rates are

a key limitation of current miRNA–target prediction methods.

Results

Algorithm outline and miRNA–target prediction in breast
cancer tumors

Cupid is implemented in three sequential steps (Fig. 1A). First, Cupid

reevaluates candidate miRNA binding sites in 39 UTRs, as inferred by

TargetScan (Lewis et al. 2005), miRanda (John et al. 2004), and PITA
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(Kertesz et al. 2007). This is accomplished by integrating their algo-

rithm-specific scores, their location in the 39 UTR, and their cross-

species conservation. Then, miRNA–target interactions are predicted

by further integrating information about selected sites, their multi-

plicity, and the statistical dependency between the expression profiles

of miRNA and putative targets.

Likelihoods for each predictive feature are computed based

on a positive gold standard set of 588 experimentally confirmed

Figure 1. Methodology. (A) Cupid first reevaluates sites predicted by TargetScan, miRanda, and PITA, selecting and rescoring each candidate site (Step
I). Sites are used to select and score miRNA-target interactions (Step II), which are then examined for evidence for mediating ceRNA interactions (Step III).
In addition, to support interaction prediction we considered (B) evidence for combinatorial regulation between miRNAs and (C ) evidence for indirect
regulation by miRNAs through effectors. (D) The majority of site predictions by TargetScan, miRanda, and PITA are exclusive to a single algorithm; for
example, <10% of sites predicted by miRanda are also predicted by another method. (E) Cupid predicted 529K miRNA-target interactions in Step II,
excluding 60% of Step I candidate interactions. As a result, it makes considerably fewer predictions than TargetScan, miRanda, and PITA. (F) Cupid Step III
predictions include less than a quarter of Step I candidate interactions.
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miRNA–target interactions, representing 1481 binding sites in

TarBase (Papadopoulos et al. 2009), TRANSFAC (Matys et al. 2006),

and miRecords (Xiao et al. 2009). They are then integrated using

a support vector machine (SVM) algorithm (Chang and Lin 2011).

Finally, Cupid assesses whether inferred targets compete for their

predicted miRNA regulators. In the following sections, we discuss

results from Cupid-inferred miRNA targets based on gene expres-

sion profile data of TCGA breast cancer samples (The Cancer

Genome Atlas Network 2012).

Step I (miRNA binding-site analysis)

miRNA binding sites in 39 UTRs were predicted and scored in-

dependently by TargetScan, miRanda, and PITA. Taken together,

these algorithms predicted a total of 37M candidate binding sites

(Fig. 1D). Each site was associated with the following features: (1)

TargetScan, miRanda, and PITA confidence scores, when available;

(2) phastCons (Siepel et al. 2005) species-conservation scores; and

(3) relative distance from the 39 and 59 ends of the target 39 UTR.

These features were used to train a support vector machine (SVM)

classifier (Chang and Lin 2011) using 10-fold cross-validation and

bootstrap aggregating (bagging), to identify consensus candidate

binding sites. In total, out of 37M candidate sites from sequence

analysis, Cupid selected ;1.6M as likely miRNA binding sites (Fig.

1D); predictions and 39 UTR sequences are provided in Supple-

mental Table S1; see Supplemental Methods for details.

Step II (miRNA–target interaction refinement)

Candidate binding sites were then used to assess the probability of

an interaction between a miRNA and a target 39 UTR. Predicted in-

teractions were associated with the following features (see Supple-

mental Methods): (1) their scores from Step I; (2) the total number

of miRNA binding sites in a target 39 UTR (i.e., multiplicity); (3)

binding-site density; and (4) the inverse correlation between the

expression of the target 39 UTR gene and that of the miRNA, as

measured by signed normalized mutual information (NMI), which

was estimated using adaptive partitioning (Darbellay and Vajda

1999) and Spearman correlation. These individual features were

used to train an SVM classifier, leading to selection of 529K candi-

date miRNA-target interactions from 1.6M original binding sites in

Step I (Fig. 1E; see Supplemental Methods for details).

Step III ( functional evidence analysis)

Finally, candidate interactions from Step II were tested for sequence-

and expression-based evidence for 39 UTR competition for shared

miRNA regulators by identifying miRNAs that are also predicted to

‘‘mediate’’ ceRNA interactions. Thus, ceRNA and miRNA–target in-

teractions are simultaneously predicted based on interaction can-

didates from Step II. We note that when evaluated individually,

other lines of functional evidence (Fig. 1B,C) significantly improved

prediction accuracy, but their contribution was relatively small; see

Supplemental Methods for description and analyses. In total, com-

bined analysis of TCGA breast cancer gene and miRNA expression

profiles supported299KmiRNA–target interactions fromCupid Step

II (Fig. 1F).

