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The human auditory system is highly skilled at extracting and processing information from
speech in both single-speaker and multi-speaker situations. A commonly studied speech
feature is the amplitude envelope which can also be used to determine which speaker
a listener is attending to in those multi-speaker situations. Non-invasive brain imaging
(electro-/magnetoencephalography [EEG/MEG]) has shown that the phase of neural
activity below 16 Hz tracks the dynamics of speech, whereas invasive brain imaging
(electrocorticography [ECoG]) has shown that such processing is strongly reflected in
the power of high frequency neural activity (around 70-150 Hz; known as high gamma).
The first aim of this study was to determine if high gamma power scalp recorded EEG
carries useful stimulus-related information, despite its reputation for having a poor signal
to noise ratio. Specifically, linear regression was used to investigate speech envelope
and attention decoding in low frequency EEG, high gamma power EEG, and in both EEG
signals combined. The second aim was to assess whether the information reflected in
high gamma power EEG may be complementary to that reflected in well-established low
frequency EEG indices of speech processing. Exploratory analyses were also completed
to examine how low frequency and high gamma power EEG may be sensitive to different
features of the speech envelope. While low frequency speech tracking was evident for
almost all subjects as expected, high gamma power also showed robust speech tracking
in some subjects. This same pattern was true for attention decoding using a separate
group of subjects who participated in a cocktail party attention experiment. For the
subjects who showed speech tracking in high gamma power EEG, the spatiotemporal
characteristics of that high gamma tracking differed from that of low-frequency EEG.
Furthermore, combining the two neural measures led to improved measures of speech
tracking for several subjects. Our results indicated that high gamma power EEG can
carry useful information regarding speech processing and attentional selection in some
subjects. Combining high gamma power and low frequency EEG can improve the
mapping between natural speech and the resulting neural responses.
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INTRODUCTION

Scalp-recorded electroencephalography (EEG) provides a
non-invasive means of investigating cortical activity with
high temporal resolution. This makes it particularly suited for
studying neural processes such as speech perception—where
humans rapidly convert mechanical vibrations of the air into
meaning. In terms of speech, the slow varying acoustic envelope
of continuous natural speech was found to be reflected in
EEG (Luo and Poeppel, 2007; Lalor and Foxe, 2010) which
is valuable because speech modulations in the 4–16 Hz range
have been shown to contain the most important information
regarding intelligibility (Drullman et al., 1994). As a result,
many studies tend to focus their analysis around this frequency
range when using EEG or magnetoencephalography (MEG)
to investigate cortical tracking of the speech envelope (Ahissar
et al., 2001; Aiken and Picton, 2008; Peelle and Davis, 2012;
Di Liberto et al., 2015).

In contrast to the emphasis on lower-frequency bands in
EEG speech research, studies that employ electrocorticography
(ECoG) often look at signals in the high gamma range
(∼70–150 Hz). High gamma ECoG has also been shown to
track the speech envelope (Pasley et al., 2012; Kubanek et al.,
2013), even though high gamma and low frequency (LF) activity
are thought to result from distinct physiological mechanisms
(Edwards et al., 2009). The fidelity of speech tracking in high
gamma power (HGP) ECoG data is so high that most ECoG
studies focus exclusively on that frequency range and ignore
the data at lower frequencies. Meanwhile, the high-frequency
content of scalp-recorded EEG is typically disregarded because it
is low pass filtered by the skull (Pfurtscheller and Cooper, 1975)
and smeared by the dura and cerebrospinal fluid (Light et al.,
2010), thus resulting in a low signal-to-noise ratio. Nevertheless,
we questioned whether there is still useful stimulus-related
information dissociable from low-frequency data that could be
retrieved from high gamma EEG. If so, high gamma EEG could
serve as a useful measure for studying speech and language
processing in various populations.

To our knowledge, as this study represented the first effort to
do this, we restricted our focus to examining the aforementioned
tracking of the temporal speech envelope in HGP EEG. EEG
data were recorded as subjects listened to continuous natural
speech, and we mapped the EEG (filtered into LF, HGP, and
both signals combined) to the temporal speech envelope using
linear regression. In a second data set, we investigated whether
the inclusion of HGP can improve auditory attention decoding.
It is established that envelope tracking in LF EEG is modulated
by attention (Kerlin et al., 2010; Power et al., 2012), and
cortical HGP has also been shown to be strongly modulated by
attention (Mesgarani and Chang, 2012; Zion Golumbic et al.,
2013; Dijkstra et al., 2015). Here, we employed a framework that
has been successful in ascertaining attentional selection within
the context of a task in which subjects attend to one of two
concurrent talkers (O’Sullivan et al., 2015). We compared how
well attentional selection can be decoded from EEG when using
LF, HGP, and a combination of the two. In doing so, we found
that for a minority of subjects, the speech envelope and attention

are reflected in HGP EEG in a way that may be complementary
to the information available in LF EEG.

