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Abstract

We used NMR directly in live human cells to describe the complete post-translational maturation

process of human superoxide dismutase 1 (SOD1). We could follow, at atomic resolution, zinc

binding, homodimer formation and copper uptake, and discover that copper chaperone for SOD1

(CCS) oxidation of the SOD1 intrasubunit disulfide bond occurs through both copper-dependent

and independent mechanisms. Our approach represents a new strategy for structural investigation

of endogeneously expressed proteins within a physiological (cellular) environment.

Functional understanding of cellular processes requires a detailed characterization of

molecular players, their structural and dynamic properties, and their networks of

interactions. Biomolecules should ideally be characterized within their cellular milieu, to

match the physiological environment including pH, redox potential, viscosity, and the

presence of all relevant interaction partners. A new approach to structural biology is

therefore needed to explore the cellular context with atomic resolution techniques. In

principle, in-cell NMR1-5 represents an ideal method to monitor protein structure during

functional processes, in “close to physiological” conditions. However, in practical terms,

one must overcome a number of technological limitations in order to: 1) express (or co-

express, where appropriate) isotopically labelled proteins within cells derived from a
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suitable organism: human proteins, for example, should be endogenously synthesised and

studied within human cells; 2) establish experimental conditions to maintain cellular

viability inside the NMR tube and to reduce data acquisition time, while increasing

measurement sensitivity. We sought to address these challenges and attempt to directly

monitor the steps involved in post-translational modifications of a model protein, human

superoxide dismutase 1 (SOD1), within live human cells. Furthermore, we aimed to define

the role of the copper chaperone for SOD1 (CCS), which was proposed to make a major

contribution to SOD1 maturation6. A correct understanding of this process is important

considering the fundamental role played by SOD1 in the cellular defence against oxidative

stress7. Impaired SOD1 maturation has been linked to disease states, including the onset of

amyotrophic lateral sclerosis8,9.

We expressed human SOD1 transiently in HEK293T cells10 and modulated its expression

levels by varying the amount of transfected cDNA (see Online Methods). The endogenous

concentration of SOD1 in HEK293T cells, under our culture conditions, was 10±2 μM

(Supplementary Results, Supplementary Fig. 1). Levels up to 40 μM SOD1 have been

previously reported in the cytoplasm of mammalian cells11. Following recombinant

expression, the maximal intracellular SOD1 monomer concentration obtained was 360±30

μM. However, we could still detect SOD1 by in-cell NMR at closer to physiological

intracellular concentrations of 45±10 μM (Supplementary Fig. 2). Cellular distribution of

SOD1 was assessed in isolated nuclear, cytoplasmic and mitochondrial fractions.

Irrespectively of the total protein level, the majority of SOD1 was present in the cytoplasm

and less than 1% was localized in the mitochondrial fraction (Supplementary Fig. 3), a value

somewhat lower than previously reported12.

Two forms of SOD1 could be detected, in cells grown without supplements of zinc or

copper ions, in similar amounts: the monomeric, metal-free species (apo-SOD1) and the

dimeric species with one Zn2+ ion bound to each subunit (E,Zn-SOD1) (Supplementary Fig.

4a); the NMR data were analyzed by taking advantage of previous in vitro spectra and

backbone assignments13,14. This mixture of species is likely due to residual zinc in the

culture media (calculated ~4.5 μM in 10% foetal bovine serum (FBS)-supplemented

medium and ~1 μM in 2% FBS-supplemented medium, see Online Methods). Cysteines 57

and 146, forming an intrasubunit disulfide bond in the mature enzyme, were reduced in both

species (Fig. 1a). The presence of only these two species was further confirmed by NMR

analysis of cell extracts (Supplementary Fig. 4b). The 1H-15N spectrum of the metal-free

SOD1 species was consistent with its equivalent produced in E. coli cells without addition of

metal ions15, only the crosspeaks of the less structured parts being detected (Supplementary

Fig. 4a).

Zn2+ addition to the culture medium eliminated apo-SOD1 species signals (Fig. 1b). The

uniformly-15N labelled cell sample yielded a good quality spectrum of E,Zn-SOD1 (Fig.