Quality of binding-site selection

We first compared Cupid Step I performance to that of several

published algorithms, including TargetScan (Lewis et al. 2005),

miRanda (John et al. 2004), PITA (Kertesz et al. 2007), DIANA-

microT-CDS (Reczko et al. 2012), ElMMo (Gaidatzis et al. 2007),

miRmap (Vejnar and Zdobnov 2012), mirSVR (Betel et al. 2010),

RepTar (Elefant et al. 2011), rna22 (Miranda et al. 2006), RNAhybrid

(Rehmsmeier et al. 2004), and TargetSpy (Sturm et al. 2010) by

analyzing the overlap of their predictions with experimentally

assessed AGO crosslink-centered regions (CCR) in HEK293 cells

(Hafner et al. 2010). We tested both the accuracy of binding-site

scores (Fig. 2A) and the effects of miRNA expression (Fig. 2B) on

AGO localization; note that weakly expressedmiRNAs are less likely

to be associated with CCRs, and consistently, the 100 most highly

expressed miRNAs account for almost all CCRs.

Specifically, we computed cumulative F-measure distribution

statistics based on the overlap of experimentally assessed CCRs

with the k% highest confidence targets, as predicted by each al-

gorithm for the most expressed miRNAs in HEK293. The F-metric

is defined as the harmonic mean of precision and recall, i.e.,

Fk =2ðPk 3RkÞ=ðPk +RkÞ, where Pk and Rk are the method’s pre-

cision and recall for the k%most significant predicted binding sites

(Fig. 2A) or for the kmost expressed miRNAs (Fig. 2B). That is, Pk is

the frequency with which predicted binding sites overlap CCRs,

and Rk is the frequency with which CCRs overlap predicted bind-

ing sites.

Results suggest that Cupid consistently finds a good tradeoff

between precision and recall for any value of k (Fig. 2A). Similarly,

once a sufficiently large number of highly expressed miRNAs are

included in the test, Cupid outperforms other site-prediction

methods (Fig. 2B). Cupid’s predictive ability peaked at Fk =21:6%,

for the k=60 most expressed miRNAs, followed by miRmap and

ElMMo with Fk =18:6% and Fk =17:3%, for k=57 and k=50, re-

spectively. Overall, our results suggest that Cupid-predicted bind-

ing sites are in better agreement with AGO binding.

Quality of interaction prediction in breast cancer cell lines

To assess the algorithm’s ability to predict functionalmiRNA targets,

we used data from three breast cancer-specific studies that provide

gene-expressionprofiles (in duplicates) following transfectionof pre-

mir-18a, pre-mir-193b, pre-mir-206, pre-mir-302c (Leivonen et al.

2009), pre-mir-101-1 (Frankel et al. 2011), and scrambled controls in

MCF7 and pre-mir-145, and control in MDA-MB-231 (Gotte et al.

2010). In total, across the targets predicted for the six miRNAs, we

identified 869 down-regulated genes (>30% down-regulation),

supporting their role as targets of transfected miRNAs (Fig. 2C;

Supplemental Table S3; Guo et al. 2010).

Statistics were obtained separately following each of Cupid’s

steps. Specifically, we identified 11.3K (Step I), 5.7K (Step II), and 3.5K

(Step III) candidate targets of transfected miRNAs, respectively. We

calculated the F-measure for each algorithm under the assumption

that false-positive predictions would not be down-regulated follow-

ingmiRNA transfection and that false-negative predictions would be

down-regulated but not predicted. Our results suggest that Cupid’s

interaction prediction (Step II) and functional-interaction prediction

(Step III) significantly improve performance, compared to using only

binding-site predictions (Step I) (P < 0.01, FET). Critically, Cupid was

significantly more accurate (P < 0.05) than the next best algorithm

(miRmap) (Fig. 2D). Thus, Cupid inferred fewer candidate miRNA

targets, but with significantly higher F-statistics, suggesting a sub-

stantial increase in precision.

Protein expression benchmarks

We used RPPA data to measure expression fold reduction of 120

proteins following transfections of 159 miRNA mimics, including

Cupid: miRNA-target and ceRNA networks
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four mock controls, in MDA-MB-231 cells. We compared the av-

erage fold-expression decrease of protein targets predicted by the

various algorithms, relative to mock transfections (Fig. 3B). Of the

158 antibodies included in the RPPA, 117 antibodies (representing

82 predicted miRNA targets) profiled target expression of at least

one of 127 transfected Cupid Step III-predicted miRNA regulators,

with no replicates; see Supplemental Table S4. In total, this analysis

tested nearly 2200, 1000, and 800 Cupid-inferred interactions

from Steps I, II, and III, respectively (Fig. 3A). Cupid Step III pre-

dictions provided by far the best overlap with the experimental

data, improved over both Steps I and II, and significantly out-

performed DIANA-microT-CDS, the next best prediction method

(P < 13 10�4, by Student’s t-test).We thus

focused our detailed analysis using Cupid

Step III predictions.