MATERIALS AND METHODS

Subjects
Two experimental paradigms were explored in the present study
using data from three previously published studies. The first
paradigm involved subjects listening to a single speaker and the
second involved subjects attending to one of two concurrently
presented speakers. Data used in the single speaker paradigm
originated from two previous studies examining semantic
dissimilarity and phoneme level processing (Broderick et al.,
2018; Di Liberto et al., 2018)1. Seventeen subjects (min = 19 years,
max = 31 years, 12 males) were used in total. These studies were
approved by the Ethics Committees of the School of Psychology
at Trinity College Dublin and the Health Sciences Faculty at
Trinity College Dublin. Data used in the attentional selection or
cocktail party paradigmwas from the control condition of a study
which investigated the decoding of auditory attention (Teoh and
Lalor, 2019). Fourteen subjects (min = 19 years, max = 30 years,
5 male) took part in the experiment. This study was approved
by the Research Subjects Review Board at the University of
Rochester. All subjects were native English speakers, provided
written informed consent, and reported no history of hearing
impairment or neurological disorders.

Stimuli and Procedure
The single speaker experiment consisted of subjects listening
to 20–29 trials (approximately 180 s in length) of a mid-20th
century audiobook read by one American male speaker
(Hemingway, 1952). The subjects were tested in a dark, sound-
attenuated room and were instructed to attend to a fixation cross
in the center of a screen. The storyline was preserved in the
trials, with no repetitions or discontinuities present. In the multi-
speaker experiment, subjects undertook 20 trials (approximately
60 s in length). They were presented with two stories (Doyle,
1892, 1902) simultaneously, narrated by a male and a female
speaker. The two audio streams were filtered using head-related
transfer functions to simulate spatial separation of the speakers
(one speaker at 90 degrees to the left and the other at 90 degrees
to the right). The attended speaker was on the left in 50% of
the trials and was on the right the other 50%. The subjects
were instructed to attend to the male speaker in all trials and
to minimize motor movements by fixating to a cross at the
center of a screen. Subjects then answered four multiple-choice
questions on the attended and unattended stories after each trial
(which were not analyzed in this work). In all experiments, the
stimuli were presented through Sennheiser HD650 headphones
at a 44.1 kHz sampling rate using Presentation software from
Neurobehavioral Systems2.

Data Acquisition and Preprocessing
For both experiments, EEG data were acquired at a 512 Hz
sampling rate with the BioSemi Active Two system using

1https://datadryad.org/stash/dataset/doi:10.5061/dryad.070jc
2http://www.neurobs.com
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128 scalp electrodes (plus two mastoid channels that were
not analyzed in this work). Each subject’s scalp data were
re-referenced to the common average. Noisy channels were
determined based on three of EEGLAB’s artifact rejection
methods (kurtosis, spectral estimates, and probability
distribution; Delorme and Makeig, 2004), and spline
interpolation was used to reject and recalculate the data in
those channels. The EEG was then filtered into two separate
bands. The first band (low-frequency band) was high pass
filtered at 1 Hz and then low pass filtered at 15 Hz using a
zero-phase type 2 Chebyshev filter. For the second band, the raw
data were bandpass filtered in the high gamma range from 70 to
150 Hz using a 200th order zero-phase FIR filter with a hamming
window. The absolute value of the Hilbert transform was taken
from the high gamma EEG to extract the power (as is typically
done in ECoG studies). The resulting data was then low pass
filtered at 15 Hz to match the power spectrum of the LF EEG
and to ensure we did not artificially render the LF EEG and HGP
EEG differentially sensitive to different features in the speech
envelope; this way, decoding using both frequency bands could
be more directly compared. Finally, all data were downsampled
to 128 Hz.

