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Abstract
Missing data present challenges for development and real-world application
of clinical prediction models. While these challenges have received consider-
able attention in the development setting, there is only sparse research on the
handling of missing data in applied settings. The main unique feature of han-
dling missing data in these settings is that missing data methods have to be
performed for a single new individual, precluding direct application of main-
stay methods used during model development. Correspondingly, we propose
that it is desirable to perform model validation using missing data methods
that transfer to practice in single new patients. This article compares exist-
ing and new methods to account for missing data for a new individual in
the context of prediction. These methods are based on (i) submodels based
on observed data only, (ii) marginalization over the missing variables, or (iii)
imputation based on fully conditional specification (also known as chained
equations). They were compared in an internal validation setting to highlight
the use of missing data methods that transfer to practice while validating a
model. As a reference, they were compared to the use of multiple imputation
by chained equations in a set of test patients, because this has been used in val-
idation studies in the past. The methods were evaluated in a simulation study
where performance was measured by means of optimism corrected C-statistic
and mean squared prediction error. Furthermore, they were applied in data
from a large Dutch cohort of prophylactic implantable cardioverter defibrillator
patients.
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1 INTRODUCTION

An increasing number of prediction models are published in support of clinical decision-making. Well-known examples
in the cardiovascular domain are the QRISK3 model (predicting risk of heart attack and stroke)1 and the Seattle Heart
Failure2 model. Recently, several guidelines were published on how to perform and report prediction modeling,3-5 gener-
ally involving (i) model development, (ii) validation, and (iii) real-world application. Missing data are a key issue in each
of these stages. Especially the handling of missing data at the time of model development has been an active research
area and multiple imputation has arisen as a general-purpose tool to account for missing data.6,7 Assuming missingness
at random, multiple imputation methods allow for the use of all available data (avoiding selection bias and loss of statis-
tical power) and at the same time account for uncertainty with respect to the missing data.6,8,9 While missing data during
the model development stage have attracted much attention, there is a scarcity of research on how to account for missing
data during validation and real-world application of prediction models. We propose that the methods by which missing
data are handled should be an integral part of prediction model development, and be transferable to any new data, be it
to validation data or new individual cases.

Starting with the validation setting, prediction model validation has received considerable attention.10-12 Its main
goal is to provide empirical evidence of model performance beyond the data used for its development, ideally across
different (but related) settings and populations.13 As for prediction model development studies, validation data are usually
affected by missing values. We propose that the correct way of handling missing values in validation data depends on the
intended use of the to-be-validated model. More specifically, it depends on whether one intends to allow for missing data
during model application in practice. To make the underlying rationale more clear, let us consider the use of imputation
as applied independently in a set of validation data.14-16 Use of this this strategy requires estimation of the necessary
imputation models in the validation set, and thereby uses information that is not readily available in practice when a
single new patient presents with missing values. That is, it uses information from other new patients (in the validation
set) and in practice patients present individually. The main consequence is that the validation study approximates model
performance for those with complete data. This could be in line with the intended use of the model, but the implied
performance estimate is expected to be optimistic when allowing for missing data in real-life application. Also, validation
performance becomes a mixture of prediction model performance and a local procedure to handle missing data. If the
goal is to allow for missing data in practice, one ideally assesses prediction model performance and a transferable missing
data method at the same time. Here we focus on this latter goal.

When applying previously developed prediction models in new, individual patients, accounting for missing values is
not straightforward. As described above, a prediction model ideally has an intergrated missing data method that can be
used for new individual patients. However, in practice most models do not allow for missing data at all, or do so by means
of methods that have been shown to be problematic. Examples of prediction modelsthat enforce valid values for all predic-
tors include implementations of the classic Framingham model (eg, on mdcalc.com17) and the before-mentioned Seattle
Heart Failure model.2,18 Alternatively, some models allow for missing data on a limited set of variables and use simple
imputation procedures. For example, the well-known QRISK3 model uses the average value from the development study
for a measure of deprivation when geographical region is unknown (ie, mean imputation), it uses a conditional average
based on ethnicity, age, and sex for missing values of Cholesterol/HDL ratio, blood pressure and BMI (ie, conditional
mean imputation), and it uses zero imputation when the SD of the last two blood pressure readings is missing.19 Each of
these methods has been shown to have issues in the context of model development,6 but there is no clear guidance on
missing data problems in the model application stage.

As an example of the possible mismatch between model validation and model application in practice, QRISK3 vali-
dation removed all patients with unknown geographical region and used multiple imputation by chained equations to
handle remaining missingness.20 This validation does not contain any information on those with missing region and
reflects performance for otherwise complete data, while the application allows for missing predictors. We have not been
able to find an example in which missing data were allowed in practice and where missing data was handled consistently
between validation and application.

In this paper, we propose that validation, whether internal or external, should handle missing data in a way that only
depends on the development data and is applicable when making predictions for new individual patients. Therefore, the
proposal specifically relates to prediction models that intend to allow for missing data in practice. This implies the need
for missing data methods that transfer to real-life application. We consider six strategies to address missing values in
individual patients when calculating a risk prediction. We compare them with the before mentioned use of (independent)
multiple imputation and do so in an internal validation setting. Our work builds on methods developed and described by

http://mdcalc.com
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Marshall et al21 and Janssen et al.22 We will describe their suggestions, present new methods, and describe all methods
in a realistic setting including missing data in the model development stage. The various methods will be illustrated with
simulated data and data from an ongoing project on the prediction of mortality after primary therapy with an implantation
cardioverter defibrillator (ICD) in heart failure patients at risk for cardiac arrhythmia and death (the DO-IT Registry).23

2 METHODS

We consider prediction models with expectation of the form E[yi| xi] = g−1(xib), where yi is the outcome of patient i, xi is
the vector with values of the set of prediction variables, b is the associated vector of regression weights, and g−1(⋅) is an
(inverse) link-function. We here focus on the binary case, and discuss extensions to cope with censored outcomes in the
applied example section.