To test prediction accuracy, we ana-

lyzed each antibody independently and

evaluated protein expression fold changes

after transfection of their predicted miRNA

regulators (Fig. 3C). We plotted average pro-

tein expression fold change and associated

P-value (from Student’s t-test) following

transfections of their predicted miRNA

regulators and mock controls. Of the 117

antibodies tested, 85 were down-regulated

(34 statistically significantly, P < 0.05) and

32 were up-regulated (two significantly)

following transfection of their predicted

miRNA regulators. This confirms preferen-

tial down-regulation of predicted miRNA

targets, P < 4 3 10�10 by one-sample

Kolmogorov-Smirnov (K-S) test. Moreover,

significantly up- and down-regulated an-

tibodies indicate false- and true-positive

rates, respectively, suggesting that Cupid

predictions have FDR < 0.056; a compari-

son between Cupid and the next-best

method shows a threefold FDR gap

(Supplemental Fig. S2). At the individual

interaction level, significant reductions

in target protein expression were ob-

served following transfection of miRNA

regulators for 237 predicted interactions,

while increases were observed for only

76 interactions (P < 6 3 10�84 by K-S test).

Ten proteins with an established role in

breast cancer tumorigenesis, including

CCND1, IRS1, MAP2K1, MAPK1, MET,

MYC, PIK3CA, RAF1, RB1, and SMAD1,

were consistently reduced by >10% on

average by their predicted miRNA regu-

lators (Fig. 3D).

Evidence for competition for miRNA
regulation

To test predicted miRNA targets using in-

dependent evidence for mediating ceRNA

interactions, we chose to focus on a fully

connected predicted ceRNA network of

five established regulators of tumori-

genesis in breast cancer (CCND1, ESR1,

HIF1A, PDGFRA, and NCOA3) (Fig. 4A; see Supplemental Table S5

for the full data). Specifically, we transfected their 39 UTRs (except

for NCOA3 which could not be cloned) and measured mRNA-

expression fold changes of those expressed inMCF7 cells (PDGFRA

was not expressed); note that transfection concentrations are not

at physiologic levels, but they establish the potential for coreg-

ulation bymiRNAs. The results confirm the regulatory potential of

these 39 UTR (Fig. 4B–E). In total, eight of 11 of the predicted in-

teractions (Fig. 4A) showed significant up-regulation after trans-

fection of the 39 UTR of their predicted ceRNA regulators. While

this evidence supports ceRNA regulation (Sumazin et al. 2011), it

does not identify the miRNAs that mediate the coupling.

Figure 2. Site and interaction prediction. (A) miRNA-binding-site predictive accuracy estimates for
a panel of target prediction methods are given as cumulative distributions across ranks of predicted
miRNA-binding-site scores, starting from the top scoring 1% to all predicted sites. Average, upper, and
lower quintiles, and the range of the harmonic mean of precision and recall (F-measure) are shown;
precision is the fraction of sites that overlap crosslink-centered regions (CCRs) identified in AGO PAR-
CLIP experiments relative to the total number of predicted sites, and recall is the number of CCRs
overlapping predicted sites relative to the total number of CCRs. (B) Cumulative distributions across the
highest expressed miRNAs, from highest expressed to top 100 highest expressed in HEK293 cells, of
predicted binding sites that coincide with CCRs. (C ) Number of predicted miRNA–target interactions
that were tested through pre-miRNA transfections in MCF7 or MDA-MB-231 for a panel of target-
prediction methods, and (D) their predictive ability over target mRNA down-regulation.
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We predicted that these genes compete for several miRNAs,

including seven miRNAs predicted to target at least three of the

four genes. We used 39 UTR luciferase reporter assays and miRNA

mimic transfections to test whether these miRNAs regulate their

predicted 39 UTR targets. In total, we predicted 30 miRNA-39 UTR

interactions for 10 miRNAs that were predicted to mediate ceRNA

interactions in the four-gene subnetwork (Fig. 5). Of particular

biological interest, ESR1, HIF1A, and PDGFRA were predicted to

compete for miR-17-5p, miR-106b-5p, miR-130a/b-3p, and miR-

301a-3p. Our assays tested 44 interactions, including interactions

with miR-557 as negative controls. Of the 30 predicted in-

teractions, only regulation of the HIF1A 39 UTR by miR-93-5p was

not supported by the experimental data, suggesting high precision

for Cupid’s predictions. The remaining assays tested 14 miRNA-39

UTR pairs, including four miR-557 targets that were not predicted

to interact, and the results suggest that eight of the 14 have regu-

latory potential.