Data Analysis
Our analyses for both experiments were based on assessing how
strongly the speech signal was represented in our different EEG
bands by reconstructing an estimate of the speech envelope
from the neural data (Crosse et al., 2016). Speech envelopes
were extracted from the stimuli using a gammachirp auditory
filterbank which mimics the filtering properties of the human
cochlea (Irino and Patterson, 1997). Afterward, the envelopes
were normalized between 0 and 1, and the EEG data were
z-scored. A backward model (decoder) was employed to
reconstruct the speech envelope, s(t), from the neural response,
r(t, n), while the decoder, g(τ , n), acted as a linear map between
the two. The transformation can be expressed as:

ŝ(t) =
∑
n

∑
τ

r(t + τ , n)g(τ , n),

where ŝ(t) is the reconstructed speech envelope. The decoder
integrates the EEG (with n electrodes) over a range of time
lags, τ , from 0 to 250 ms, the range where low-level speech
features (e.g., envelope, spectrogram, and phonemes) cause
notable EEG responses to occur (Di Liberto et al., 2015). The
decoder (Figure 1A) was computed by the following operation:

g = (RTR+ λI)−1RTs,

where R is the lagged time series, T, of the EEG data, λ is the
regularization parameter, I is the identity matrix, and s is the
speech envelope.

Model performance was assessed according to the accuracy
in which the speech envelope could be reconstructed using
leave-one-out cross-validation. This regression allowed for
an optimal regularization parameter to be chosen without
overfitting to the training data. The regularization parameter that
produced the highest Pearson’s correlation coefficient between

the reconstructed envelope and the actual speech envelope across
trials was chosen as the optimal value. Separate decoders were
created for the LF and HGP groups. A model was also calculated
for the combination of LF and HGP (LF+HGP) signals by
concatenating the two signals (each 128-channels by delays) to
form one matrix of 256-channels by delays.

To decode attention, we employed a framework introduced by
O’Sullivan et al. (2015; Figure 1B). Decoder models that mapped
from the EEG data to the speech envelope of the attended speaker
were computed for each subject and each trial. The regularization
parameter was once again determined based on leave-one-
out cross-validation. We could then reconstruct the stimulus
envelope of a particular trial, n, using the average attended
decoder of n − 1 trials. The Pearson’s correlation coefficient,
r, was computed between the reconstructed envelope and both
the actual attended and unattended stimulus envelopes. A trial
was deemed correctly classified if the reconstructed envelope was
more correlated with the attended envelope than the unattended
envelope (rattended > runattended).

Statistical Analysis
We compared envelope reconstructions between LF and HGP
EEG conditions using paired t-tests. One-way repeated measure
analysis of variance (ANOVA) tests were used to compare
stimulus reconstructions between the LF, HGP, and LF+HGP
EEG conditions. The resulting statistics from the ANOVAs
were Bonferroni corrected to determine significance within
subjects and between groups. Lastly, two-way repeated-measures
ANOVA tests were conducted to examine the effect of multiple
factors on envelope reconstruction accuracy.

Testing against chance was completed using permutation
tests. In the envelope reconstruction analysis, a null distribution
of 10,000 Pearson’s r values was created by finding the correlation
between randomly permuted trials of predicted audio envelopes
and actual audio envelopes. The truemean correlation coefficient
served as the observed value of the test statistic. In the decoding
attention analysis, we performed 10,000 permutations to create
the null distribution, where for each trial of each permutation
we randomly selected a correlation value from either rattended or
runattended to be assigned to bin A, and the other to bin B. The
observed value of the test statistic was the percentage of trials
where rattended > runattended. The threshold for significance and
above chance performance was p = 0.05 for each test. All analyses
were conducted in MATLAB (The MathWorks, Inc.) and SPSS
(IBM SPSS Statistics).

RESULTS

Though Generally Weaker Than LF EEG,
HGP EEG Consistently Tracks the Speech
Envelope
We first tested how well the speech envelope is reflected in
LF (1–15 Hz) and HGP (power in the 70–150 Hz range) EEG.
To do so, a decoder model was calculated for both conditions.
Pearson’s r was used to quantify the relationship between the
actual speech envelope and the reconstructed speech envelope.
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FIGURE 1 | (A) Envelope reconstruction methods (adapted from Di Liberto et al., 2015 and Crosse et al., 2016). One-hundred and twenty-eight-channel
electroencephalography (EEG) data were collected while subjects listened to a continuous, natural speech from a male speaker. Stimulus reconstruction (backward
modeling) was used to decode the speech envelope from low frequency (LF, 1–15 Hz) and high gamma power (HGP, 70–150 Hz) EEG recordings. (B) Decoding
attention methods (adapted from O’Sullivan et al., 2015 and Teoh and Lalor, 2019). Attended decoders (for LF and HGP) were made to reconstruct the attended
stimuli. The correlation between the reconstructed stimulus and the attended and unattended speech envelopes were assessed.