1c), which could be improved by removing background signals arising from non-selective

labelling of cellular components (Supplementary Fig. 5). Therefore, in culture, Zn2+ ions are

efficiently uptaken by cells and bound in stoichiometric amounts, specifically to the native

binding site of dimeric SOD1, as further confirmed by 1H-15N crosspeak analysis

(Supplementary Fig. 6). On the contrary, when reduced apo-SOD1 is exposed to Zn2+ ions
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in vitro or in cell lysates, even at sub-stoichiometric concentrations, a mixture of apo-SOD1,

E,Zn-SOD1 and Zn,Zn-SOD1 forms is generated15. Therefore, site-selectivity of Zn2+-

binding can only be achieved within the physiological cellular context.

Prokaryotes have simple mechanisms for copper uptake and excretion, while they are tightly

regulated in eukaryotic cells16. Accordingly, copper added as Cu(II) salt to E. coli cells

culture medium was reduced to Cu(I) and readily and stoichiometrically bound only in this

redox state to recombinantly expressed SOD1, forming Cu(I),Zn-SOD1 (Supplementary Fig.

7a,b). Importantly, Cu(I) added to E. coli cells either as an acetonitrile or glutathione

complex did not become available to E,Zn-SOD1 (Supplementary Fig. 7c). In-cell NMR

spectra also showed that in E.coli the SOD1 intrasubunit disulfide bridge is oxidized in a

sizable fraction (around 50%, Supplementary Fig. 7d). Unlike bacteria, copper entrance in

eukaryotic cells and its delivery to copper-binding proteins require a number of steps,

involving specific chaperones responsible of its intracellular trafficking17,18. Accordingly,

only around 25% of the recombinant SOD1 protein incorporated copper, again in the Cu(I)

state, when human cells were cultured in the presence of Cu(II) (Fig. 2a). The remaining

SOD1 fraction contained only one zinc ion per subunit, as observed from the 1H histidine

signals in the 1D 1H NMR spectrum (Fig. 2a-c). Additionally, the spectra of the 15N-Cys

selectively labelled protein showed only ~20% SOD1 intrasubunit disulfide bond formation

(Supplementary Fig. 8). Copper incorporation of SOD1 in eukaryotes is known to be

dependent on the CCS protein19,20. Although a basal expression-level of the hCCS gene

does occur during normal cell growth, it is likely that the amount of SOD1 produced in our

experimental setup was too high to allow for complete copper insertion via the CCS-

dependent pathway. However, a CCS-independent copper insertion pathway has also been

reported for human SOD121,22 and might have contributed to the partial formation of

Cu(I),Zn-SOD1 observed (Fig 2a).

Simultaneous overexpression and isotopic enrichment of both SOD1 and CCS caused a

reduction in the overall SOD1 expression levels (Supplementary Fig. 2). Nevertheless,

SOD1 signals were still easily identified (Fig. 3a and 3b), with minimum interference from

CCS due to the larger molecular mass of the latter. Intracellular protein concentration in

these experiments ranged between 70±10 μM and 45±10 μM SOD1, and between 50±10 μM

and 15±3 μM CCS (Supplementary Fig. 2). Co-expression of SOD1 and CCS in zinc

supplemented medium resulted in dimeric, zinc-containing, SOD1 species. No difference in

SOD1 metal content was found with respect to the cell sample with basal CCS level

(Supplementary Fig. 9). However, spectra recorded from cells co-expressing the two

proteins revealed a partial oxidation (around 50%) of the SOD1 intrasubunit disulfide bond

(Fig. 3a). This result is consistent with a mechanism of CCS-mediated SOD1 disulfide

oxidation which, unexpectedly, does not require copper insertion into SOD1.

When Cu(II) was added to cells co-expressing SOD1 and CCS, a higher ratio of Cu(I),Zn-

SOD1 to E,Zn-SOD1 was obtained (~1:1, Fig. 2c) compared with cell samples with basal

CCS level (Fig. 2a), indicating that CCS promotes copper incorporation in SOD1. The redox

state of SOD1 cysteines 57 and 146 is affected by both CCS overexpression and copper

presence. Indeed, when cells overexpressing both SOD1 and CCS were incubated with

Cu(II), the intrasubunit disulfide bridge of SOD1 was completely oxidized (Fig. 3b).
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We attempted to explore the above mechanism at lower concentrations of SOD1 and CSS,

as close as possible to the reported physiological levels11. At 45±10 μM SOD1 and 15±3

μM CCS, complete disulfide formation in E,Zn-SOD1 was observed (Supplementary Fig.