ComparingCupid performance to random selection (same size)

from TargetScan, PITA, and miRanda interaction predictions, Cu-

pid had 80% accuracy and an F-measure of 0.87; random-selection

had accuracy of 22% and F-measure 0.15.

In total, our assays suggest that Cupid

predictions have high precision and

good, but lower, recall; precision was

above 95%, while recall was above 75%.

Of the 30 predictions, 10 were previously

known (Dweep et al. 2011; Hsu et al.

2011), see Supplemental Table S6, but

even after excluding these, Cupid calls

were predictive of assay results at P < 0.01

by FET, when comparing true positives

and true negatives to false positives and

false negatives. Interestingly, one pre-

viously reported interaction, CCND1 reg-

ulation bymiR-34b, was neither predicted

nor supported by our luciferase assays.

Other evidence for functional
regulation by miRNAs

We tested candidate miRNA–target in-

teractions for evidence for combinato-

rial regulation by miRNA species, and

evidence for indirect regulation through

effectors. Evidence for combinatorial reg-

ulation is complementary to evidence

derived from expression correlation be-

tweenmiRNAs and their targets. Similarly,

evidence for indirect regulation by a

miRNA examines the correlation between

the expression of this miRNA and a set

of predicted indirect targets; these were

not used to predict direct miRNA–target

interactions and are considered com-

plementary evidence. In total, these

lines of evidence produced fewer predic-

tions and had weaker predictive ability

when compared with evidence for ceRNA

regulation. Consequently, we chose to de-

scribe them independently. When com-

bined, these lines of evidence support

40,000 predicted interactions that were

not included in Step III (an additional 13%); see Supplemental

Methods.

ESR1 protein expression is correlated with miRNA regulator
expression

We chose to focus on ESR1 for detailed validation. The analysis of

ESR1 protein expression in TCGA breast cancer tumors, profiled by

RPPA using the antibody ER.alpha.R.V_GBL.9014870, suggests that

ESR1protein expression is strongly correlatedwith the expression of

predicted miRNA regulators (Fig. 6A). Biochemical validation of se-

lect ESR1 miRNA regulators showed significantly reduced ESR1 39

UTR luciferase activity following transfection of predicted miRNA

regulators (Fig. 6B).

Results for 13 selected candidate ESR1 regulators, and miR-

557, which was chosen as negative control, are given in Figure 6A

and show significant ESR1 protein expression fold change. Eight

miRNAs were selected because their effect on ESR1 39 UTR lucif-

erase activity assays was tested in Figure 5. The other five regu-

lators where chosen at random from Supplemental Figure S4, and

Figure 3. High-throughput perturbation tests using protein-expression profiling. (A) Number of
predictedmiRNA–target interactions that were tested through miRNAmimic transfection followed by
protein-expression profiling. (B) Average reduction in protein level following transfection of predicted
miRNA regulators for a panel of target prediction methods. (C ) P-values and average protein-ex-
pression fold changes after transfection of Cupid-predicted miRNA regulators. In total, considering
expression estimates made with 117 antibodies, 34 reported significant down-regulation P < 0.05, in
red), 51 reported down-regulation (orange), 30 reported up-regulation (blue), and two reported
significant up-regulation (P < 0.05, in green); a comprehensive significance of P < 4 3 10�10. (D)
Estimated average reduction in protein expression levels for known breast cancer regulators from C.
Data are represented as mean 6 SEM.
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include previously validated regulators miR-22-5p, miR-221-3p,

and miR-222-3p, as well as previously undescribed ESR1-regula-

tors 381 and 148a-3p; 130b-5p was predicted to regulate ESR1

targets by Cupid Step II but had no evidence for mediating ESR1

ceRNA interactions. Results from biochemical testing of the pre-

dicted interactions, including results from assays described in

Figure 5, are given in Figure 6B for ease of presentation. All mimic

transfections of predicted ESR1 regulators significantly reduced

ESR1 39 UTR luciferase activity. As negative controls, we selected

miR-557 and miR-130b-5p, which were not predicted to target

ESR1; miR-130b-5p and ESR1 expression were significantly cor-

related (P < 1 3 10�8) but their interaction was not predicted by

Cupid Step III.