The grand average reconstruction accuracy (Pearson’s r) for the
LF and HGP conditions were significantly larger than chance
(p < 0.001, permutation tests, Figure 2A). Thus, on a group
level, the speech envelope appeared to be encoded in the HGP
EEG. Paired t-tests were used to assess the differences between
both decoders and showed that the LF decoder reconstructed
the speech envelope significantly better than the HGP decoder
(p = 0.006).

Since recorded brain activity may vary across individuals
due to anatomical differences, we wanted to examine how the
LF and HGP decoders performed on a single-subject level.
When tested against chance, LF and HGP were significant
for all subjects (p < 0.05, permutation tests). As expected,
the LF decoder worked best for most participants (N = 12,
p ≤ 0.05, paired t-tests, Figure 2B). Surprisingly, there was
no difference in reconstruction accuracy for subjects 2, 3, 7,
and 11 (p ≥ 0.05). Subject 10’s LF decoder displayed a typical
reconstruction accuracy, but the HGP decoder performed much
better (p = 6.120e-08). Thus, though uncommon in EEG studies,
HGP was able to track the speech envelope comparably or better
than LF in some of our subjects.

To characterize factors contributing to the interindividual
differences in high gamma tracking of the speech envelope,
we tested whether decoding performance could be predicted
from the raw power of each subject’s high gamma-band
EEG. Our rationale was that perhaps subjects with stronger
raw gamma power on the scalp would show better HGP
tracking of the speech envelope. We calculated the average
high gamma-band power of the raw EEG and averaged the
power across channels and trials for each subject. Afterward, we
correlated each subject’s power with their mean reconstruction
accuracy using Pearson’s r. We found no correlation between
raw high gamma-band power and HGP stimulus reconstruction
accuracy (r = −0.043, p = 0.870). That said, our raw gamma
power measures were acquired during stimulus presentation
which was not ideal. Unfortunately, we did not have a
sufficient amount of baseline (i.e., no stimulus) EEG data
to determine raw gamma power in the absence of speech.
Future work might consider collecting prestimulus EEG data to
test if changes in raw HGP correlates with reconstruction
accuracy during stimulus presentation (relative to the
prestimulus baseline).
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FIGURE 2 | (A) Grand average reconstruction accuracies across trials and subjects for the LF and HGP conditions. The black crosshairs are the mean
reconstruction accuracies and the red crosshairs are outliers. Significance was calculated using paired t-tests (**p ≤ 0.01). (B) Mean (±SEM) reconstruction accuracy
for each subject across trials for the LF and HGP conditions. Significance was calculated using paired t-tests (n.s., no significance, **p ≤ 0.01, and ***p ≤ 0.001).

Stimulus Reconstruction Suggests That LF
and HGP EEG May Carry Complementary
Information
Next, we tested if LF and HGP EEG carry complementary
information regarding the speech envelope in subjects with
comparable HGP measures. To do so, we created a combination
model (LF+HGP) using 256 channels in total (128 LF EEG
channels + 128 HGP EEG channels). The LF+HGP decoder
had a significantly higher mean reconstruction accuracy than
the LF decoder alone for subjects 2, 3, 10, and 11 (p < 0.05,
one-way repeated measures ANOVA, Figure 3A); this suggests
that HGP and LF EEG may carry complementary information.
On the other hand, this could mean that LF and HGP EEG
carry the same information—combining the two signals may
have increased the signal-to-noise ratio of the EEG, in turn aiding
the decoders’ performance.

To further examine the complementary or analogous nature
of the two signals, we investigated which components of the
speech envelope were being decoded from the LF and HGP EEG.
The first component we examined was syllable onset. It has been
suggested that syllables contain important information regarding
sound segments and prosodic features of speech (Hertrich et al.,
2012). Syllable onsets are approximated by computing the first
derivative of the speech envelope and setting the negative values
to zero (Hertrich et al., 2012). New LF and HGP decoders were
trained using the derivative of the speech envelope. Single-subject
results are shown in Figure 3C.