When applying a prediction model in individual patients, several approaches can be considered to account for miss-
ing predictor values. For ease of exposition, it helps to introduce some notation. First, define xi as the partition (xio, xim)
where xio is the vector of observed predictors and xim is the vector of unobserved predictors for individual i. Analagously,
define b as the partition (bo, bm) where bo and bm represent the vectors of weights of the observed and unobserved pre-
dictor variables respectively. The model of interest can then be written as E[yi| xio, xim] = g−1(xiobo + ximbm) and cannot
be evaluated directly due to the missing xim. Several apporaches can be taken to arrive at predictions for a new individ-
ual conditional on his or her observed data only. The approaches described in the current paper can be separated into
three groups based on the underlying theory. These will be shortly summarized in order to give a quick overview of the
methods. To simplify notation, the i subscripts will be omitted in further equations.

The first group of methods aims to find a submodel of the original model based on the observed covariates only. That
is, the aim is to find

E[y|xo] = g−1(xob̌o),

where b̌o represent the vector of weights for a model conditional on the observed data only. Such a model is directly
applicable for prediction purposes. The challenge for these submodel methods is to estimate b̌o. The second group of
methods integrates over the unobserved data to arrive at the predictions of interest. That is, the full model E[y| xo, xm] is
integrated over the conditional distribution g(xo| xm) as follows

E[y|xo] = ∫ E[y|xo, xm]g(xm|xo)𝜕xm,

where g(xm| xo) describes the distribution of the unobserved data given the observed data. This marginalization over
the unobserved data retains the original full model coefficients. The challenge for this group of methods is to estimate
g(xm| xo). The third group of methods aims to impute the missing covariates to enable use of the original full model, as in

E[y|xo, x̂m] = g−1(xobo + x̂mbm),

where x̂m contains the imputed values for the unobserved covariates. Here, the challenge lies in identification of the
imputation models. All imputation methods that we considered were based on chained equations, also known as fully
conditional specification.6,24 Imputation methods that have been shown to have issues in previous research have not been
evaluated, and will not be covered in detail. These include zero imputation, mean imputation, and conditional mean
imputation.6

The methods to be described in the following sections are submodels directly estimated in the development data
(method 1) and submodels based on the one-step-sweep (method 2), marginalization over the unobserved predictors
(method 3) and marginalization over both the unobserved predictors and the outcome (method 4), single imputation
based on chained equations (method 5) and multiple imputation based on chained equations (method 6). Each of these
methods can be applied to new individual patients and therefore applies to both validation and application of prediction
models. In addition, since it has been used in practice for validation purposes, the independent use of multiple imputa-
tion in the validation set (method 7) will be evaluated. Note, however, that this use of multiple imputation does not extend
to new individual patients, since in that case there is not enough data to independently estimate the imputation models.
Regarding terminology, development data is used to refer to the data on which the prediction model was originally devel-
oped. Training and test data were reserved for the description of internal validation procedures to describe splitting of
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the development data. Importantly, note that the outcome value is always missing during model application. While it is
commonly available in internal and external validation settings, the information in the observed outcomes should never
be used when interest is in evaluation of model performance in real-life settings.

2.1 Submodel methods

The submodel approaches described by Janssen et al22 refer to the development of Marshall et al.21 As described above,
the underlying idea is to find the necessary submodels to cope with missing data in the application setting (ie, submodels
based on only the observed data). The most straightforward way to do so is to fit all necessary submodels in the develop-
ment data. For a two variables example, this implies that not only the full prediction model E[y| x1, x2] = g−1(x1b1 + x2b2)
is fitted and reported, but also the submodels E[yx1] = g−1(x1b̌1) and E[yx2] = g−1(x2b̌2). The prediction for a new person
with a missing x2 value is then calculated using the E[yx1] = g−1(x1b̌1) submodel. It is not difficult to estimate the sub-
models in the development data, but if the number of predictor variables (say, k) is large and all of them may be missing,
then the number of submodels may be very large: with k predictor variables there are 2k submodels. If k = 15, the number
of submodels is already 32,768 and this is not rare: both the before-mentioned QRISK3 and Seattle Heart Failure model
have k≥ 15. This direct estimation of the 2k submodels was the first of the implemented methods. To avoid estimation of
a large number of submodels, Marshall et al21 suggested to approximate b̌ based on the weights b of the full prediction
model and their varience-covarience matrix only. Note that b may include an intercept and the design matrix a corre-
spondig unity column. The approximation starts from the assumption that the full model estimate b has a multivariate
normal distribution with true mean b and covariance matrix S. Hence, by simply reporting the regression coefficients b
of the full prediction model and its variance-covariance matrix S, predictions can be made for new patients, regardless of
whether they are affected by missing values. Note that the estimates of b and S may also be pooled estimates over multiply
imputed development data. Either way, predictions are only based on the development data and do not require imputa-
tion in the new individual. Using the above described partition of b as (bo, bm), and accordingly partitioning covariance

matrix S as
(

Soo Som
Smo Smm

)
, the conditional distribution of the weights of the nonmissing predictor variables given the

weights of the missing predictor variables is normal with approximate mean calculated with the sweeping operation as
b̌o = bo − SomS−1

mmbm. For instance, again using the two variable example of full model E[y| x1, x2] = g−1(x1b1 + x2b2), then
for a patient with missing x2, his/her prediction will be based on E[yx1] = g−1(x1b̌1) with b̌1 = b1 − S12(1∕S22)b2, where
the right-hand side contains full model parameter estimates and b1 is the estimated parameter for predictor x1, S12 is the
covariance between b1 and b2, and S22 is the variance of b2. Interestingly, for the logistic model, predictions based on these
submodels correspond one-to-one to procedures that impute xm with the best linear predictor based on xo, weighted by
the binomial variance in the development data.21

2.2 Marginalization methods: Integrating over the unknown values

As described above, an alternative approach arises when we partition the vector of covariate values too, and estimate
E[y| xo] as follows:

E[y|xo] = ∫ E[y|xo, xm]g(xm|xo)𝜕xm.

