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Abstract: Olaparib is a potent poly (ADP-ribose) polymerase inhibitor currently used in targeted
therapy for treating cancer cells with BRCA mutations. Here we investigate the possible interference
of olaparib with daunorubicin (Daun) metabolism, mediated by carbonyl-reducing enzymes (CREs),
which play a significant role in the resistance of cancer cells to anthracyclines. Incubation experiments
with the most active recombinant CREs showed that olaparib is a potent inhibitor of the aldo–keto
reductase 1C3 (AKR1C3) enzyme. Subsequent inhibitory assays in the AKR1C3-overexpressing
cellular model transfected human colorectal carcinoma HCT116 cells, demonstrating that olaparib
significantly inhibits AKR1C3 at the intracellular level. Consequently, molecular docking studies
have supported these findings and identified the possible molecular background of the interaction.
Drug combination experiments in HCT116, human liver carcinoma HepG2, and leukemic KG1α
cell lines showed that this observed interaction can be exploited for the synergistic enhancement
of Daun’s antiproliferative effect. Finally, we showed that olaparib had no significant effect on the
mRNA expression of AKR1C3 in HepG2 and KG1α cells. In conclusion, our data demonstrate that
olaparib interferes with anthracycline metabolism, and suggest that this phenomenon might be
utilized for combating anthracycline resistance.
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1. Introduction

Cancer is one of the most significant health problems worldwide, with 10 million new cases each
year [1]. Over the past 60 years, anthracycline family (ANT) drugs have been commonly used to treat
various cancers [2]. These chemotherapeutics effectively induce DNA double-strand breaks in rapidly
dividing cells. Despite their efficacy, the application of anthracyclines is limited by dose-limiting
toxicity to healthy tissues, as well as drug resistance [3]. Numerous efforts have been made to overcome
these drawbacks. Nevertheless, diverse mechanisms may mediate ANT resistance, which may include
topoisomerase II mutation [4], cancer stemness, DNA repair, overexpression of P-glycoprotein or other
efflux pumps, and metabolism [5].

One of the most critical mechanisms of ANT resistance is its reduction to the less potent
C13-hydroxy metabolite (e.g., daunorubicinol and doxorubicinol) by carbonyl-reducing enzymes
(CREs) [2,6,7]. CREs represent a group of cytosolic or microsomal enzymes comprising two
superfamilies: the short-chain dehydrogenase/reductases (SDRs) and aldo–keto reductases (AKRs).
Being frequently overexpressed in tumour tissues, CREs decrease the intracellular concentration of
pharmacologically active forms of anthracyclines. As a result, this process diminishes their therapeutic
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efficacy and potentiates cardiotoxic side-effects [3,8]. Among the principal anthracycline reductases
(CBR1, AKR1C3, AKR1A1, AKR1B1, and AKR1B10) [2,9], AKR1C3 is the most active enzyme, with a
confirmed role in ANT resistance [10]. Its upregulation has been demonstrated in various cancers,
indicating its possible value as a diagnostic cancer marker [11–14]. Importantly, AKR1C3, together with
other important CREs (AKR1B10, CBR1), is overexpressed in oncological patients who are resistant
to ANTs, which confirms the critical role of reductive metabolism in ANT resistance [2,15–18].
Considering CREs as essential drivers of ANT resistance and cancer development [14,19,20], as well
as the discovery of approaches allowing for modulation of their activity and expression, is of great
clinical interest.

Olaparib (AZD2281, trade name Lynparza) is a U.S. Food and Drug Administration
(FDA)-approved targeted agent (Figure 1) that acts by preventing DNA damage repair [21–23].
This drug is recognized as a potent poly (ADP-ribose) polymerase (PARP) inhibitor working against
cancer cells harbouring defects in DNA damage repair (BRCA mutations), which are common in
breast, prostate, and ovarian cancers [24]. Beside participation in olaparib’s pharmacodynamic
effect, BRCA mutations have a valuable clinical prognostic value, such as guiding the selection
of patients eligible for secondary cytoreductive surgery within the treatment of recurrent ovarian
cancer with liver metastases [25]. Apart from its common indications, olaparib exhibits significant
potential for the treatment of myelodysplastic syndrome and acute myeloid leukaemia (AML)
with defects in DNA repair [26,27], inducing the death receptor-mediated apoptosis in AML
cells [28,29]. Recently, olaparib was demonstrated to potentiate the effect of doxorubicin in experimental
models [30,31]. Additionally, a combination of these two drugs has been evaluated in phase I clinical
trials [32]. Despite their promising therapeutic potential, the mechanism underlying this synergism
is not yet described in detail. In our work, we hypothesized that olaparib might interference with
anthracycline metabolism, which could be one of the molecular mechanisms promoting the beneficial
outcome of this combination.
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Figure 1. Chemical structure of olaparib.