10a,b), whereas additional incubation with copper resulted in the complete formation of

oxidized Cu(I),Zn-SOD1 (Supplementary Fig. 10c,d). These results suggest that only the

relative amounts of species are affected by recombinant protein expression levels, but not

the sequence of maturation events. We speculate that even lower levels of SOD1,

undetectable by NMR, would result in complete formation of mature SOD1, even at

endogenous levels of CCS and copper. In such conditions, however, no information on

intermediate maturation steps would be obtained. By overexpressing only SOD1,

components of its maturation pathway are not sufficiently abundant to complete the process,

and therefore intermediate SOD1 maturation states are detected. Furthermore, by selectively

increasing single components (e.g. CCS or copper), specific steps of SOD1 maturation can

be recovered, and different SOD1 states detected. With this “knock-in” approach, combined

with some a priori knowledge of the components involved, one can understand which of

them are necessary for each step of the process.

The key steps of SOD1 maturation observed by in-cell NMR are schematically summarized

in Fig. 3c. Specifically, we found that: apo-SOD1 is largely unfolded and monomeric in the

HEK293T cytoplasm; zinc uptake occurs without the need of a chaperone; copper uptake

and oxidation of the Cys57-Cys146 disulfide bond occur partially in cells exposed to Cu(II)

(which is reduced to Cu(I)); copper loading and complete oxidation of the above mentioned

cysteines is achieved in cells co-expressing SOD1 and CCS. Importantly, our experiments

also reveal that, within a physiological context, CCS is able to oxidize the intramolecular

SOD1 disulfide bond in the absence of copper binding to SOD1. This finding, while

consistent with the previously reported effect of CCS in promoting SOD1 disulfide bond

formation23, demonstrates that the cysteine oxidation step can occur in vivo independently

of copper transfer, thus differing from the mechanism observed in vitro24.

We sought to establish whether the approach described here is applicable to proteins beyond

hSOD1 and selected four other proteins [Mia40, Atox1, glutaredoxin-1 (Grx1) and

thioredoxin (Trx)] with different properties including protein fold, binding of metal ions and

redox potential of cysteine residues. Following the protocol we established for SOD1 and

CCS, all these targets were highly expressed and visible in the 1H NMR spectra above the

cellular background (Supplementary Fig. 11). Mia40 and Atox1 could be detected

on 1H-15N spectra on uniformly 15N labelled cell samples (Supplementary Fig. 12a,b). Grx1

and Trx only became visible upon cell lysis, suggesting that some interaction occurs in the

cytoplasm which makes the protein tumbling slower on average, thus broadening the amide

crosspeaks beyond detection (Supplementary Fig. 12c,d). Such molecules may be

successfully characterized through different NMR techniques (such as solid-state MAS

NMR for slow tumbling proteins)25.

Successful application of in-cell NMR to proteins expressed endogenously in mammalian

cells relies on efficient cDNA transfection, relatively high protein expression levels,

applicability of different labelling strategies and maintenance of cell integrity during

measurements. All these aspects have been successfully addressed in this study, allowing us
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to follow the sequential, physiological order of the events in the SOD1 post-translational

modification process, information that cannot be retrieved in vitro. To our knowledge, this is

the first time a complete protein maturation process has been followed in a living cell, in

atomic detail. Importantly, this strategy may be applicable for many other protein targets,

and thus opens the way for a broad range of molecular level, in-cell structural studies of

proteins.

Online Methods

Constructs

cDNAs encoding full-length human SOD1 (amino acids 1-154, GenBank accession number:

NP_000445.1), CCS (amino acids 1-274, GenBank accession number: NP_005116.1),

Mia40 (amino acids 1-142, GenBank accession number: NP_001091972.1), Atox1 (amino

acids 1-68, GenBank accession number: NP_004036.1), glutaredoxin-1 (amino acids 1-106,

GenBank accession number: NP_001112362.1) and thioredoxin (amino acids 1-105,

GenBank accession number: NP_003320.2) were amplified by PCR and cloned into the

pHLsec10 vector between EcoRI and XhoI restriction enzyme sites to generate the

mammalian expression plasmids. All clones were verified by DNA sequencing.

