$(5.0 \pm 0.16 \text{ months})$. On the basis of overall average pre-weaning growth rate of kids, Tapri and Thari appear to have higher growth potential followed by Kamori and Kachhan. It could be concluded that Tapri, Thari and Kamori may be utilized for meat production under existing circumstances in the order of priority. Similarly, Tapri, Kamori and Pateri may be better utilized as dairy goats as well.

Traits	Breed 1 Kamori N=10	Breed 2 Tapri N+11	Breed 3 Bugi Tori N+10	Breed 4 Pateri N=10	Breed 5 Kacchan N=10	Breed 6 Jattan N+10	Breed 7 Lohri N=10	Breed 8 Chappar N=10	Breed 9 Barri N+10	Breed 10Thari N=16	Overall P value
Lactation length (months)	6.70±0.26a	2.27±0.26b	7.50±0.27	3.30±0.27d	4.00±0.27e	4.70±0.27e	5.10±0.27ae	6.40±0.27a	5.50±0.27ai	2.62±0.21bj	<.0001
Milk production (kg)	3.50±0.90a	3.54±0.90a	2.0±0.90ab	2.90±0.90ab	2.0±0.90ab	2.0±0.90ab	1.00±0.90gb	1.30±0.90gb	1.0±0.90gb	1.00±0.07gb	<.0001
Weaning age (months)	4.30±0.14a	3.54±0.13a	8.0±0.14c	5.10±0.14a	4.80±0.14a	4.0±0.14a	6.0±0.14g	5.40±0.14a	4.50±0.14a	3.0±0.11a	<.0001
Weaning weight (kg)	15.0±0.50a	13.36±0.48b	14.70±0.5c0	12.90±0.50b	16.0±0.50e	12.0±0.50b	11.60±0.50b	11.20±0.506	11.40±0.506	11.19±0.40b	<.0001
Average daily Pre-wearing growth rate (g/ day)	114.75	124.14	60.44	83.20	109.65	98.68	63.60	68.23	83.33	122.70	<.0001
Age at 1 st heat(months)	11.80±0.50a	11.45±0.48a	11.60±0.50a	7.50±0.50d	12.0±0.50a	12.0±0.50a	12.0±0.50a	12.0±0.50a	15.80±0.50i	13.94±0.40j	<.0001
Age at 1 [#] kidding(months)	16.80±0.54a	16.45±0.52a	16.60±0.54a	12.50±0.54d	17.80±0.54d	18.0±0.54b	18.0±0.54b	17.70±0.54a	22.10±0.54i	18.94±0.42b	<.0001
Kidding interval(months)	8.30±0.16a	6.54±0.15b	7.30±0.16a	8.20±0.16a	5.20±0.16e	5.0±0.16f	8.0±0.16a	9.30±0.16a	7.50±0.16a	10.37±0.12j	<.0001
Service period (months)	3.30±0.18a	2.64±0.17a	4.10±0.18a	3.50±0.18a	6.0±0.18e	6.0±0.18e	7.0±0.18e	6.7±0.118e	6.50±0.18e	5.37±0.14e	<.0001
No. of Services per Conception	1.0±0a	1.0±0a	1.0±0a	1.0±0a	1.0±0a	1.0±0a	1.0±0a	1.0±0a	1.0±0a	1.0±0a	Non-Sig
Fwining at 1" kidding%	23.0±1.25a	22.73±1.19a	20.0±1.25a	20.0±1.25a	21.0±1.25a	20.0±1.25a	20.0±1.25a	25.0±1.25h	17.50±1.25a	14.37±1.00j	<.0001
Fwining at 2 nd	21.30±3.31a	24.45±3.16a	29.40±3.31a	26.50±3.31a	29.50±3.31a	19.0±3.31a	26.50±3.31a	23.40±3.31a	31.50±3.31a	10.0±2.62a	<.0001

Key Words: reproductive, productive, goat

PSXIII-12 Effects of altitudinal floor on nutrient digestibility, energy efficiency, visceral organ mass, and performance by guinea pigs. D. Izurieta¹, B. Heredia², D. Sandoval², C. Ponce¹, ¹Universidad San Francisco de Quito, Quito, Ecuador, ²Universidad de las Fuerzas Armadas-ESPE, Latacunga, Ecuador