Given these considerations, the present work aimed to characterize the interaction of olaparib with
selected recombinant reductases that play a role in anthracycline reduction. Subsequent experiments
have evaluated whether these interactions modulate daunorubicin resistance in AKR1C3-expressing
models. In the last experimental set, we investigated the possible influence of olaparib on AKR1C3
expression, which can affect the resistance phenotype of cancer cells.

2. Results

2.1. Screening for Interactions of Anthracycline Reductases with Olaparib

First, we investigated the potential of 10 and 50 µM olaparib to inhibit selected anthracycline
reductases extensively involved in daunorubicin metabolism [9,33]. Olaparib potently inhibits AKR1C3,
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while a negligible inhibitory effect was observed for AKR1B10, AKR1A1, AKR1B1, and CBR1 (Table 1).
Considering that olaparib did not display significant inhibition of other anthracyclines reductases,
only interactions with AKR1C3 were further investigated at the cellular level.

Table 1. Inhibitory effect of olaparib on anthracycline reductases.

Enzymes Inhibition % Olaparib (10 µM) Inhibition % Olaparib (50 µM)

AKR1C3 76.0 ± 0.32 91.4 ± 0.97
AKR1B10 0.0 7.7 ± 0.33
AKR1A1 1.8 ± 0.14 18.2 ± 0.39
AKR1B1 0.0 8.1 ± 0.83

CBR1 0.0 0.0

Aldo–keto reductase (AKR) and Carbonyl reductase (CBR). Values are expressed as the means ± SD of three
independent assays.

2.2. Olaparib Potently Inhibits Human Recombinant AKR1C3

In subsequent studies with recombinant AKR1C3, we characterized its interaction with olaparib
in detail. Olaparib exhibited high inhibitory affinity toward AKR1C3 (half-maximal inhibitory
concentration (IC50) = 2.48 µM; Figure 2) with a non-competitive inhibition mode (inhibitory constant
(Ki) = 3.35 µM; α > 1; Figure 3a) as observed in the Lineweaver–Burk analysis plot (Figure 3b).
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A docking study was employed to further explore the interaction of olaparib with enzyme
structures. The AKR1C3 binding site has already been described in the literature [34], and there are five
sub-pockets, referred to as SP1, SP2, SP3, the oxyanion site (OX), and the steroid channel (SC). SP1 is
delineated by residues Ser-118, Asn-167, Phe-306, Phe311, and Tyr-319. The majority of non-steroidal
anti-inflammatory drugs (NSAIDs), namely N-phenylanthranilic acids (meclofenamic acid,
mefenamic acid, and flufenamic acid), arylpropionic acids (flurbiprofen, ibuprofen, naproxen),
and zomepirac, bind or extend significantly to this pocket. The NSAID sulindac binds within
the SP2 site. Among NSAIDs with known binding modes, only the indomethacin molecule binds the
SP3 pocket. However, its binding mode is pH-dependent, and indomethacin can the occupy SP1 site
as well. The oxyanion site consists of residues Tyr-55 and His-117, as well as the NADP+ cofactor,
and is the catalytic site at which aldehyde or ketone reduction occurs. The carboxyl of NSAIDs form
hydrogen bonds to these residues, resulting in the inhibitory effect. The steroid channel represents the
open channel that leads to solvent space and is gated by residues Trp-227 and Leu/Val-54 [35].

To predict the binding mode of olaparib, indomethacin, flufenamic acid, and PEG/acetate bound
structures (PDB codes 1S2A, 1S2C, and 1S1P, respectively) were used as targets for molecular docking.
As already described in the literature, residues Trp-227, Phe-306, and Phe-311 exhibit significant
side-chain flexibility depending on the ligand [35]. Thus, docking experiments with side chains of
these three residues allowing rotation in the PEG/acetate bound structure (1S1P) were performed
as well. The docking of olaparib with flexible residues Trp-227, Phe-306, and Phe-311 provided the
best conformations and binding energies. Olaparib occupied the same space as flufenamic acid,
with acylhydrazine carbonyl and nitrogen forming hydrogen bonds to the active side (Figure 4a,b).
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2.3. Effect of Olaparib on AKR1C3-Mediated Daunorubicin Metabolism in HCT116 Cells

To evaluate the inhibitory effect of olaparib on daunorubicin (Daun) reduction at the cellular level,
an inhibitory assay in AKR1C3 and empty vector-transfected HCT116 cells (HCT116–AKR1C3 and
HCT116–EV (empty vector), respectively) was employed. A clinically relevant Daun concentration
(1 µM) was used in these experiments [36].