We examined the effects of speech envelope type (full
envelope vs. onset envelope) and EEG band (LF EEG vs.
HGP EEG) on reconstruction accuracy. We did not find a
significant interaction between speech envelope type and EEG
band (p = 0.109, two-way repeated-measures ANOVA), but we
did find significant main effects of EEG band (p = 6.622e-06)
and envelope type (p = 3.919e-05) on reconstruction accuracy.
More specifically, utilizing LF EEG led to a higher reconstruction

accuracy than HGP EEG, and the full speech envelope was
reconstructed better than syllable onsets. Compared to the
full envelope, decoding syllable onsets caused reconstruction
accuracy to decrease by 14.88% using LF EEG and by 51.94%
using HGP EEG. The decline in decoding performance suggests
that HGP EEG supplies more information about the broadband
speech envelope than syllable onsets, but these changes in
performance between EEG band and speech envelope type were
not substantial enough to result in a significant interaction effect.

Previous literature suggests that different EEG bands may
reflect different functional aspects of speech processing (Cogan
and Poeppel, 2011; Ding and Simon, 2014; Molinaro and
Lizarazu, 2018). We reasoned that LF and HGP EEG (both in the
1–15 Hz band) may be differentially sensitive to dynamics in the
speech envelope that map on to delta, theta, and alpha frequency
ranges. As such, we filtered the speech envelope into 1–4 Hz,
4–8 Hz, and 8–15 Hz bands and trained new decoders on these
features. The result of a two-way repeated-measures ANOVA
indicated a significant interaction between EEG band and speech
envelope band on reconstruction accuracy (p = 1.031e-04). We
explored this interaction further by examining the simple main
effects. The simple main effects analysis showed that the 1–4 Hz,
4–8 Hz, and 8–15 Hz speech bands were reconstructed best with
LF EEG (p < 0.001). LF EEG reconstructed the 4–8 Hz band
better than the 1–4 and 8–15 Hz bands (p = 0.039, p = 4.679e-
08, Figure 3B) and the 1–4 Hz band better than the 8–15 Hz
band (p = 2.299e-04). Alternatively, there was no difference in
how well the HGP EEG reconstructed the 1–4 Hz and 4–8 Hz
bands (p = 0.523) or the 1–4 Hz and 8–15 Hz bands (p = 0.470).
Similar to LF EEG however, the 4–8 Hz band was reconstructed
better than the 8–15 Hz band (p = 0.026). While this pattern
of results again suggests the possibility that LF and HGP EEG
are differentially sensitive to different aspects of the envelope,
we are reluctant to overinterpret this, particularly in light of
the generally low reconstruction scores for HGP EEG across
most subjects.

Frontiers in Human Neuroscience | www.frontiersin.org 5 April 2020 | Volume 14 | Article 130

https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/human-neuroscience#articles


Synigal et al. High Gamma Power EEG

FIGURE 3 | (A) The mean (± SEM) reconstruction accuracies for subjects 2, 3, 10, and 11 using the LF, HGP, and LF+HGP models. Significance was calculated
using Bonferroni corrected one-way repeated measures analysis of variance (ANOVA) tests (n.s., no significance, *p ≤ 0.05, **p ≤ 0.01, and ***p ≤ 0.001). (B)
Average reconstruction accuracy of filtered speech (1–4 Hz, 4–8 Hz, and 8–15 Hz bands) using the LF and HGP EEG. The black crosshairs are mean reconstruction
accuracies and the red crosshairs are outliers. Significance was found using a two-way repeated-measures ANOVA test. (C) Syllable onset correlations of the actual
speech envelope in comparison to the reconstructed speech envelope for the LF and HGP conditions. Paired t-tests were used to calculate significance.

LF and HGP Responses Exhibit Different
Spatiotemporal Characteristics to Speech
Our stimulus reconstruction analysis leads us to tentatively
suggest that LF and HGP EEG may carry complementary
information. To investigate this further, we wanted to examine
if there was any evidence that our HGP and LF responses may
be derived from different neural generators. To do this, we
focused on subjects who showed robust HGP responses and
the distribution of decoder weights across the scalp for their
LF and HGP decoders. However, as decoder channel weights
cannot be interpreted neurophysiologically (Haufe et al., 2014),
we transformed the weights into the forward modeling space
using Haufe et. al’s (2014) inversion procedure.