All required conditional distributions can be estimated in the development data, but with large numbers of predictor
variables the number of conditional distributions would again be extremely large. For this reason, we propose to estimate
the joint distribution of x = (xo, xm) in the development study, and to derive the required conditional distributions from
this joint distribution. This is especially attractive when x follows the multivariate normal distribution with mean μ and

covariance matrixΣ. When we partition𝜇 as (𝜇o,𝜇m) andΣ accordingly as
(
Σoo Σom
Σmo Σmm

)
then the conditional distribution

g(xm| xo) has mean 𝜇m + Σmo Σ−1
oo (xo − 𝜇o) and covariance Σmm − Σmo Σ−1

oo Σom.
In most situations, the vector x will consist of both categorical and quantitative variables and the joint distribution will

therefore almost certainly be nonnormal. We hypothesize, however, that the normal distribution is close enough to the
true joint distribution. If that is the case, then the following approach will approximate E[y| xo] to any desired degree of pre-
cision. Alternatives may involve nonparametric distributions estimated with multivariate splines25 or copula models.26,27
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The mean 𝜇 and covariance matrix Σ can be estimated in the development data. These 𝜇 and Σ are then used for
a new person i with missing data to derive the conditional distribution g(xim| xio). We then draw a number of ran-
dom vectors ∼ xim1, … ,∼ ximj, … ,∼ xim,ndrawsfrom this distribution. Concatenating ∼ xij = (xio∼ ximj) one may calculate
E[yi|xio∼ ximj] and average over the n draws:

E[yi|xio] =
ndraws∑

j=1
E[y|xio,∼ ximj]

g(∼ ximj|xio)∑ndraws
r=1 g(∼ ximr|xio)

.

This Monte Carlo integration approximates the integral of interest over g(xm| xo) and was implemented as method 3.
It is based on available predictor variables and the estimated normal approximation of the joint distribution of predictors
in the development data. Note that integration over g(xm| xo) is not the same as evaluation of the full prediction model at
(xo, E[g(xm| xo)]).

For use of multiple imputation in model development, it has been recognized that imputation of missing xm may also
depend on y. Consequently, imputations are derived from the conditional distribution g(xm| xo, y).6 If the parameters of
this imputation model were known, the model could also be used to impute missing xm given (xo, y) in a new patient.
This model is, however, depending on the outcome variable y which is in principal not available for a new patient. One
could use the entire chained-equations-imputation-model from the development data and impute y too, but here we
examine the possibility to integrate out y from the imputation model. This is essentially an extension of method 3 that
also integrates over the outcome. In this method, we therefore use the conditional distribution g(xm| xo) that is obtained
by integrating out y:

g(xm|xo) = ∫ g(xm|xo, y)h(y|xo)𝜕y.

If y is a binary outcome this simplifies to

g(xm|xo) = g(xm|xo, y = 1) h(y = 1|xo) + g(xm|xo, y = 0) h(y = 0|xo),

which nicely illustrates that g(xm| xo) is obtained by averaging g(xm| xo, y) for every possible value that y may have, but
weighted with the probability that y has that particular value.

Notice that h(y| xo) is a submodel of the full prediction model and this suggests an algorithm which is a combination
of methods 1 and 2. Thus, we estimate the joint distributions g(x ∣ y = 0) and g(x| y = 1) in the development data and
we approximate h(y| xo) using Marshall et al’s21 suggestion (as in method 1). For a new person i with missing values of
covariates in the vector xim, we first sample a number of outcomes yi1, … , yij, … , yi, ndraws from h(y| xo) and given the
sampled values yij (j = 1, … , ndraws), we sample ∼ ximj from g(xim| xio, y = yij), and j = 1, … , ndraws. As with method 2,
the joint distribution g(x| y = y) will usually not be normal, but for the current application we approximate g(x| y = y)
with the multivariate normal distribution. As above, alternatives may involve nonparametric distributions estimated with
multivariate splines or copula models.

2.3 Imputation methods

As described above, the main goal is to find imputations such that one can arrive at proper predictions based on the full
original model. That is, the original set of regression weights (bo, bm) is applied to a combination of the observed and
imputed values (xox̂m) as in

E[y|xo, x̂m] = g−1(xobo + x̂mbm).

The mainstay method for multiple imputation during model development is multiple imputation by chained
equations, also known as fully conditional specification.6,8,24 These names refer to the typical specification where each
variable has its own imputation model conditional on all the other variables (ie, for the outcome given all of the x vari-
ables, for x1 given the outcome and all other x variables, … ). That is, they are fully conditioned (on all other variables)
and chained in the sense that all variables are used as both predictor and outcome. The main advantage of imputation by
chained equation resides in the great flexibility that is available for the specification of each of these models, which can
take any form.
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It has previously been suggested that these fully conditional imputation models, as developed for missing data in the
development dataset, can also be used to impute missing data in new patients.22 From a methodological viewpoint, it is
perfectly valid to use the previously fitted imputation model(s) in a new patient; the prediction and imputation model
are considered as a unit. Although it is theoretically possible to extract the fully conditional imputation models from
the development data, common software packages do not store the estimated parameters of the imputation models (eg,
packages like mice in R8; for an overview of available free and commercial statistical software for multiple imputation see
Nguyen et al7). To the best of our knowledge, only the Amelia package in R28 (which assumes multivariate normality on
the complete data) provides multiple imputation model parameters. This makes application of the imputation models to
data of new patients difficult. Moreover, if the fully conditional models were available, they could not be used directly
when multiple missing values are present in the new individual. This is because a fully conditional model can only be
used for imputation when all predictors are known. Importantly, note that this is always the case in practice, since the
outcome is always missing and is also one of the predictors in the fully conditional imputation models for any x variable.

Two separate approaches can be taken to overcome these technical aspects. First, as proposed by Janssen et al,22

one can simply stack the new patient below the original development data, and impute all patients together. A second
possibility is to fit the required fully conditional models on the imputed development data and use these models to impute
missing values in the new individual. These two methods were implemented as our methods 5 and 6, respectively.