In HCT116–AKR1C3 cells, olaparib showed significant dose-dependent inhibition of
AKR1C3-mediated Daun metabolism (IC50 = 5.91 µM; Figure 5). These data correlate well with
those from the recombinant AKR1C3 enzyme and demonstrate the ability of the tested drug to interfere
with AKR1C3-mediated daunorubicin metabolism at the cellular level.
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Figure 5. (a) Effect of olaparib on AKR1C3-mediated intracellular daunorubicin (Daun) metabolism
in HCT116 cells. Statistical analysis was performed with end-point data, using one-way analysis
of variance (ANOVA) followed by Dunnett’s post-hoc test (* p ≤ 0.05, *** p ≤ and **** p ≤ 0.0001,
compared to AKR1C3 control). (b) IC50 of AKR1C3 inhibition in HCT116 cells exposed to olaparib
(1–50 µM). Data are expressed as the mean ± SD from three independent assays.

2.4. Olaparib Synergize with Daunorubicin due to Interaction with AKR1C3

Having confirmed AKR1C3 inhibition by olaparib at intracellular conditions, we next aimed to
investigate whether this interaction could reverse Daun resistance. At the same time, we examined
whether it might be one of the hidden mechanisms underlying the reported efficacy of combined
anthracycline + olaparib.

In our combination studies in transfected HCT116 cells, we used clinically relevant concentrations
of Daun [36] and olaparib [37]. Besides being clinically relevant, olaparib concentrations also
(1) yielded sufficient inhibition of AKR1C3 and (2) exerted negligible toxicity in tested cell lines (IC50 was
equal to 202 ± 46 µM and 186 ± 51 µM in HCT116–AKR1C3 and HCT116–EV cells, respectively).
In accordance with the recognized role of AKR1C3 in Daun resistance, the AKR1C3-overexpressing
subline showed reduced sensitivity to Daun compared to the EV-transduced subline (IC50 values of
0.808 ± 0.049 µM and 0.494 ± 0.039 µM, respectively). Olaparib potentiated the effect of Daun in
both HCT116 sublines, with a trend toward increased effects in the AKR1C3-overexpressing cell line
(Figure 6a,b). Since the results of the combination are affected by olaparib toxicity, we performed
data analysis using the Chou–Talalay method, which subtracts this distorting element and accurately
quantifies combination outcomes. At 5 µM olaparib concentration, the combination effect in EV cells
was additive or antagonistic, while in AKR1C3-overexpressing cells, synergism was detected along
the entire range of cells affected (FA) (Figure 6c). At 10 µM, synergism was observed in both cell
lines, but differences in the effect between cell sublines was evident (Figure 6d). To exclude a possible
interfering effect of differential PARP expression on combination outcomes, we performed assessment
of PARP1 and PARP2 (pharmacodynamic targets of olaparib [38,39]) expression in transfected HCT116
cells. As there were no expression changes (Figure 6e), we can conclude that the contribution of PARP
inhibition to the combination outcome was identical in both cell sublines. In turn, this observation
confirms the hypothesis that differences in combination efficacy between sublines are due to interactions
with AKR1C3.
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(empty vector) subline. GraphPad Prism 8.4.0 was used to perform the normalization of absorbance
values; 0% and 100% were assigned to cells incubated with 10% DMSO and vehicle control,
respectively. Data are expressed as the mean ± SD from three independent assays. Daun alone,
olaparib alone, and their combinations were further analysed by the Chou–Talalay method,
generating combination indices (CoI). CoI < 0.9 represents synergism, CoI > 0.9 and <1.1 represents
additivity, and CoI > 1.1 represents antagonism. Cells affected (FA)–CoI plot of (c) 5 µM olaparib
with Daun and (d) 10 µM olaparib with Daun. (e) PARP1 and PARP2 expression was quantified using
quantitative reverse transcription real-time PCR (qRT-PCR) in transfected HCT116 cells. The expression
data were statistically analysed using a two-tailed unpaired t-test. Data are presented as the mean ± SD
from three independent transfections.

To clarify the possible clinical impact of these results, additional experiments were conducted
with cells possessing physiological expressions of AKR1C3 [40]. Combining 5 or 10 µM olaparib with
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Daun resulted in a synergistic outcome along the major part of FA in KG1α leukemic cells (Figure 7a,c).
In HepG2 cells, the synergistic effect was primarily evident at higher FA fractions in response to 1 uM
Daun (Figure 7b,d). Taken together, these results demonstrate that olaparib-mediated inhibition of
AKR1C3 can, at least partially, reverse Daun resistance.Cancers 2020, 12, x FOR PEER REVIEW 8 of 17 
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of (c) 5 µM or 10 µM of olaparib with Daun in KG1α cells, as well as (d) 5 µM or 10 µM of olaparib 
with Daun in HepG2 cells. 