An experiment was conducted to evaluate the effect of altitude on nutrient digestibility, energy efficiency, performance, and, visceral organ mass by guinea pigs. Twenty male guinea pigs (initial BW 1.011 ± 0.096 kg) were selected in a crossover design experiment, maintained at metabolic cages (2 animals per cage) during a total digestibility period of 25 d (2 periods of 13-d). Animals were randomly assigned at 1 of 2 altitudinal sites, 2986 and 2480 m. above the sea level (masl; 5 cages per altitude). Animals were fed 45 g of alfalfa (DM) to meet energy requirements at maintenance levels. At the end of the digestion phase, an animal from each cage was slaughter to determine body fat content from body specific gravity and visceral organ mass. A subsequent performance phase was evaluated as completely randomized design, and animals were kept at the same altitudinal floor in which they ended period 2 of the crossover period. Animals were fed ad libitum with alfalfa. At the end of the performance phase, all remaining animals were slaughtered and visceral organ mass was measured. Energy intake and Dry matter, were increased by animals at 2986 compared to animals at 2480 masl (P<0.001). Metabolizable energy tended to be lower for animals kept at 2986 masl (P=0.053). Nutrient digestibility was lower for animals kept at 2986 compared to 2480 masl. Liver, kidneys and spleen mass were greater for animals maintained at 2986 masl (P<0.012). Heart mass tended to be greater for animasl kept at 2480 masl (P=0,060). Body fat was not alterd by altitudinal site (P>0.345). Final BW, ADG, and feed conversion rate was decreased by animals fed at 2986 masl (P<0.002). Results from this experiment suggest a novel approach to determine Energy efficiency as affected by altitudinal site. Data from this experiment evidenced a 7% increase on energy requirements on ME for animals kept 516 masl higher. Further research is requiered to apply to other biological models.

Key Words: Altitude, guinea pig, nutrient digestibility, visceral organ mass

PSXIII-19 Swine Health Health and Management Evaluation in American Samoa. H. Zaleski¹, T. Petznick², M. Hansell³, F. Uta³, I. Gurr³, ¹University of Hawai'i at Mānoa, Honolulu, HI, United States, ²Thomas M Petznick, D V M, P C, Norfolk, NE, United States, ³American Samoa Community College, Pago Pago, American Samoa

American Samoa is working to improve swine production genetics and management. Our objective was to identify health and management factors affecting swine performance. A1998 survey found six leptospirosis serovars and parvovirus and heavy parasites loads, but no brucellosis or pseudorabies. Our 2016 Artificial Insemination Training focused on improving genetics and resulted in 12 sows bred and 103 piglets born. Oour 2017 Swine Farm Evaluation surveyed 26 farms with an average of 9 sows per farm. Serological samples were tested for antibodies against Porcine Circovirus Type 2b (ELISA, 96% positive), Swine Influenza (ELISA, 31%), Senecavirus (IFA, 27%), Mycoplasma hyopneumoniae (ELISA, 15%), Porcine Epidemic Diarrhea (IFA, 15%), and Porcine Reproductive and Respiratory Syndrome (ELISA, 4%, 1 pig). o evidence was seen of Porcine Respiratory Coronavirus (ELISA), Transmissable Gastroenteritis (ELISA) or Pseudorabies (SN). Fecal samples contained Ascaris suum, Oesophagostomum dentatum, Stephanurus dentatus, and, less commonly, Strongyles nodular worm, Stronglyloides, Brachylaemus suis, Necator species, Trichuris suis, and Fasciolopsis buski. Ear scrapings and scratching behavior indicated the presence of sarcoptic mange (31% of farms). Most farms fed a 14% grain feed (88% of farms) and local feeds (coconut, vegetables, fruits, 69%); only one farm fed an 18% starter and one fed milk to young pigs. One or more thin pigs were seen on 46% of farms. Waste is managed either by wash down (85% of farms) or as dry