Cell culture and transfection

HEK293T cells were maintained in Dulbecco’s Modified Eagle’s Medium (DMEM high

glucose, D6546, Sigma) supplemented with L-glutamine, antibiotics (penicillin/

streptomycin) and 10% foetal bovine serum (FBS, Gibco) in uncoated 75 cm2 plastic flasks,

and were incubated at 310 K, 5% CO2 in a humidified atmosphere. Cells were transiently

transfected with the pHLsec plasmid containing the hSOD1 cDNA using polyethylenimine

(PEI), as described elsewhere10. Different DNA:PEI ratios were tested for maximizing

protein expression (PEI was kept constant at 50 μg/flask), and an optimal ratio of 1:2 was

found (25 μg/flask DNA, 50 μg/flask PEI). For co-expression of SOD1 and CCS, cells were

transfected with plasmids containing hSOD1 and hCCS constructs in different amounts and

ratios. The highest expression of both proteins was obtained by transfecting in a 1:1:2

hSOD1:hCCS:PEI ratio, thus doubling the total DNA amount. Lower expression levels of

SOD1 were obtained by transfecting cells with a 1:4 hSOD:PEI ratio. To decrease the

expression levels of both proteins, cells were transfected with a 1:1:4 hSOD1:hCCS:PEI

ratio. PEI was always kept constant at 50 μg/flask. Different times of SOD1 expression were

tested (1, 2, 3, 6 days), and the highest amount of protein was reached after 2 days (48

hours) of expression. During protein expression, cells were incubated at 310 K in 75 cm2

flasks. Commercial DMEM media were used for unlabelled in-cell NMR samples:

BioExpress6000 medium (CIL) was used for uniform 15N labelling, while for selective 15N-

cysteine labelling a reconstituted medium was prepared following the DMEM (Sigma)

reported composition, in which 15N-cysteine was added together with all the other

unlabelled components. All expression media were supplemented with 2% FBS. Zn(II) was

supplemented as ZnSO4, which was added to the expression media to a final concentration

of 10 μM immediately after transfection. Basal zinc concentration was calculated by

considering 45 μM zinc present in the FBS, as reported by Sigma-Aldrich Media Expert

(http://www.sigmaaldrich.com/life-science/cell-culture/learning-center/media-expert.html)
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Cu(II) was supplemented as CuCl2, added to a final concentration of 100 μM after 48 hours

of protein expression, and incubated for 24 hours. Protein expression levels were monitored

by comparing the protein band intensities in the cell extracts with bands of in vitro samples

of known concentration run on Coomassie-stained SDS-PAGE.

Human cell samples for in-cell NMR

Samples for in-cell NMR were prepared following a reported protocol3 with some

variations: HEK293T cells from a 75 cm2 culture flask were detached with trypsin-EDTA

0,05% (Gibco) and resuspended in 20 mL DMEM containing 10% FBS to inactivate trypsin.

Cells were gently centrifuged (800 g), resuspended in 10 mL PBS, washed once with PBS

and finally resuspended in one cell pellet volume of DMEM medium supplemented with 90

mM glucose, 16 mM HEPES buffer, 20% D2O (for a final 10% D2O amount). The cell

suspension was transferred to a 3 mm Shigemi NMR tube; the glass plunger was not used.

Cells were allowed to settle at the bottom of the tube, thus filling up the active coil volume.

The supernatant was kept during the NMR experiments to obtain good field homogeneity.

After the experiments, cells were resuspended in the supernatant, removed from the NMR

tube and spun down again to collect the medium for protein leakage check (Supplementary

Fig. 13). Cells were lysed by freeze/thaw method after suspending them in one pellet

volume of PBS buffer supplemented with 0.5 mM EDTA and AEBSF (4-(2-Aminoethyl)

benzenesulfonyl fluoride hydrochloride). The lysate was centrifuged at 16000 g, 30′, 4°C

and the cleared cell extract was collected for NMR and SDS-PAGE analysis.