2.5. Assessment of AKR1C3 Expression following Exposure to Olaparib 

In the final study, we performed quantitative reverse transcription real-time PCR (qRT-PCR) 
analysis to assess possible changes in AKR1C3 mRNA expression following exposure to olaparib. 
First, experiments conducted in HepG2 liver carcinoma cells, representing a systemic model, were 
employed to determine whether olaparib has the potential to affect whole-body pharmacokinetics of 
Daun. Second, KG1α leukemic cells were used as a tumoral model to determine whether the positive 
synergistic olaparib + anthracycline effect could be counteracted by enzyme induction. 

First, we evaluated the effect of olaparib on model cell viability to choose a drug concentration 
with tolerable cytotoxicity. The selected clinically relevant olaparib concentrations of 1 and 5 µM 
displayed low cytotoxicity levels in both cell lines (Figure 8a,b). In the induction experiments, 
olaparib did not provoke any significant changes in AKR1C3 expression in either HepG2 or KG1α 
cells (Figure 8c,d). The absence of AKR1C3 induction leads to the assumption that olaparib does not 
influence Daun’s metabolism, and does not even threaten the combination effect via the upregulation 
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Figure 7. Effect of olaparib combination with Daun in (a) KG1α cells and (b) HepG2 cells. GraphPad
Prism 8.4.0 was used to perform normalization of absorbance values; 0% and 100% were assigned to
cells incubated with 10% DMSO and vehicle control, respectively. Data are expressed as the mean ± SD
from three independent assays. Daun alone, olaparib alone, and their combinations were further
analysed by the Chou–Talalay method, generating combination indices (CoI). CIS < 0.9 represents
synergism, CoI > 0.9 and <1.1 represent additivity, and CoI > 1.1 represents antagonism. FA–CoI plot
of (c) 5 µM or 10 µM of olaparib with Daun in KG1α cells, as well as (d) 5 µM or 10 µM of olaparib
with Daun in HepG2 cells.

2.5. Assessment of AKR1C3 Expression following Exposure to Olaparib

In the final study, we performed quantitative reverse transcription real-time PCR (qRT-PCR)
analysis to assess possible changes in AKR1C3 mRNA expression following exposure to olaparib.
First, experiments conducted in HepG2 liver carcinoma cells, representing a systemic model,
were employed to determine whether olaparib has the potential to affect whole-body pharmacokinetics
of Daun. Second, KG1α leukemic cells were used as a tumoral model to determine whether the positive
synergistic olaparib + anthracycline effect could be counteracted by enzyme induction.

First, we evaluated the effect of olaparib on model cell viability to choose a drug concentration
with tolerable cytotoxicity. The selected clinically relevant olaparib concentrations of 1 and 5 µM
displayed low cytotoxicity levels in both cell lines (Figure 8a,b). In the induction experiments,
olaparib did not provoke any significant changes in AKR1C3 expression in either HepG2 or KG1α
cells (Figure 8c,d). The absence of AKR1C3 induction leads to the assumption that olaparib does not
influence Daun’s metabolism, and does not even threaten the combination effect via the upregulation
of AKR1C3 expression.
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Figure 8. Effect of olaparib (0.05–20.00 µM) on cell viability in (a) KG1α cells and (b) HepG2 cells after 
48 h exposure. Cell viability of 0% and 100% were assigned to cells incubated with 10% DMSO and 
vehicle control, respectively. GraphPad Prism 8.4.0 was used to perform normalization of absorbance 
values. Determination of AKR1C3 expression after exposure to olaparib (1 and 5 µM) in (c) KG1α cells 
and (d) HepG2 cells. After 24 h and 48 h, possible changes in AKR1C3 mRNA expression were 
monitored by quantitative reverse transcription real-time PCR (qRT-PCR). Student’s t-test (unpaired) 
was employed to assess statistical significance (ns: not significant). Data are presented as the means ± 
SD of three independent experiments. 

3. Discussion 

Olaparib, marketed under the trade name Lynparza, is a potent, FDA-approved PARP inhibitor 
(PARPi) for the treatment of ovarian, breast [41], and pancreatic [42] cancers. Olaparib’s mechanism 
of action follows a concept of synthetic lethality: this drug selectively targets cancer cells with 
hereditary BRCA1/2 mutations [24]. It has been recently shown that olaparib potentiates the 
anticancer activity of anthracyclines [30,31]. However, the molecular mechanism of this beneficial 
effect is poorly understood. In this study, we investigated possible interactions of olaparib with 
anthracycline reductases, and evaluated whether they could reverse daunorubicin resistance and 
participate in the positive outcomes observed in this combination. 