Use of the stacked imputation procedure (method 5) solves two problems. First, it does not require the imputation
model parameters to be available, and second, it naturally copes with multiple missing values in the new individual.
However, is also poses two new problems. First, rerunning the imputation process over the combination of the entire
development data and the new patient is a considerable computational burden to arrive at a single prediction. Second, a
more theoretical issue is that simultaneous imputation of the development data and the new case allows sharing of infor-
mation between them, while one would prefer to separate them for validation purposes. That is, the imputation model is
reestimated while it should theoretically be fixed as part of the prediction model. While this issue may only be theoretical
for a single patient, the issue is clearer when predictions for an entire validation set are required: the imputation models
will be highly influenced by the validation data. To cope with these issues, we propose to derive the imputed development
data before stacking. In this way, the imputed sets can be stored for later use (thus avoid the computational burden of the
imputation process in the development data) and the imputation models are not affected by the new individual. The lat-
ter relates to the fact that updating of the imputation models only makes use of cases with observed outcomes (outcomes
of the imputation models that is),6 and the new patient is thus always omitted for the necessary imputation models (ie,
those for which the new individual has missing values). A further issue shortly mentioned above is that imputation mod-
els used at the time of model development are based on all variables in the analysis, including the outcome variable y. The
outcome variable y is, however, missing per definition for new patients. Therefore, the chained equation approaches will
automatically impute y for the new patient. This value can simply be discarded though. The most important downside of
this approach is that the original development data need to be available for every new prediction (also see Box 1 for each
method’s requirements). Besides computational, storage, and network issues relating to the online availability of data,
limitations due to privacy regulation and data sharing limitations may form the most pressing issue for many datasets.

BOX 1 Specification of information that needs to be accessed for implementation of the missing
data methods
Each of the methods to handle missing data when applying a prediction model in new patients requires additional
summary statistics and or data beyond the prediction model itself. This box enlists these requirements in addition
to the full prediction model parameter vector b.
Data requirements.
Method
1 - Estimation of all submodels: requires estimated regression coefficients for all (possibly 2k) submodels of the
prediction model of interest.
2 - Submodels by means of the one-step-sweep: only requires the estimated regression coefficients and the
variance-covariance matrix of developed prediction model of interest.
3 - Marginalize over missing x variables: requires estimated means, and their variance-covariance matrix, for all
variables in the development dataset that are used in the prediction model of interest.
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4 - Marginalize over missing x variables and the outcome: requirements are those for methods 2 and 3 combined,
where the latter are needed conditional on the outcome.
5 - Stacked multiple imputation: requires the entire development dataset.
6 - Imputation by fixed chained equations: requires the vector of parameter estimates for each of the fully con-
ditional models as derived in the development dataset, as well as the mean of each variable in the development
data.
7 - Independent imputation by chained equations: requires a set of test cases and can therefore not be used in case
of a single new patient. This method was included for comparison in the validation setting where a set of test
cases is available.
Note .
In case of missing data in the development dataset, multiple imputation can be used and pooled estimates can be
derived for each of the required pieces of information using Rubin’s rules (eg, pooled model parameter estimates,
variable means and variance-covariance matrices).

To avoid the need for availability of the development data, we propose to derive the fully conditional model for each
variable in the multiply imputed development data (method 6). This summarizes all the required information from the
development dataset for the future imputation process, and at the same time copes with the computational burden occur-
ring with straightforward stacked imputation (since the imputation models are directly available and do not have to be
re-estimated). Additionally, no tricks are required to avoid sharing of information between development data and on or
more new cases. Also, as for stacked imputation, there is great flexibility in the possible classes of models that can be used.
For the current application, linear models were used for continuous variables and logistic models were used for dummy
coded variables. However, many more classes are conceivable and have been used successfully in multiple imputation
(eg, Poisson regression, multinomial regression, multilevel models).6 Due to estimation of the full conditional models in
multiply imputed development data, the models adequately reflect the available information accounting for missing data
(assuming missingness at random). Imputations for a new case can be derived iteratively in a small number of iterations.
Starting from imputation of the missing x variables with the marginal means as estimated in the development data, one
iterates over the full conditional models as in standard chained equation procedures. A key difference though, is that the
imputation models remain fixed. First, the outcome is predicted based on the observed x variables and initial imputations
for missing x variables. Second, the imputation of the first missing x variable is updated based on its fully conditional
model and the current state of the data, and so on over all other missing variables and repeated until convergence to
the most likely imputations given the observed data (usually in <5 iterations for 10e-6 tolerance on the predicted out-
come). Note that predicted probabilities are used in the iterative process and not the most likely binary class. Also, note
that this method is essentially a simplification of traditional imputation by chained equations with the stochastic com-
ponents removed. Therefore, it inherits the same theoretical limitations with respect to the relatively weak theoretical
underpinnings and assessment of its value will mainly have to come from empirical evidence.24

2.4 Independent multiple imputation by chained equations for sets of patients

Lastly, while not applicable in a new patient, presence of an entire validation set allows for standard multiple imputation
by chained equations as commonly used during model development. As described above, this is also the way in which
the QRISK3 model was validated. A key feature of this method is that is does not allow the development data to influence
validation data. However, there are at least two issues. First, the imputation method applied during validation cannot
be applied in practice to new patients (hence explaining the different practical solutions implemented in for instance
the QRISK3). This is only of interest when only the performance for complete cases is of interest and the model is not
to be applied in cases with missing data. Second, the imputation models are allowed to vary between the development
and validation set, and consequently obscure performance evaluation in the validation set when transportability of the
imputation procedure is of interest. Considering these issues, this method was only evaluated as a reference since it has
been used in practice, but it does not satisfy our main goal under evaluation: application of a prediction model in a
(possibly single) new case with missing data. If the latter is the goal of interest, we argue that it follows directly that this
method should not be used for validation purposes.
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2.5 Implementation requirements

The information that is required to be able to perform these different procedures varies across the methods and ranges
from just the prediction model and the variance covariance matrix of its parameters to the entire development dataset. A
summary of these requirements per method is available in Box 1.