With this information, we compared the spatiotemporal
profile of the LF and HGP EEG activity for subjects 2, 3, 10,
and 11. The left panel of Figures 4A–D depicts the spatial
dynamics of the forward transformedmodels (temporal response
function or TRF) at various time lags. The LF TRF topographies
appeared fairly typical (Crosse et al., 2016) as they alternated

in positivity and negativity across time on the frontocentral
area of the scalp (The differences in subject 2’s topographies
may be due to noise and/or a DC shift in this person’s EEG
data). On the other hand, their HGP activity displayed a
strikingly different distribution with no prominent focus over
the frontocentral scalp. These results suggest the possibility that
the LF and HGP signals we see may have non-identical neural
generators and further supports the idea that they may carry
complementary information.

TRFs can also provide an example of how the speech
envelope is transformed into neural responses over time at
specific electrodes. The right panel of Figure 4 shows the
forward transformed TRFs for subjects 2, 3, 10, and 11 at
the electrode indicated in their topographies. The TRFs at the
given electrodes are highly correlated for subject 10 (r = 0.872,
Pearson’s correlation), moderately correlated for subjects 3 and
11 (r = 0.649 r = −0.649), and weakly correlated for subject
2 (r = −0.222). Once again, this weak correlation in subject
2 may be due to noisy EEG, especially since this person had very

Frontiers in Human Neuroscience | www.frontiersin.org 6 April 2020 | Volume 14 | Article 130

https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/human-neuroscience#articles


Synigal et al. High Gamma Power EEG

FIGURE 4 | (A) The left panel depicts the transformed decoder weights at each electrode for subject 2. The top three topographies were calculated using LF EEG
and the bottom three using HGP EEG. The black marker indicates the location for electrodes D11 and A10. The right panel shows subject 2’s temporal response
function (TRF) calculated by transforming the decoder weights into the forward modeling domain. The LF TRF (yellow) is plotted for electrode D11 and the HGP TRF
(red-orange) is plotted for electrode A10. (B–D) Same information as (A), but shown for subjects 3, 10, and 11, respectively.
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weak reconstruction accuracies. While there are differences in
the time course between LF and HGP TRFs—again supporting
the notion that the neural generators might differ—the general
timing of the two TRFs is similar for these subjects (except
subject 2) supporting the notion that the HGP TRFs, we see in
these subjects are capturing real responses to our speech stimuli.

HGP Also Improves the Decoding of
Auditory Attention in Some Subjects
It has previously been shown that the LF envelope tracking
response is modulated by attention (Ding and Simon, 2012) and
that single-trial data from a task in which subjects attend to one
of two concurrent talkers can be decoded to ascertain attentional
selection (O’Sullivan et al., 2015). Given our finding that HGP
contains informative temporal envelope information for a subset
of subjects, we tested whether this signal is similarly modulated
by attention and if it could be exploited to improve our ability
to decode attention in multi-speaker situations. This was tested
on a separate group of subjects (N = 14) from those used in the
single speaker paradigm. The speakers were separated in space;
the subjects attended to the speaker on the left in 50% of the trials
and attended to the speaker on the right in 50% of the trials.

Here, we examine decoding accuracy which represents the
percentage of trials in which the reconstructed stimuli were more
correlated with the attended stream rather than the unattended
stream (rattended > runattended) for LF, HGP, and LF+HGP EEG
signals. Exploring this on a group-level showed a similar trend
as our initial envelope tracking results from Figure 2A. The
decoding accuracy was significantly larger than the chance for
each model (p = 0.001, permutation test; Figure 5A). The
HGP decoder was able to decode auditory attention, but it
did not perform as well as the LF and LF+HGP decoders
(p = 1.314e-04, p = 1.789e-03, one-way repeated measures
ANOVA with Bonferroni corrections). The LF and LF+HGP
decoders, however, performed similarly (p = 0.216).

We also examined how well we were able to decode auditory
attention for individual subjects and found two whose decoding
improved with HGP or LF+HGP EEG signals. Figure 5B shows
the decoders that were able to track the temporal dynamics of
the attended speaker significantly better than chance (p ≤ 0.05,
permutation tests). The best attention decoding accuracy for
subject 13 was achieved when using LF+HGP EEG signals (95%
decoding accuracy), whereas subject 10’s best decoding accuracy
was achieved using HGP EEG (70%). Interestingly, most subjects
saw no improvement in decoding accuracy when LF and HGP
EEG were combined, and some performed worse. The decrease
in decoding performance may be due to the limited amount of
EEG data available for each subject. Intuitively, given enough
information, the models should learn to up-weight informative
EEG channels and down-weight uninformative channels so that
decoding does not worsen overall. In our case, we have included
LF EEG and much noisier HGP EEG (resulting in 256 channels
rather than 128) and must consider competing speech streams.
The models may not have been given enough stimulus and
response data to learn to down-weight the uninformative HGP
EEG channels.