Olaparib’s interaction with AKR1C3 was observed at the recombinant enzyme and cellular level, 
reaching roughly similar strengths of low micromolar concentrations in both variants. Importantly, 
the average maximal plasma concentration (Cmax) of olaparib in patients reached 14.2 µM at the 
recommended dosage of 400 mg [37]. Considering the relatively low extent of olaparib’s plasma 
protein binding (≈ 82%) [37], as well as EMA (European Medicines Agency) guidelines for in vitro 

Figure 8. Effect of olaparib (0.05–20.00 µM) on cell viability in (a) KG1α cells and (b) HepG2 cells after 48
h exposure. Cell viability of 0% and 100% were assigned to cells incubated with 10% DMSO and vehicle
control, respectively. GraphPad Prism 8.4.0 was used to perform normalization of absorbance values.
Determination of AKR1C3 expression after exposure to olaparib (1 and 5 µM) in (c) KG1α cells and
(d) HepG2 cells. After 24 h and 48 h, possible changes in AKR1C3 mRNA expression were monitored by
quantitative reverse transcription real-time PCR (qRT-PCR). Student’s t-test (unpaired) was employed
to assess statistical significance (ns: not significant). Data are presented as the means ± SD of three
independent experiments.

3. Discussion

Olaparib, marketed under the trade name Lynparza, is a potent, FDA-approved PARP inhibitor
(PARPi) for the treatment of ovarian, breast [41], and pancreatic [42] cancers. Olaparib’s mechanism
of action follows a concept of synthetic lethality: this drug selectively targets cancer cells with
hereditary BRCA1/2 mutations [24]. It has been recently shown that olaparib potentiates the anticancer
activity of anthracyclines [30,31]. However, the molecular mechanism of this beneficial effect is
poorly understood. In this study, we investigated possible interactions of olaparib with anthracycline
reductases, and evaluated whether they could reverse daunorubicin resistance and participate in the
positive outcomes observed in this combination.

Olaparib’s interaction with AKR1C3 was observed at the recombinant enzyme and cellular level,
reaching roughly similar strengths of low micromolar concentrations in both variants. Importantly, the
average maximal plasma concentration (Cmax) of olaparib in patients reached 14.2 µM at the
recommended dosage of 400 mg [37]. Considering the relatively low extent of olaparib’s plasma
protein binding (≈82%) [37], as well as EMA (European Medicines Agency) guidelines for in vitro
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testing of drug–drug interactions on biotransformation enzymes, it is highly probable that this recorded
interaction could manifest in oncology patients. According to the instructions, interactions with drugs
exhibiting Ki ≤ 50-fold unbound fractions of Cmax are clinically relevant [43].

Having confirmed olaparib-mediated inhibition of AKR1C3 at the cellular level, we presumed
that this process could help reverse resistance to anthracycline. Our results demonstrated a differential
response in AKR1C3- vs. empty vector-transfected HCT116 cells to the Daun combination with
olaparib. Thus, this hypothesis was confirmed, suggesting that this mechanism is likely to participate
in the overall synergistic outcome of this combination [32]. Synergism was also observed in KG1α and
HepG2 cells, which physiologically express considerable amounts of AKR1C3. This finding implies
that the conclusion of the artificial HCT116–AKR1C3 model might be applicable to the clinical situation
as well.

In addition to its application in combination with anthracyclines, olaparib’s interaction
with AKR1C3 might play an important role on its own. AKR1C3 catalyses the synthesis of
pro-proliferative prostaglandins that suppresses myeloid and erythroid differentiation [11,12].
In addition, AKR1C3 participates in biochemical pathways leading to the synthesis of
dihydrotestosterone (DHT), a potent endogenous ligand of the androgen (AR) receptor [44,45].
In the classical pathway, AKR1C3 catalyses the conversion of 4-androstenedione (∆4-AD)
into testosterone (T) (dehydroepiandrosterone (DHEA) → ∆4-AD → T → DHT), also converting
5α-Adione into DHT (DHEA → ∆4-AD → 5α-Adione → DHT), and androsterone into 3α-Diol
(progesterone→ 5α-dihydro-progesterone→ allopregnanolone→ androsterone→ 3α-Diol→ DHT)
in alternative pathways [44]. In general, AKR1C3 expression and AR-signalling are related to the
development of several malignancies (e.g., bladder cancer, renal cell carcinoma, hepatocellular cancer,
and endometrial cancer), as well as ovarian, breast, and pancreatic cancers [45,46], all of which are
therapeutic targets of olaparib. Considering these issues, our findings suggest that olaparib might
antagonize AR signaling and the synthesis of pro-proliferative prostaglandins. Thus, the interaction
of olaparib with AKR1C3 could be a side-mechanism of action in both hormone-dependent and
-independent cancers. This hypothesis warrants further investigation.