3 SIMULATION

3.1 Setup

The setup of the simulation study in shown in Figure 1. To study the performance of the six methods we simulated
data of N = 1000 persons with values on six predictor variables x = (x1, x2, … , x6) and a binary outcome y. Values for
x were sampled from the multivariate normal distribution with mean zero and variance 1 and a positive correlation of

F I G U R E 1 The flow of both the simulation study and applied example are shown. Parts relating only to the simulation study are
shown with dashed lines. The applied example included 100 bootstrap sample evaluations. * note that within each simulation iteration these
are the same cases as the out-of-bag sample with missing data, but with fully observed information [Colour figure can be viewed at
wileyonlinelibrary.com]

http://wileyonlinelibrary.com
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0.3. Covariates x2 and x5 were dichotomized (equal or below vs above zero), and covariates x3 and x6 were log-squared
according to log(0.01+ x2) causing their distributions to be (left) skewed. Covariates x1 and x4 were not transformed. After
these transformations, all continuous covariates were standardized again to have mean zero and variance 1. The binary
outcome variable was modeled using a logit-link function.

Given the sampled (transformed) values for x, the probability of outcome-value y = 1 was calculated per person using
the logit-function log(Odds(y = 1)) = 𝛼 + x𝛽, where 𝛽 was chosen as (0.8, 0.9, 1.0, 0, 0, 0) and 𝛼 such that the relative
frequency of y = 1 was about 30%. Given the associated probabilities Pr(y = 1| x), values for y were sampled from the
Bernoulli distribution. This simulation design led to a prediction model with a c-statistic of about 0.8.

Next, we created missing data using eight scenarios. Scenarios one, two, three, and four use a completely random
process with (i) 5% missing data for all variables, (ii) 20% missing data for all variables, (iii) 20% missing data for all
variables except x1 which had 50% missing data, and (iv) 50% missing data for all variables. Scenarios five, six, seven, and
eight use a missing at random process where the missingness on variable xj depended on the observed values of y and the
other observed covariates. Percentages of missing data follow the same sequence as for the missing completely at random
settings. The missingness models were logistic and details are given in Table 1.

Given the simulated data (after introduction of missingness), a bootstrap sample was drawn with replacements and
sample size equal to the full dataset. Standard multiple imputation by chained equations with m = 5 imputed datasets was
used within the bootstrap sample.9 Both the pooled full (logistic) prediction model and the necessary requirements for
each missing data method (see Box 1) were derived from the imputed bootstrap data. Where appropriate, these required
estimates were pooled using Rubin’s rules. For instance, the estimated mean and variance-covariance matrix of the vari-
ables requires for the one-step-sweep submodel method were pooled across imputations. Based on the pooled prediction
model of interest and the missing data method requirements, all that needs to be estimated in the bootstrap sample is avail-
able and was applied to the out-of-bag (OOB) cases one by one. That is, predictions were derived for the OOB samples one
by one by means of each of the missing data methods for individuals under evaluation. This one-by-one application was
in line with the intended goal of the missing data methods: to provide methods that apply in practice to new individuals.

Prediction performance for these OOB cases was summarized by means of the c-statistic (as a measure of discrimina-
tive performance) and root mean squared prediction error (rMSPE). Predictions based on multiple imputation methods
were averaged. The c-statistic could be obtained directly based on the predicted values and the observed outcomes. The
rMSPE was obtained based on the predicted values and the known simulated event probabilities for the OOB cases. Also,
we obtained “reference” performance measures based on complete OOB data (as shown in Figure 1). To do so, complete
data was obtained for those in the OOB sample (from earlier steps in the data simulation), and the pooled prediction
model was applied. This reference performance therefore corresponds to model performance in absence of missing data

T A B L E 1 Missingness models to create missing values in the simulated data

Scenario
% Missing
Data (%)

Which
Covariates Missingness Generating Mechanism Missingness Model

1 MCAR 5 all x Rij∼rbinom(0.05) i = 1, , , . , N; j = 1… , 6

2 MCAR 20 all x Rij∼rbinom(0.20) i = 1, , , . , N; j = 1… , 6

3 MCAR* 20-50 x1 Ri1∼rbinom(0.50)
Rij∼rbinom(0.20) (j = 2, … , 6) i = 1, , , . , N

4 MCAR 50 all x Rij∼rbinom(0.50) i = 1, , , . , N; j = 1… , 6

5 MAR 5 all x Rij∼rbinom(𝜋ij) i = 1, , , . , N; j = 1… , 6 log(𝜋ij) = 𝛼 + 𝛽1x−j + 𝛽2y
𝛼 = logit(0.025); 𝛽1 = 𝛽2 = 0.5

6 MAR 20 all x Rij∼rbinom(𝜋ij) i = 1, , , . , N; j = 1… , 6 log(𝜋ij) = 𝛼 + 𝛽1x−j + 𝛽2y
𝛼 = logit(0.2); 𝛽1 = 𝛽2 = 0.5

7 MAR* 20-50 x1 Ri1∼rbinom(𝜋i1) Rij∼rbinom(𝜋ij (j = 2, … , 6)
i = 1, , , . , N

log(𝜋i1) = 𝛼 + 𝛽1x−1 + 𝛽2y
𝛼 = logit(0.5); 𝛽1 = 𝛽2 = 2.5
log(𝜋ij) as defined in row 6

8 MAR 50 all x Rij∼rbinom(𝜋ij) i = 1, , , . , N; j = 1… , 6 log(𝜋ij) = 𝛼 + 𝛽1x−j + 𝛽2y
𝛼 = logit(0.5); 𝛽1 = 𝛽2 = 0.5

Abbreviations: MAR, missing at random; MCAR, missing completely at random.
Notes: Rij = 1 indicates that the value of covariate j in person i is missing; x−j is the covariate vector excluding covariate j. *) Scenario 3 and 7 start from 2 and 6
respectively as implemented for all variables but x1, and consequently add the process for scenarios 4 and 8 respectively to create missing data in x1.
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during model application, but already accounting for the decrease in prediction model performance caused by incomplete
development data. Note that this reference is expected to be unachievable (some information is always unrecoverably lost
due to missing data).

As a further comparison, independent multiple imputation in the OOB cases was evaluated (method 7). Performance
measures were derived as for the methods applying to individual cases. Also, to illustrate the effect of including the
outcome when performing missing data methods during model application, both stacked imputation (method 5) and
independent multiple imputation (method 7) were evaluated without deleting the outcome in the OOB samples.