DISCUSSION

Our present research investigated the extent to which the speech
envelope and attentional selection are reflected in LF phase and
HGP EEG signals. Given the success of using HGP to track the
dynamics of speech in ECoG studies, we wanted to examine
if any useful high-frequency EEG activity remained even after
being smeared by brain tissue and filtered by the skull. In this
study, linear regression techniques were used to map between
neural responses and the acoustic envelope of speech. Our
results demonstrate that HGP EEG activity is capable of carrying
information regarding the speech envelope and attention and
that this information may be complementary to that of LF EEG,
as shown by some of our subjects.

Previous studies using EEG techniques to study gamma band
activity in the human auditory system typically examined activity
around 40 Hz (Jokeit and Makeig, 1994; Krause et al., 1998;
Gurtubay et al., 2001; Hald et al., 2006). A more recent study
examined the high gamma range and found no significant speech
envelope tracking (Viswanathan et al., 2019). This lack of success
in finding/using higher frequency EEG could be because HGP is
generated by highly focal sources (Jerbi et al., 2009) which in turn
produce lower amplitudes on the scalp (Nunez and Srinivasan,
2006; Jerbi et al., 2009), making it more difficult to detect using
EEG. This poor signal-to-noise ratio (Crone et al., 2001), along
with EEG’s low spatial resolution, and high sensitivity to muscle
artifacts (Llorens et al., 2011) has meant relatively few studies
have focused on HGP.

In our study, we have shown that HGP, though typically
weaker than LF EEG, can consistently track the temporal
dynamics of speech. In some subjects, HGP EEG alone could
decode the speech envelope and auditory attention best, and in
others, combining LF and HGP neural signals further improved
decoding. Akbari et al. (2019) also found that combining LF
and HGP ECoG signals better reconstructed the speech envelope
for their BCI system. Similarly, a cocktail party attention study
showed that both LF phase and HGP ECoG signals can track
the envelope of the attended speaker. The authors also suggested
that combining the two may optimize attention encoding (Zion
Golumbic et al., 2013).

The improvements in decoding/reconstruction for some
subjects when LF and HGP EEG were combined—along with
their notably differing topographies—suggested that LF and
HGP EEGmay carry complementary information. To investigate
this further, we examined whether LF and HGP EEG may be
sensitive to different aspects of the speech envelope. The specific
features we examined were a proxy measure of syllable onsets
and various frequency bands of the speech envelope. Neither
analysis provided clear evidence of a dissociation, although both
analyses hinted at possible differential sensitivities, with HGP
being relatively less sensitive to syllable onsets and differences
in 1–4 Hz vs. 4–8 Hz envelope features. Given the generally low
fidelity of HGP tracking across subjects, however, we do not
wish to overstate these exploratory results. Indeed, an alternative
might be that LF and HGP EEG carry similar information,
and their combination may improve decoding/reconstruction
simply because having access to the two measures improves
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FIGURE 5 | (A) Grand average decoding accuracies across trials and subjects for the LF, HGP, and LF+HGP decoders. The black crosshairs are the mean
accuracies. Significance was calculated using a Bonferroni corrected one-way repeated measures ANOVA test (n.s., no significance, *p ≤ 0.05, **p ≤ 0.01, and ***p
≤ 0.001). (B) The mean (±SEM) decoding accuracies for all subjects using the LF, HGP, and LF+HGP models. Significance was calculated using
permutation tests.

the signal to noise ratio of speech tracking. However, using
measures of synergy, Belitski et al. showed that there is very little
redundant information carried between LF and high-frequency
neural signals (Belitski et al., 2010). Previous studies have also
provided further support for interactions between HGP and
LF phase neurophysiological signals during sensory processing
(Bruns and Eckhorn, 2004; Canolty et al., 2006; Osipova et al.,
2008; Voytek et al., 2010) and for the notion that speech encoding
may involve the combination of the two (Nourski et al., 2009;
Zion Golumbic et al., 2013). Future work either with more
subjects or with both EEG and ECoG may be needed to resolve
this issue.