In total, 74miRNAswere predicted to target ESR1 byCupid Step

III. Given that ESR1mRNA expression is highly subtype specific—its

expression is high in luminal A and luminal B breast cancer tumors

and very low in basal-like tumors—we set out to test whether

miRNAs that target ESR1 may have inferred subtype-specific ac-

tivity. Our selection criteria for identifying miRNAs with subtype-

specific activity included two conditions: (1) miRNA expression

must be significantly high or low in one tumor type relative to

others (P < 13 10�3), and (2) its targets must be enriched for genes

with low or high expression in that tumor type (P < 1 3 10�4), re-

spectively, according to running sum statistics; see Supplemental

Methods. We also identified ceRNA with subtype activity, and

comprehensive lists for both are given in Supplemental Table S11.

In total, we identified 20 miRNAs that are predicted to target

ESR1 and have high or low activity in luminal tumors (Fig. 6C);

expression profiles of 12 of these miRNAs were significantly

anticorrelated with ESR1 protein expression in basal-like and

HER2-enriched tumors, but no miRNAs were significantly corre-

lated with ESR1 protein expression in luminal tumors (Fig. 6D).

This analysis suggests that ESR1 is regulated by a miRNA program

that is specific to basal-like and HER2-enriched tumors and is

absent in luminal tumors.

To test the predictive benefit of our compiled evidence for

functional regulation, we compared ESR1 protein expression in

352 samples with low (bottom 10%) and high (top 10%) expres-

sion of each of the 50 candidate miRNA regulators that were pre-

dicted in Cupid Step II and had evidence for indirect regulation

through effectors; note thatmiRNA expression and RPPA datawere

both available for only 352 of the 728 TCGAbreast cancer samples.

After removing outliers using the IQR rule for 44 miRNAs within

two interquartile ranges from the mean, ESR1 protein expression

was 2.8-fold higher in samples with low targeting miRNA expres-

sion, on average (Supplemental Fig. S4); only nine of thesemiRNAs

were not predicted by Cupid Step II. This finding is in agreement

with genome-wide statistical data that suggests that evidence for

functional regulation is significantly predictive of miRNA–target

interactions (Supplemental Fig. S4A,B).

Discussion
Identifying and understanding pathological implications due to

miRNA dysregulation requires accurate maps of functional miRNA

targets in specific disease contexts. We describe systems-biology-

based methods that leverage previously validated interactions to-

gether with RNA and protein-expression profiles from patient

samples to predictmiRNA-39UTR target interactionswith evidence

for regulation in these samples. As a proof of principle, we pre-

dicted interactions in breast cancer using profiles from TCGA

breast cancer tumors together with perturbation data in breast

cancer cell lines. A variety of computational and biochemical

techniques demonstrated improved fidelity of resulting pre-

dictions, including evidence for hundreds of candidate miRNA–

target interactions in breast cancer cell lines. Our luciferase re-

porter assays supported >90% of interactions predicted by Cupid,

and we described evidence for functional regulation bymiRNAs in

breast cancer, including expression-based evidence for ceRNA

mediation by nearly 300K miRNA–target interactions. Other lines

of evidence that may be useful for building predictive functions in

the future failed to significantly improve predictive accuracy.

Figure 4. Competition for miRNA regulation. Cupid relies on evidence
for competition for miRNA regulation, simultaneously identifying ceRNA
and miRNA–target interactions. (A) A ceRNA network of oncogenes im-
plicated in breast cancer regulation. Transfections of the 39 UTRs of (B)
CCND1, (C ) ESR1, (D)HIF1A, and (E) PDGFRA inMCF7 up-regulatedmRNA
expression within the network, as measured by qPCR. Data are repre-
sented as mean 6 SEM; (*) P < 0.05, (**) P < 0.01, (***) P < 0.001.
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Focusing on predicted regulators of ESR1, we showed that

RPPA data in breast cancer tumors could be used as an effective

filter for identifying functional miRNA regulators. To further test

the effects of miRNA regulation on a select set of proteins, we

profiled protein expression after miRNA perturbation, producing

a data set that could be used to compare prediction performance,

and identifying breast cancer genes that are particularly amend-

able to miRNA regulation. In total, we identified nearly 500

miRNA–mRNA interactions with evidence for regulation in breast

cancer that were supported by miRNA perturbation assays in

breast cancer cell lines.