3.2 Simulation results

With respect to processing times, Figure S1 shows the distribution of maximum individual prediction times (including
application of the missing data method) for each OOB sample. As expected, stacked imputation takes longest with up
to 8 seconds of processing time. However, all other methods derived predictions in less than half a second; more pre-
cisely, less than 0.3 seconds for the 2k submodels and the marginalization approaches and less than 0.06 seconds for the
one-step-sweep and fixed chained equations. These processing times illustrate applicability in practice with respect to
speed of the evaluated methods, and of those besides stacked imputation in particular.

Results for discriminative performance are shown in Figure 2 and Table S1. Mean reference performance in complete
OOB samples was a C-statistic around 0.78 to 0.79 across missing data settings. This illustrates that standard multiple
imputation by chained equations handled missing data well in the model development part of the evaluation (ie, there was
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only a small decline in performance when the amount of missing data during model development increased). With respect
to the missing data methods under evaluation, Figure 2 shows that all methods came close to model performance under
complete OOB data in settings with only 5% missing data. However, discrepancies began to appear when the amount of
missing data increased. The one-step-sweep submodel results (method 2) were clearly less discriminative than the others.
On the contrary, the approaches failing to omit the outcome information (5y and 7y) showed optimistic performance. In
this case, optimistic equals discrimination that seem better than as evaluated for complete cases (ie, cases without missing
data). This clearly illustrates the need for omission of outcome information in the test set(s) of an interval validation
procedures. Of the remaining methods, the 2k submodels (method 1) and fixed chained equations (method 6) performed
best and were closely followed by stacked multiple imputation (method 5). In most runs, they even performed better than
independent multiple imputation in the test set (method 7). This is expected to relate to the relatively small sample size of
the test data (OOB samples) with respect to the training data (bootstrap sample), which always has a ratio of approximately
1 to 1.7. Both marginalization methods (methods 3 and 4) had intermediate performance.

Root mean squared prediction error results are shown in Figure 3. In general, performance declines as the amount
of missing data increases. The comparative performance of the methods with respect to prediction error was very similar
to the pattern for discriminative performance. The best-performing methods are the 2k submodel method (method 1),
the fixed chained equations (method 6), and the two methods making use of the outcome information not available in
practice (method 5y and 7y) that were just included for purpose of illustration.

Beyond discriminative performance, prediction error, and processing times, Figure S2 illustrates the associations
between predicted probabilities derived from each of the applied methods to a those with missing data in a test set
(ie, OOB sample). Predicted probabilities are shown for each of the eight simulated missing data scenarios for the
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first simulation run. As shown, both marginalization approaches have a high correspondence across settings. The same
holds for predictions based on the 2k submodels (method 1) and those based on the fixed chained equations approach
(method 6).

4 ICD STUDY

4.1 Setup

As an empirical example, we describe the results of each of the seven methods to deal with missing data in persons
in test sets with data from the DO-IT registry. In the study alongside this registry, prediction models are developed to
help decision-making on implantation of cardioverter defibrillators (ICD) in primary prevention patients at risk for car-
diac arrhythmia and death. This registry included 1433 patients between September 2014 and June 2016 from all Dutch
ICD implanting hospitals.23 Only patients with a primary indication according to the Dutch national guidelines for ICD
therapy were included. Patients were followed for occurrence of appropriate ICD therapy (defibrillator shock or anti-
tachycardia pacing for ventricular tachyarrhythmias) or all cause death. At the date of implantation, a set of 45 patient
characteristics was gathered including biographic, clinical, and biochemical risk factors of arrhythmia and sudden death.
These included binary variables (such as sex), categorical variables (such as classes of mitral insufficiency), and contin-
uous variables such as age, weight, NTproBNP and eGFR levels, and QRS duration. Some of the continuous variables
showed extremely skewed distributions.

The primary goal of the project was to develop a joint prediction model for appropriate ICD therapy and death with the
total set of patient characteristics. Survival time was censored in 92% of the sample. Details are available in van Barreveld
et al.23 For the current paper, we focus only on the prediction model for all cause death. We chose to analyze these data
with a Cox regression model, and therefore used a log-log link function. We used the algorithm specified in Figure 1 for
internal validation. In the imputation sets of the bootstrap training samples we performed Cox regression with Akaike
Information Criterion-based backward selection of the 45 predictor variables. Each predictor that was selected in at least
half of the imputations was selected in the final model. Instead of backward selection one could use lasso or another
penalization approach to select the relevant variables; the optimal choice of algorithm for our data falls outside the scope
of the current paper.

Inevitably, there were missing values in the set of patient characteristics. Averaged over the sample of patients and the
set of characteristics, the percentage of missing values was 4.6%. However, some variables had a much higher percentage
missingness, with the highest percentages for the level of NTproBNP (60.0%) and BUN (blood urea nitrogen) (20.7%).
NTproBNP also showed to be one of the most important predictor variables.

In order to apply the methods in this survival setting with a censored outcome, several extensions were necessary for
method 4 (marginalization over x and y) and the imputations methods. These will be described here in the context of the
internal validation setting of the application study. To cope with the censored outcome, we calculated martingale residuals
for each person in the training sets using the Kaplan-Meier survival curve and used these residuals in the imputation
models in the training sets.

For the imputation methods, the martingale residuals were included in the imputation models instead of the outcome
and time-to-event. Instead of full conditional models for the event indicator and time-to-event, a linear full conditional
model with the martingale residual as the outcome was used. Accordingly, the martingale residual was also used as a
predictor in the full conditional models for the covariates. While improvements have been proposed,29 this was not the
subject of the current study.