4. Materials and Methods

4.1. Reagents and Chemicals

Olaparib was obtained from SelleckChem (Houston, TX, USA). Glucose-6-phosphate
dehydrogenase and JetPrime Polyplus transfection reagent were acquired from VWR International
Ltd., whereas daunorubicin (Daun) was purchased from Toronto Research Chemicals
(Toronto, ON, Canada). TRI Reagent solution was acquired from Molecular Research Center Inc.
(Cincinnati, OH, USA). Nicotinamide adenine dinucleotide phosphate (NADP+), glucose-6-phosphate,
XTT (2,3-Bis-(2-Methoxy-4-Nitro-5-Sulfophenyl)-2H-Tetrazolium-5-Carboxanilide), phenazine methosulfate
(PMS), foetal bovine serum (FBS), and HPLC-grade solvents were supplied by Sigma-Aldrich (Prague,
Czech Republic). Cell culture reagents were acquired from Lonza (Walkersville, MD, USA) and Sigma
Aldrich (St. Louis, MO, USA). The RNA extraction kit was purchased from Zymo Research (Irvine, CA,
USA). AKR1C3-specific primers, together with the oligo-dT primer and PARP1 and PARP2 qRT-PCR
standards, were acquired from Generi Biotech (Hradec Králové, Czech Republic). PARP1 and PARP2
TaqMan systems and TaqMan Universal Master Mix II (no UNG) were obtained from Thermo Fisher
Scientific (Indianapolis, IN, USA). The qPCR SG Mix was from the Institute of Applied Biotechnologies
(Prague, Czech Republic). ProtoScript II Buffer, DTT, dNTP mix, and ProtoScript II Reverse Transcriptase
were obtained from New England Biolabs (Ipswich, MA, USA). All reagents used were of the highest
commercially available purity.
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4.2. Cell Cultures

Human colorectal carcinoma cells (HCT116), together with human liver carcinoma (HepG2) and
leukemic (KG1α) cell lines, were acquired from the European Collection of Authenticated Cell Cultures
(ECACC, Salisbury, UK). HCT116 and HepG2 cells were grown in DMEM (Dulbecco’s modified
Eagle’s medium) supplemented with 10% foetal bovine serum, whereas KG1α was grown in IMDM
(Iscove’s Modified Dulbecco’s Medium), supplemented with 20% foetal bovine serum and 2 mM
L-glutamine at standard conditions (37 ◦C, 5% CO2). All experiments and routine cultivation were
conducted in an antibiotic-free medium. Cell lines were used at passages between 10–25 and were
periodically checked for mycoplasma infection. The olaparib solution was prepared in dimethyl
sulfoxide (DMSO), such that solvent concentrations did not exceed 0.5% v/v. The vehicle control
approach was used to eliminate possible distorting effects of the drug solvent on examined parameters.

4.3. Cloning, Overexpression, and Purification of Recombinant CREs

According to previous publications [10,47,48], human recombinant CREs (AKR1B10, AKR1C3,
AKR1A1, AKR1B1, and CBR1) were prepared in the E. coli BL21 (DE3) host system. CRE purification was
performed by affinity chromatography using the NGC chromatography low-pressure system, which was
equipped with a 1 mL HisTrap FF column (GE Healthcare Life Sciences, Marlborough, MA, USA)
acquired from Sigma-Aldrich (Prague, Czech Republic). Buffer A was composed of 20 mM Tris-HCl,
150 mM NaCl, 20% (v/v) glycerol, and 30 mM imidazole (pH 7.4). Buffer B was identical to buffer
A, except that the imidazole concentration was 500 mM. The supernatant was adjusted to contain
30 mM imidazole and 500 mM NaCl before being loaded onto the column. The purification was
performed as follows: (1) the sample was loaded onto the column, (2) washed with 5 mL of
buffer A, and (3) pure protein was eluted by increasing concentrations of buffer B (60% in 20 min).
Finally, the column was regenerated by 10 mL of buffer B, and the active fractions containing the purified
protein were pooled. Specific enzymatic activity (µmol/mg/min) was calculated based on the rate of
Daun reduction for the formation of daunorubicinol (Daun-ol), as described below. The enzymatic
solution (20 mM phosphate buffer, pH 7.4) was supplemented with glycerol (final concentration 20%),
and the protein concentrated to 1.5 mg/mL.