We observed subtype-specific activity (Supplemental Table

S11) and pathway enrichment (Supplemental Table S12) for both

miRNA and ceRNA regulators. Our analysis suggests that ESR1 is

targeted by miRNA programs that are specific to HER2-enriched

and basal-like tumors. We inferred that

the PI3K and the p53 signaling pathway

are enriched for miR-15, miR-16, and

miR-424 targets; the MAPK signaling

pathway is enriched for miR-106, miR-

20a-5p, and let-7 family targets; the TGF

beta signaling pathway is enriched for

miR-27b, miR-17-5p, and let-7 targets;

and that members of the miR-30 family

target the HER2/EGFR pathway. Inter-

estingly, members of the miR-30 family

were also identified to have the lowest

activity in HER2-enriched breast cancer

tumors, suggesting a possible tumor-sup-

pressor role for miR-30 in breast cancer

tumors; miR-30 has been recently de-

scribed as a tumor suppressor in prostate

cancer (Kao et al. 2014).We also note that

26 genes were predicted to be regulated

by at least 25% of miRNAs tested, and the

majority of these 26 are known regulatory

factors, including transcription and RNA

processing factors.

It is important to note that while

our results were based on analyses of

reference 39 UTR targeting, recent work

(Sandberg et al. 2008; Brummer and

Hausser 2014) suggests that both alter-

native polyadenylation and miRNA tar-

geting outside of 39 UTRs may alter

miRNA regulation to pathophysiolog-

ical effects. Incorporating these lines

of evidence may help further our un-

derstanding of miRNA regulation, and

we believe that these challenges can

be addressed using current technology.

Namely, the effects of alternative poly-

adenylation can be accounted for through

custom analyses of short-RNA libraries,

followed by mixture model resolution.

Similarly, methods for identifying miRNA

binding sites outside of 39 UTRs can be

used to supplement predictions presented

here. In addition, the combination of ac-

curate technology for predicting miRNA

targets and paired mRNA and protein-

expression profiles promises to enable

inquiry into miRNA mechanisms of action. For example, statisti-

cal evidence suggests that expression profiles of ESR1-regulating

miRNAs are predictive of variability in the coupling between ESR1

mRNA and protein-expression profiles. Moreover, a study focusing

on the ability of individual miRNA to predict coupling of target

mRNA and protein-expression profiles may help identify miRNAs

that primarily regulate translation and those that regulate mRNA

destabilization (Brummer and Hausser 2014).

In conclusion, the increasing body of molecular profiles in

primary disease tissues and in perturbation of disease models pres-

ents an opportunity for systems-biology-based approaches to im-

prove the accuracy of regulatory-interaction prediction methods.

Our analyses suggest that evidence for regulation by miRNAs in

given contexts can significantly improve context-specific miRNA–

target predictions, and consequently build better context-specific

Figure 5. Regulatory potential of miRNA mediators. Multiple ceRNA interactions in a network in-
cluding CCND1, ESR1, HIF1A, and PDGFRA (Fig. 4) were predicted to be mediated by common miRNAs.
We tested the regulatory potential of 10 of these miRNAs biochemically, with miR-557 selected as
a negative control. (A) Predicted miRNA–target interactions and a summary of biochemical validation,
depicting true-positive, true-negative, false-positive, and false-negative predictions; down-regulation of
39 UTR luciferase activity in response to miRNA-mimic transfection at P < 0.05 was taken as evidence for
regulation. Luciferase activity after miRNA mimic transfection relative to transfection of scrambled
control is shown for (B) CCND1, (C ) ESR1, (D) HIF1A, and (E) PDGFRA 39 UTRs. Punctuated mimics, for
example, miR-17-5p for CCND1, ESR1, HIF1A, but not PDGFRA, correspond to previously validated in-
teractions. Data are represented as mean 6 SEM; (*) P < 0.05, (**) P < 0.01, (***) P < 0.001.
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Figure 6. ESR1 expression is anticorrelated with miRNA-regulator expression. (A) ESR1 protein expression in breast cancer tumors is anticorrelated with
expression profiles of previously validated (Known)andpredicted (Pred)miRNA regulators. ESR1 relative expression in the top andbottom10%of tumors ranked
based on the intensity of the expression of eachmiRNA; each rowwas ranked independently. miRNAs predicted to mediate ESR1 ceRNA regulation are marked
(Step III); also marked is ESR1 protein expression fold change in tumor samples with low versus high expression for eachmiRNA. Negative controls includemiR-
557 and miR-130b-5p; miR-130b-5p expression was anticorrelated with ESR1 expression. (B) 39 UTR luciferase activity fold changes after miRNA mimic trans-
fections; some data replicated from Figure 5. Punctuatedmimics correspond to previously validated interactions. (C ) miRNAswith low or high activity in luminal
breast cancer tumors are enriched for predicted ESR1 regulators (P < 1.33 10�8), and (D) their expression profiles are anticorrelatedwith ESR1 protein expression
in basal-like and HER2-enriched tumors, but not in luminal tumors. Data are represented as mean 6 SEM; (*) P < 0.05, (**) P < 0.01, (***) P < 0.001.
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cellular wiring diagrams. Improving these has implications for efforts

to identify and interpret pathologically relevant genomic variants,

a key technical challenge in personalized genomics.