While these relatively simple changes suffice for the imputation methods, the extension required for method 4 is more
involved. The martingale residual of person i with event or censoring at ti has expectation zero but is usually very skewed.
We nevertheless approximated the distribution of (xi, mri) with the multivariate normal distribution with mean (𝜇x,𝜇mr)
and partitioned covariance matrix

that was estimated in the training sets (and pooled over imputations).
Now consider persons with missing values on covariates xm and observed values on covariates xo. We partitioned the

vector (x, mr) as (xo, mr, xm) with partitioned

mean and covariance matrix (𝜇o,𝜇mr,𝜇m) and

( Σoo Σo,mr Σo,m
Σmr,o Σmr Σmr,m
Σm,o Σm,mr Σmm

)
.
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T A B L E 2 Prediction performance statistics for the
applied example Method

Mean (OOB) C (SD)
in the test setsa

2k submodels 0.747 (0.034)

One-step-sweep submodel 0.736 (0.041)

Marginalization over missing x variables 0.747 (0.034)

Marginalization over missing x and y 0.747 (0.034)

Stacked multiple imputation 0.747 (0.034)

Stacked multiple imputation with y 0.764 (0.033)

Fixed chained equations 0.748 (0.033)

Independent multiple imputation 0.746 (0.034)

Independent multiple imputation with y 0.756 (0.034)

a Mean over 100 out-of-bag (OOB) samples.

We next approximated the distribution of (xo, mr) negating xm (as with method 2) with the multivariate normal
distribution with mean (𝜇o𝜇mr) = (𝜇o𝜇mr) − Σ(omr),m Σ−1

mm 𝜇m and variance Σ(omr)∣m = Σ(omr) − Σ(omr),m Σ−1
mm Σm,(omr), where

Σ(omr) =
(

Σoo Σo,mr
Σmr,o Σmr

)
and Σ(omr),m =

(
Σo,m
Σmr,m

)
.

In person i with missing xim values and observed values xio, the mean and variance of the distribution of mri given

xio was next calculated as
=
𝜇mr = 𝜇mr − Σmr,o∣mΣ

−1
o∣m(xio − 𝜇o) and

=
Σmr∣o = Σmr∣m − Σmr,o∣mΣ

−1
o∣mΣo,mr∣m, where Σo∣m, Σmr,o∣m,

Σo,mr∣m and Σmr∣m are the submatrices of Σ(omr)∣m. We then sampled mri a couple of times (ndraws times) from the normal

distribution with mean
=
𝜇mr and variance

=
Σmr∣o: mri1, … , mrij, … , mri, ndraws.

Given the sampled value of the martingale residual mrij, the mean and variance of the conditional distribution
(xm| xio, mri = mrij) were calculated in a similar fashion as described under method 3 and we then sampled a couple of
values xm from this distribution: xim1, … , ximj, … , xim, ndraws. Given the sampled values for xm and given the observed
values for xio, the linear predictor of the Cox regression model was calculated for patient i and averaged over the sampled
values for xm.

4.2 Application results

The apparent results and the internal validation results based on these survival extensions were as follows. The median
number of predictor variables that were selected in the 100 bootstrap training sets was 8 (IQR 7-10). Almost all predictor
variables were selected at least once, but only age, weight, mitral insufficiency category, use of diuretics, blood sodium,
blood urea nitrogen, ACE inhibitor or AT-II antagonist use, and NTproBNP were selected more than 40% of the time.
The average apparent C-statistic calculated in the 100 bootstrap samples was 0.827 (SD 0.023) and the average c-statistics
over the 100 OOB samples are shown in Table 2. All methods showed very similar results, with the patterns of differences
among methods was similar to the simulations: the corrected C-statistic for the one-step-sweep submodels was relatively
low and that for methods failing to ignore the outcome was relatively high. Given the relatively low proportion of miss-
ing data in the applied example, these relatively similar results across methods were expected and are in line with the
simulation study results.

5 CONCLUSION

With implementation of a prediction model there is a choice to make on whether missing values of predictor variables are
accepted for a patient who wants to know his/her likelihood of some future outcome. If one chooses not to accept missing
values in new patients, we think that validation of the prediction model should be done with test sets without missing
data, or using independent multiple imputation in the test data (method 7). We focused on the setting where one wants
to allow for missing data during model application in practice, and therefore in model validation as well. We propose to
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only use missing data methods in validation that can also be used in practice in single new patients, and have considered
several ways of dealing with missing values for new patient when applying or validating a prediction model.

With respect to the accuracy of predictions for new individual patients in case of missing data, use of the 2k submod-
els (method 1) and use of fixed chained equations (method 6) were best in terms of corrected C-statistic and root mean
squared prediction error, with only small mutual differences. Both methods abide by our two main principles: (i) the
imputations should only depend on the model development data, and (ii) they should be applicable in new individual
patients. Furthermore, predicted event probabilities as derived by both methods for new individuals with missing data
were very highly correlated across missing data settings. However, the methods are very different in nature. The 2k sub-
models method uses a different prediction model for each missing data pattern, whereas the same full prediction model
is used on imputed data when applying fixed chained equations.

Of the remaining methods, marginalizing over the missing data (methods 3 and 4) and use of stacked multiple
imputation (method 5) showed intermediate performance with respect to the above described methods. Submodels based
on the one-step-sweep (method 2) did not perform well. Importantly, our evaluation of imputation methods that fail to
ignore available data on the outcome in the test set showed over-optimistic performance estimates. This also holds for
use of independent multiple imputation in the test data. It is therefore key to omit outcome data in the test set when val-
idation a model for use in practice. Interestingly, independent multiple imputation in the test set was included to show
reference performance, but it was outperformed by both methods 1 (2k submodels) and 6 (fixed chained equations).

Lastly, the difference between the evaluated methods was small in the applied example, which had an average percent-
age of missing data of 4.6%. These results were as expected when looking at the simulation study results for a relatively
low proportion of missing data, and the performance pattern across methods was similar as well. Therefore, the difference
between the methods will only start to have a larger impact on the results when the proportion of missing data increases.

6 DISCUSSION

We have evaluated two submodel methods, two marginalization methods, and two imputation methods to derive predic-
tions for new individuals with missing data. Several of these methods show promising results, with the best performance
for estimation of separate submodels based on observed covariates only (2k submodels) and an imputation approach based
on fixed chained equations. Also, computation times were extremely fast for these two methods.