The TRF weightings of subjects in whom we were able to
detect high gamma electrophysiology displayed different spatial
patterns for LF and HGP responses. HGP and LF signals are
said to originate from different locations in the brain (Crone
et al., 2001; Edwards et al., 2009), supporting our findings in
the left panel of Figure 4. Studies also suggest that HGP is
mainly localized to the superior temporal gyrus (Crone et al.,
2001; Towle et al., 2008; Sinai et al., 2009) in contrast to LF
activity which is more spatially distributed across temporal and
some frontal and parietal regions of the brain (Crone et al., 2006;
Canolty et al., 2007; Zion Golumbic et al., 2013). Although neural
signals are generally spatially smeared in EEG measures, we still
saw differences in the scalp patterns which may be indicative of
different sources of LF and HGP activity. Of course, we need
to be somewhat circumspect here, because our contrasting scalp
patternsmay have only arisen due to differences in the biophysics
of how signals at high and low frequencies project to the scalp
(Buzsáki et al., 2012). Indeed, the broadly similar timing of our
LF and HGP TRFs (Figure 4) might support that notion. The
abovementioned ECoG work, however, ultimately supports the
idea of different generators.

We saw robust stimulus reconstruction and attention
decoding using HGP EEG, but only in certain subjects. This
could be attributed to hard and soft tissues filtering the source
potentials, making them more difficult to measure from the
scalp (Nunez and Srinivasan, 2006). Cortical folding patterns also

differ between subjects which can cause certain scalp projections
to vary in strength and location (Onton and Makeig, 2006). Our
attempt to predict which subject would show good HGP speech
tracking based on their raw HGP EEG power was unsuccessful
(although, as mentioned above our measure of raw HGP EEG
power could only be calculated during the presentation of the
speech stimulus). A recent study found significant low gamma
power EEG (in addition to delta and theta band EEG) tracking
of an attended speaker across subjects but did not find the
same in HGP EEG. While they showed substantial individual
differences in their measures for delta, theta, and low gamma
tracking, they do not report these results for HGP. This study
utilized a 32-electrode cap and suggested that future studies
use high-density recordings to elucidate the between-subject
differences (Viswanathan et al., 2019). Here, we more fully
explored individual differences in high gamma responses using
high-density recordings (128-channel EEG). Future work should
consider using MRI/fMRI and modeling to investigate the idea
that robust HGP trackingmight be related to how auditory cortex
projects to the scalp in individual subjects.

In terms of the variability of HGP performance across
subjects, we also noticed a few unusual patterns for specific
subjects. For example, the HGP reconstruction for subject 10 was
remarkably high alongside fairly typical LF tracking. This result
caused us to worry initially about electrical leakage from the
headphones, but there are several reasons why we are confident
that this is not the case. First, we do not see high HGP in every
subject, so it is not a systematic issue with our setup. Second, if
the effect was coming from electrode leakage it would peak at
the 0 ms delay in the TRF, which is not the case (Figure 4); the
fact that the TRF peaks after 0 ms suggests it is cortical. Third,
if the effect was driven by electrode leakage in just a handful
of subjects (say, because of the way the cap and electrode gel
were applied), it would be surprising for it to be bilateral in all
of those subjects. That would suggest that the misapplication of
the gel was bilateral for each subject that showed the effect, but
this seems implausible. Fourth, if the effect was driven by leakage
from the headphones, we might expect to see lateralization in
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the cocktail party data given the use of head-related transfer
functions for the cocktail party attention study. We do not
see this. Finally, if the effect was leakage from the electrodes,
we should not see successful HGP attention decoding for
any subject.

Gamma activity assessed through non-invasive means has
been shown to play a role in a variety of neural processes such
as working memory (Tallon-Baudry et al., 1998; Howard et al.,
2003; Mainy et al., 2007; Roux and Uhlhaas, 2014), motor and
sensorimotor function (Medendorp et al., 2007; Ball et al., 2008;
Cheyne et al., 2008), and visual processing (Adjamian et al.,
2004; Hoogenboom et al., 2006; Fründ et al., 2007). Here, we
show that HGP also has value when studying speech processing
and auditory selective attention—albeit in a minority of subjects.
In these subjects, high gamma activity supplemented lower
frequencies to increase the sensitivity to speech and attention-
related processes. Therefore, it is worth investigating HGP in
all subjects as this increase in sensitivity could be beneficial, for
instance, for the use of future individually tuned EEG-enabled
hearing devices.
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