Methods
Cupid multistep prediction and other functional evidence
for miRNA regulation
Cupid miRNA–target and ceRNA interaction predictions proceed
in three sequential steps, as outlined in the Results. A detailed
description, including Cupid site prediction (Step I), Cupid in-
teraction prediction (Step II), the predictive features and machine
learning processes used in these steps, andmethods for identifying
candidate miRNA–target interactions with evidence for mediating
ceRNA interactions, are presented in the Supplemental Methods.
In addition, we used evidence for combinatorial interactions
between miRNAs and for indirect miRNA regulation through ef-
fectors to support Cupid Step II miRNA–target interaction pre-
dictions; methods and results are described in the Supplemental
Methods.

Genes-expression profiling following precursor transfection

Gene expression was profiled using Illumina Human-6 Expres-
sion BeadChips following transfection of pre-mir-18a, pre-
mir-193b, pre-mir-206, pre-mir-302c (Leivonen et al. 2009)
(GSE14847), with Affymetrix GeneChip Human Genome U133
Plus 2.0 Array following pre-mir-101-1 and scrambled controls in
MCF7 (Frankel et al. 2011) (GSE31397), and pre-miR-145 and
control in MDA-MB-231 (Gotte et al. 2010) (GSE19737).

Testing sites and interactions

We used the F-measure to test the ability of binding-site prediction
methods to identify in 39UTRswith evidence formiRNA binding in
HEK293 cells (Hafner et al. 2010), and when testing interactions
using gene-expression data after transfection of precursors of pre-
dicted miRNA regulators. Detailed methodology is presented in the
Supplemental Methods.

39 UTR cloning, in vitro MIMIC transfection conditions, and
luciferase assays

Tomeasure the targeting activity ofmicroRNAMIMICs, the 39UTRs
of specific target genes were cloned downstream from the lu-
ciferase reporter in the pMIR-REPORT vector (Life Technologies
#AM5795M) by PCR from human genomic DNA using restriction
enzymes. 293T cells were plated at 70% confluence in 96-well
plates. Twenty-four hours later, cells were transfected with 50 ng
of pMIR-REPORT constructs containing the luc-39-UTR sequences,
50 ng of a Renilla normalization control, and 100 nM of each in-
dividual synthetic mirVana miRNAMIMICs (Ambion #4464066) at
100 nM final concentration using the TransIT-LT1 (Mirus Bio
#2300A) and TransIT-TKO (Mirus Bio #2150) transfection reagents
following the manufacturer’s instructions. After 24 h, relative lu-
ciferase units (RLU) were measured using the Dual-Glo Luciferase
Assay System (Promega #E2949). Primer sequences are given in the
Supplemental Methods.

Forward transfection of 39 UTRs

Forward transfection of the plasmid was performed with the Lipo-
fectamine (Invitrogen) transfection reagent, following the manu-
facturer’s protocol. Lipofectamine 2000 was used for A549, HepG2/
C3A,HT-29, SK-MEL-28, and SK-OV-3 cells. LipofectamineLTXPLUS

was used for MCF7, PC-3, and U2-OS cells. In general, cells attached
to the culturing surfacewerewashedwithphosphate-buffered saline,
and the medium was replaced with 100 mL of Opti-MEM with 2%
fetal bovine serum. A total of 100 ng per well in a 96-well plate of
the plasmid was then mixed with a 0.3 mL/well of Lipofectamine in
Opti-MEM, and 20-min later the mixture was added to the wells.
After 6 h of transfection, the cells were then cultured in regular
medium for 24 h and subsequently harvested.

Real-time quantitative RT-PCR analysis

Total RNAwas extracted fromcellswith theRNeasymini kit (Qiagen)
and depleted of contaminatingDNAwithRNase-freeDNase (Qiagen).
Equal amounts of total RNA (1 mg) were reverse-transcribed using the
qScript cDNA Synthesis kit (Quanta Biosciences). The first-strand
cDNA was used as a template. Real-time PCR was carried out using
SYBR green fluorescence. Two microliters of RT were used in a 25-mL
reaction. Each sample was assayed in three independent RT reactions
and triplicate reactionswereperformedandnormalized to theGAPDH
expression levels. Negative controls included the absence of enzyme
in the RT reaction and the absence of template during PCR. Relative
quantification of gene expression was performed with the compara-
tive CT method. Primers used for quantitative RT-PCR analyses were
synthesized by Sigma-Aldrich.