A key feature of all of the evaluated approaches was that they were only based on the prediction model development
data. Therefore, both the prediction model of interest and the requirements for the method to handle missing data in
future individuals can be considered as a unit. We have proposed to also use these methods when validating a prediction
model that is intended to cope with missing data in practice (in contrast to independent use of multiple imputation in the
validation set). To the best of our knowledge, the notion that both the prediction model and the missing data method for
use in practice should be used during model validation has not been fully recognized.

Beyond these key messages, the differences among the evaluated methods are worth some discussion. Starting with the
theoretical basis, both the submodel methods and marginalization methods have a firm theoretical grounding. The sub-
models based on observed data only are an obvious reflection of all the available information. While our implementation
of the estimation of submodels leans on the missing at random assumption (due to being estimated in multiply imputed
data that was imputed under that assumption), this is not strictly necessary. Mercaldo and Blume have recently imple-
mented a pattern-mixture variant that does not need this assumption.30 The downside is that the submodels used in their
approach are more difficult and sometimes impossible to estimate. The great computational, storage, and reporting sav-
ings achieved by the one-step-sweep submodels are achieved by additional assumptions, among which the multivariate
normality of prediction model coefficients. These assumptions led to a decrease in performance offsetting the benefits.

The marginalization approaches, marginalizing over the missing data, are effectively just another way to arrive at
the submodel of interest by integrating out the unknown covariates. The main limiting factor for these methods is not
in their theoretical basis, but in the implementation that assumed multivariate normality of the data. If the multivariate
distribution of the data could be properly reflected, these methods should retain all relevant information.

The story is somewhat different for the imputation approaches which all make use of chained equations. There has
long been a lack of strong theoretical grounding for the use of imputation by means of chained equations. Citing from
an overview article on imputation using chained equations by White et al24: “justification of the multiple imputation by
chained equations procedure has rested on empirical studies rather than theoretical arguments”. Nonetheless, advances
have been made recently and this literature is nicely summarized in the second edition of van Buuren’s monograph on
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missing data (Sections 4.5 and 4.6).31 Here we highlight two key references. First, Hughes et al provided conditions (com-
patibility and noninformative margins) on the conditional models under which chained equation based imputations
are draws from the joint distribution of interest (finite-sample results).32 Second, Liu et al provided asymptotic results
showing that compatibility alone is sufficient as sample size tends to infinity.33 In practice though, model compatibil-
ity is difficult to check. In fact, citing Liu et al33: “it is precisely when a joint model is difficult to obtain that iterative
imputation is preferred.” Regardless of the difficulty of checking these theoretical properties in practice, imputation
by means of chained equations has been used effectively in many areas.31 The main benefit of the chained equations
resides in the great amount of flexibility in model specification. Basically, any model can be used, thus avoiding the pos-
sibly problematic assumption of multivariate normality. With respect to the fixed chained equations, note that they are
essentially a simplified version of the standard chained equations implementations where all stochastic elements are
removed: the imputation model parameters remain fixed. Also, note that it is relatively straightforward to extend the
use of fixed chained equations to allow for multiple imputations. Instead of using the point estimates for the imputa-
tion model coefficients, one can sample coefficients from the estimated multivariate normal distribution of imputation
model coefficients and thereby propagate their uncertainty. The main rationale for use of single imputation in the current
implementation of fixed chained equations related to the interest in point predictions, which do not require propagation
ofuncertainty.

Beyond theoretical aspects, more practical aspects are often limiting factors in practice. These primarily relate to
processing speed and data availability. For instance, use of stacked imputation as originally proposed by Janssen et al22

is computationally very expensive, because each new prediction requires imputation of the entire development data.
Possibly even more important is that the development data has to be available at the time of prediction, which is often not
possible due to privacy regulations. Currently, we are developing prediction models for mortality of metastatic cancers
using training data of the Dutch cancer registry and test data of the Belgium cancer registry. Both datasets cannot leave
their respective countries making this virtually impossible. All other methods can be performed based on summaries of
the development data, as shown in Box 1. Nonetheless, these summaries can be quite extensive (such as 2k submodels).
Modern computers and mobile apps can easily store and process this amount of information however.

Following the need for missing data methods applicable in practice, we have proposed that prediction model vali-
dation should also be based on these methods. The main reason for doing so is when one wants to allow for missing
data in practice. If that is not the case, then use of standard multiple imputation in development and validation data
separately would provide an estimate of performance when all variables are observed. Besides the intended use of the
prediction model, a brief discussion of the similarity between the internal and external validation setting is of interest.
We propose that they are handled in the same way, using missing data methods that transfer to practice in the validation
data (whether hold-out sample, cross-validation hold-out fold, OOB samples, or truly external data). An alternative to our
implementation of internal validation would be to impute first and cross-validate or bootstrap later. However, in case of
internal validation and use of multiple imputation, it is preferable to let the bootstrap evaluations reflect the uncertainty
in estimation of the imputation models.16 We think this argument extends to other missing data methods.

6.1 Study limitations

We did not evaluate the possible use of auxiliary variables that are not included in the prediction model, but that might
provide information about missing variables. If these auxiliary variables are available at the time of model developments
and application, they could be envisioned to improve imputation procedures. Also, we have evaluated performance based
on point predictions, but did not touch upon their uncertainty. Furthermore, since we have evaluated an internal valida-
tion setting, we have not evaluated generalizability to other settings. Just as prediction models may need updating in new
populations, the required data for each of the missing data methods may also need updating for those settings. In that
sense, they are just additional models and have to be treated accordingly. Lastly, the evaluated methods all assume miss-
ingness at random. When there is a strong suspicion that missing data may be missing not at random, the above described
method by Mercaldo and Blume may be of interest.30

Summarizing, the allowance for missing data when applying a prediction model to new individuals requires specific
missing data methods that differ from the model development setting. We have proposed and evaluated such approaches
and have shown good performance of a submodel method basing predictions on observed data only and an imputa-
tion method based on fixed chained equations. Both are feasible in practice and the choice should be made based on
aspects beyond accuracy and computational burden, such as the desire for a single prediction model (as for fixed chained
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equations) or lack of the need for imputation (as for the submodel methods). Moreover, we have emphasized the need to
use missing data methods that translate to practice during prediction model validation.
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