4.4. Incubation Assay with Recombinant CREs

All enzymatic activity assays (AKR1C3, AKR1B10, AKR1A1, AKR1B1, and CBR1) were performed
in 0.1 M phosphate buffer containing 1.5µg of protein per reaction, Daun substrate (500µM), and NADP+

regeneration system (2.6 mM NADP+, 19.2 mM glucose-6-phosphate, 0.34 U glucose-6-phosphate
dehydrogenase, 9.8 mM MgCl2, and 0.1 M phosphate buffer at pH 7.4) were stirred continuously for
30 min at 37 ◦C. CRE inhibitory assays were performed with olaparib (10 and 50 µM). The reaction
was stopped with NH4OH (26%), and Daun-ol was then isolated by two-step extraction into ethyl
acetate using shaking for 15 min, following centrifugation for 2 min (13,500 rpm). The organic phase
was evaporated under vacuum, and residuum was dissolved in mobile phase and subjected to UHPLC
(ultra-high-performance liquid chromatography). The inhibitory action of olaparib and its affinity for
AKR1C3 was assessed by experimental IC50 (half-maximal inhibitory concentration) determination,
using olaparib concentrations a range of 0.01–50.00 µM. Inhibition assays were conducted using Daun
concentrations of 500, 750, 1000, and 1250 µM. Employing GraphPad Prism 8.0.4, Michaelis–Menten
parameters were calculated and transformed in a Lineweaver–Burk double reciprocal plot to determine
the mode of inhibition by analysing the slopes and intercepts of the curves.

4.5. Docking Studies

AutoDock Vina [49] software was used to perform all docking experiments. Each docking
experiment was run at least twice. The X-ray structures of AKR1C3 (indomethacin cocrystal (1S2A [3])),
AKR1C3 (flufenamic acid cocrystal (1S2C [3])), and AKR1C3 (containing PEG and acetate in the
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active site, 1S1P [3]) were used in this study. Their structures were prepared for docking using
AutoDockTools [50]. All water was removed, all small molecules except for NADP were deleted,
polar hydrogens were added, Kollman charges were calculated, and structures were exported into pdbqt
format. The docking cube position and its dimensions were determined visually using AutoDockTools.
The dimensions of docking cube were set to 30 Å× 30 Å× 30 Å in all cases. The docking space coordinates
x = 28.911, y = −26.519, and z = 59.43 were set for all targets (1S1P and 1S2A). The exhaustiveness
parameter was set based on 64 in experiments with the rigid receptor, while it was increased to 128
for experiments with flexible receptor residues. In these experiments, residues Trp-227, Phe-306,
and Phe-311 were allowed to rotate around Cα–Cβ and Cβ–Cγ. The ligand olaparib was downloaded
as mol2 files from the ZINC database [51] and converted to pdbqt files using AutoDockTools. For model
evaluation, ligands extracted from original X-ray structures were exported to pdbqt format and docked.
Docking study results were inspected visually using Discovery Studio Visualizer [52], which was also
used to create figures representing the binding interactions.

4.6. Transient Transfection of HCT116 Cell Line

The pCI_AKR1C3 plasmid encoding the AKR1C3 enzyme and pCI Empty Vector (EV) was
propagated in the E. coli system as previously described Chou–Talalay method]. HCT116 cells
(3.0 × 105 cells/well) were seeded into a 24-well plate for 24 h. After reaching a confluence of 60%,
the transfection mixture containing 0.25 µg of DNA (diluted in Opti-MEM medium) and 0.75 µL of
JetPrime transfection reagent was incubated for 10 min at room temperature, according to the supplier’s
instructions. Meanwhile, culture media was replaced with a fresh supply. The transfection solution
was added dropwise into the wells, and transfected cells were incubated for 24 h before being used
for AKR1C3 inhibitory studies or drug combinations. The uniformity of transfection and AKR1C3
expression were monitored as previously described [53].

4.7. AKR1C3 Inhibitory Assay in HCT116 Cells

The AKR1C3 inhibitory activity of olaparib was assessed at the cellular level. Transfected
HCT116 cells were established according to the procedure described above. Media containing 5 µM
Daun, with or without olaparib solution, was added to each well (final concentrations: 1, 5, 10, 25,
and 50 µM). The drug solutions and vehicle controls were harvested after 2 and 4 h incubation at
standard conditions (37 ◦C, 5% CO2). Thereafter, cells were lysed with 200 µL lysing buffer (25 mM
Tris, 150 mM NaCl, 1% Triton X-100, pH 7.8) for 15 min at room temperature. Drug solutions and
vehicle controls were mixed with respective lysates, and formed Daun-ol was extracted twice using
ethyl acetate. Following evaporation of the organic phase under the vacuum and dissolution of the dry
residues in the mobile phase, Daun-ol concentrations were determined by UHPLC.

4.8. XTT Proliferation Assay

This method was used to assess cell viability in drug combinations and prior induction studies
(see next subsections). Cells were treated with drugs or a vehicle for the time intervals specified in their
respective subsections. Cellular proliferation was assessed using a detection solution composed of XTT
(1 mg/mL) in Opti-MEM medium and phenazine methosulphate (7.5 mg/mL). The HCT116, HepG2,
and KG1α cells were incubated with the detection solution for 1 h, 2 h, and 3 h, respectively. Cellular
absorbance was measured at 450 nm using a microplate reader (Infinite M200, Tecan, Salzburg, Austria).