NMR experiments

NMR experiments were acquired at a 950 MHz Bruker Avance™ III spectrometer equipped

with a CP TCI CryoProbe™. 1D 1H and 2D 1H,15N-SOFAST-HMQC26 spectra were

acquired at 305K. The total acquisition time for each cell sample ranged from 1 to 2 h. The

supernatant of each cell sample was checked in the same experimental conditions, in order

to exclude the presence of any signal arising from the protein leaked out of the cells. In the

above experimental conditions, very low protein signal was detected in the external medium

(< 10% of the signal in cells). The same NMR spectra were also acquired on the cell

extracts. Cell viability before and after NMR experiments was assessed by Trypan Blue

staining27. Cell viability remained above 90%, as damaged cells ranged from 3% before the

experiments to 8% after the experiments.

E. coli cell samples

Samples of E. coli cells expressing human SOD1 were prepared as previously described15.

For copper incorporation experiments, after 4 h expression of SOD1 cells were incubated

with either 100 μM Cu(II)SO4, Cu(I)-acetonitrile complex or Cu(I)-glutathione complex for

15′. Cells were then washed once with M9 buffer and collected for NMR sample

preparation. NMR spectra on E. coli cell samples were acquired at 305K at an 800 MHz

Bruker Biospin™ spectrometer equipped with a TXI CryoProbe™.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Zn(II) added to the culture medium promotes binding of one Zn2+ ion per apo-SOD1
subunit in the cytoplasm
1H-15N SOFAST HMQC spectra were acquired on human cells expressing 15N-cysteine

labelled SOD1: a, in absence of metals; b, with Zn(II) added to the culture medium.

Assigned cysteine residues are indicated in red. When two species of SOD1 are present,

labels indicate the species to which each crosspeak belongs (E,E-SOD1SH: reduced apo-

SOD1; E,Zn-SOD1SH: reduced SOD1 containing one Zn2+ ion per subunit). In both species,

cysteine 57 crosspeak is not detected. Unlabelled crosspeaks correspond to cellular

background signals; c, 1H-15N SOFAST HMQC acquired on human cells expressing
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uniformly 15N-labelled SOD1 in Zn(II)-supplemented medium. The region between 8.0 and

8.5 (1H) ppm contains overlapped signals arising from non-specific labelling of the cells,

which can be subtracted to obtain a cleaner spectrum (Supplementary Fig. 5). By comparing

the chemical shift of the assigned crosspeaks in the in-cell spectrum with backbone

assignments of SOD1 in different metallation and redox state in vitro13,14 it was possible to

assess the species present in the cytoplasm (Supplementary Fig. 6).
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Figure 2. Cu(II) addition to the culture medium induces Cu(I) binding to a fraction of
cytoplasmic SOD1
Histidine region of 1H NMR spectra were acquired on human cells expressing unlabelled

SOD1: a, in Zn(II)-supplemented medium, after incubation with Cu(II); b, in Zn(II)-

supplemented medium without incubation with Cu(II); c, in medium without added metals.

d, 1H NMR spectrum of human cells co-expressing SOD1 and CCS in Zn(II)-supplemented

medium, after incubation with Cu(II). Histidine protons unambiguously assigned to

Cu(I),Zn-SOD1 species are indicated.
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Figure 3. The redox state of SOD1 is influenced by both copper binding and the presence of CCS
1H-15N SOFAST HMQC spectra were acquired on human cells: a, co-expressing 15N-

cysteine labelled SOD1 and CCS in Zn(II)-supplemented medium; b, co-expressing 15N-

cysteine labelled SOD1 and CCS in Zn(II)-supplemented medium, after incubation with

Cu(II). Assigned cysteine residues are indicated in red. When two species of SOD1 are

present, labels indicate the disulfide redox state of each species. Unlabelled crosspeaks are

cellular background signals. c, drawing summarizing SOD1 maturation steps. Left cell:

SOD1 expressed in cells with no addition of metals is present mainly it the apo form, which
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is monomeric and partially unfolded. A fraction of SOD1 binds the zinc present in the

expression medium. Central cell: when Zn(II) (cyan) is added to the expression medium

SOD1 quantitatively binds one zinc ion per monomer and dimerizes; the intrasubunit

disulfide bridge is completely reduced. Right cell: when both Zn(II) and Cu(II) (blue) are

added to the expression medium, and CCS is co-expressed, a fraction of SOD1 binds Cu(I)

(orange); the disulfide bridge is completely oxidized (yellow circles).
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