High-throughput quantitative RT-PCR analysis

The first-strand cDNA, synthesized using the qScript cDNA Syn-
thesis kit, was first amplified for specific target amplification (STA).
Briefly, a 12-cycle preamplification reaction was performed for
each sample in 5 mL by pooling all primer pairs (final concentra-
tion, 50 nM), 1.25 mL cDNA, and 2.5 mL 23 PreAmp Master Mix
(Applied Biosystems) following the manufacturer’s protocol. Un-
incorporated primers were then cleaned up using Exonuclease I
(New England Biolabs). Briefly, 2 mL of diluted Exo I at 4 units/mL
was added to each 5-mL STA reaction, and then incubated for 30
min at 37°C and 15 min at 80°C. Samples were then diluted five
times with low TE buffer. High-throughput qPCRs were performed
on the Biomark HD (Fluidigm) in a microfluidic multiplex 48.48
dynamic array chip according to the Fluidigm Advanced De-
velopment Protocol with EvaGreen. For each individual assay, 5 mL
Assay Mix containing 9 mM forward primer, 9 mM reverse primer,
and 13 Assay Loading Reagent was loaded into the Assay Inlets on
the chip. For each sample, 5 mL Sample Mix containing 2.25 mL
diluted sample in 13 DNA binding Dye Sample Loading Reagent
and 13 SsoFast EvaGreen Supermix (Bio-Rad) was loaded into the
sample inlets. The Biomark’s default Fast thermo cycling program
with a melting step was used for the real time PCR reactions and
fluorescence detection.

miRNA library screen by RPPA

The miRNA library was designed and synthesized by Dharmacon.
MDA-MB-231 cells were seeded (3750 cells/well) and transfected
with 50 nM miRNA mimics. After 48 h, cells were lysed and RPPA
analysis was carried out as previously described (Zhang et al. 2009;
Hennessy et al. 2010; Lu et al. 2011); mimics tested and antibodies
used are given in Supplemental Table S4. Cells were washed with
PBS, then lysed in 1% Triton X-100, 50 mM HEPES (pH 7.4), 150
mM NaCl, 1.5 mM MgCl2, 1 mM EGTA, 100 mM NaF, 10 mM Na
pyrophosphate, 1 mM Na3VO4, 10% glycerol, containing freshly
added protease and phosphatase inhibitors. Cellular proteins were
denatured by 1% SDS (with b-mercaptoethanol) and diluted in six
twofold serial dilutions indilution buffer (lysis buffer containing 1%
SDS). Serial diluted lysates were arrayed on nitrocellulose-coated
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FAST slides (Whatman Inc.). Each slide was probed with a validated
primary antibody plus a biotinconjugated secondary antibody.

The signal was amplified using a DakoCytomation-catalyzed
system (Dako) and visualized by DAB colorimetric reaction. The
slides were scanned, analyzed, and quantified using a customized-
software Microvigene (VigeneTech Inc.) to generate spot intensity.
Each dilution curve was fitted with the logistic model (‘‘Supercurve
Fitting’’ developed by the Department of Bioinfomatics and Com-
putational Biology at the MD Anderson Cancer Center, ‘‘http://
bioinformatics.mdanderson.org/OOMPA’’). The program fits a sin-
gle curve using all the samples (in the dilution series) on a slide with
the signal intensity as the response variable and the dilution steps as
the independent variable. Protein expression for eachwell and each
antibody was normalized as SEM relative to mock transfections,
with P-values for individual miRNA mimics calculated using a sin-
gle-sample Student’s t-test against mock transfections. Mimics for
RPPA experiments (159 miRNA mimics in total) were chosen from
a preliminary test of 879mimics, identifying transfections that lead
to highest total fold change across profiling antibodies.

Statistical analysis

All experiments were performed at least in triplicate and repre-
sentative results are shown. All data are shown as the mean 6 SE.
Student’s t-tests were used to evaluate statistical significances be-
tween different treatment groups.

Data access
The RPPA data from this study, including 163 RPPA experiments
following miRNA transfections, where each experiment has read-
outs from 158 antibodies as given in Supplemental Table S4, are
available from The Cancer Proteome Atlas (TCPA; http://app1.
bioinformatics.mdanderson.org/tcpa/_design/basic/index.html) un-
der accession number TCPA00000001. Cupid source code is available
for download fromSourceForgeprojectCupidTool athttp://cupidtool.
sourceforge.net/.
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