4.9. Drug Combination

Transfected HCT116 (2.5 × 104 cells/well) and HepG2 (1.8 × 104 cells/well) cells were seeded
on 96-well plates. After 24 h, transfected HCT116 cells and HepG2 cells were incubated with Daun
(range of 0.01–1.00 µM) with or without 5 or 10 µM olaparib. As well as the combination, the
toxicity of olaparib alone was also assessed (ranges of 0.5–200.0 µM and 0.1–100.0 µM for transfected
HCT116 and HepG2, respectively). KG1α (2.5 × 104 cells/well) cells were seeded and immediately
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treated with Daun (0.010–0.250 µM) with or without 5 or 10 µM olaparib. In addition, olaparib
toxicity alone was assessed in a range of 0.05–50.00 µM. For all cell lines, viability was determined
after 72 h of incubation at standard conditions using an XTT assay (see the previous subsection).
Combination effects were quantified according to a combination index (CoI) from the Chou–Talalay
method [53]. Next to drug combinations, PARP1 and PARP2 mRNA expression was monitored in
transfected HCT116 sublines using qRT-PCR. Absolute expression of target genes was quantified using
TaqMan probes, TaqMan Universal Master Mix II (no UNG), and qRT-PCR standards, according to
manufacturer’s instructions. RNA isolation and cDNA preparation were performed as described in
the following section.

4.10. Induction Studies

First, olaparib cytotoxicity was screened in model cell lines to estimate a suitable concentration
for use in induction studies. HepG2 and KG1α cells were seeded at densities identical to those used in
the drug combination studies. Cells were treated with olaparib on a six-point concentration range
(0.05–20.00 µM) and incubated for 48 h at standard conditions. Cell viability was assessed using an
XTT proliferation assay. Subsequently, induction studies based on qRT-PCR analysis were performed
to determine the effect of olaparib on AKR1C3 expression. HepG2 (30 × 104) and KG1α (25 × 104) were
seeded into 12-well plates (KG1α at time 0, HepG2 24 h before time 0). At time 0, cells were treated with
1 or 5 µM olaparib or vehicle control; then, samples were collected at 24 and 48 h intervals. For RNA
extraction, cells were lysed with TriReagent, and total RNA was extracted using Zymo Research’s
Direct-Zol RNA mini prep kit. The cDNA was generated as described previously [54]. AKR1C3 mRNA
in samples was quantified using AKR1C3 standard, which was prepared as described previously [10].
The qRT-PCR was performed by setting up the following reactions: 1x concentrated XCEED qPCR SG
Mix, AKR1C3-specific primers (1 µM), and 20 ng cDNA. The qPCR was performed using a QuantStudio
6flex (Applied Biosystems by Life Technologies, Carlsbad, CA, USA) with the following conditions:
initial denaturation at 95 ◦C for 10 min, then 40 cycles at 95 ◦C for 15 s and 65 ◦C for 1 min.

4.11. Ultra-High-Performance Liquid Chromatography (UHPLC)

Daun-ol concentrations were determined using a UHPLC Agilent 1260 Series chromatographic
system equipped with a dual-fluorescence detector (Shimadzu, Japan). The enzyme reaction mixture
was pre-filtered through a 0.2 µm polytetrafluoroethylene (PTFE) syringe filter, and then injected into a
Zorbax Eclipse Plus C18 RR HD column (2.1 × 50 mm, 1.8 µm particle size) with a 1290 Infinity inline
filter (Agilent, Santa Clara, CA, USA). The mobile phase consisted of a mixture containing formic acid
(0.1%), water (74%), and acetonitrile (26%). The flow rate was 0.7 mL/min. Eluents were detected using
a fluorescence detector at excitation and emission wavelengths of 480 and 560 nm, respectively.

4.12. Statistical Analysis

Statistical analysis was performed in GraphPad Prism 8.0.4 (GraphPad Software, Inc., La Jolla,
CA, USA); p-values < 0.05 were considered statistically significant. One-way ANOVA followed by
Dunnett’s post-hoc test or a two-tailed unpaired t-test were used for p-value calculations, as specified in
particular figure legends. Combination indices (CoI) were calculated using CompuSyn 3.0.1 software
(ComboSyn Inc., Paramus, NJ, USA).

5. Conclusions

In conclusion, we demonstrated that olaparib potently inhibits the AKR1C3 enzyme at clinically
relevant concentrations. This interaction was proven to attenuate Daun resistance, and can be
assumed to participate on the synergistic outcome of olaparib combined with anthracyclines.
Advantageously, olaparib did not affect AKR1C3 expression in either systemic or intratumoral models,
and thus does not exhibit the potential to establish systemic Daun resistance or counteract the beneficial
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combination effect. Our observations represent valuable knowledge that could be transformed into
more effective therapies in AKR1C3-expressing tumours.
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