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Preparing a quantum system in a pure state is ultimately limited by the nature of the system’s evolution in
the presence of its environment and by the initial state of the environment itself. We show that, when the
system and environment are initially uncorrelated and arbitrary joint unitary dynamics is allowed, the
system may be purified up to a certain (possibly arbitrarily small) threshold if and only if its environment,
either natural or engineered, contains a ‘‘virtual subsystem’’ which has the same dimension and is in a state
with the desired purity. Beside providing a unified understanding of quantum purification dynamics in
terms of a ‘‘generalized swap process,’’ our results shed light on the significance of a no-go theorem for exact
ground-state cooling, as well as on the quantum resources needed for achieving an intended purification
task.

C
ooling of quantum systems toward their ground state plays a central role across low-temperature physics
and quantum science, by providing the key to unlock novel phases of matter and quantum behavior – as
exemplified in settings ranging from laser cooling of atoms and molecules1–3 to dynamical nuclear polar-

ization in solid- and liquid-state nuclear magnetic resonance4,5, and cooling of mechanical resonators6–10. From a
quantum control standpoint, the task of cooling (or ‘‘refrigeration,’’ in the language of quantum thermodyn-
amics11) may be viewed as an instance of dissipative pure-state preparation, which is in turn closely related to the
more general task of purification – namely, the ability to steer the system from an arbitrary initial state to a final
state with higher purity. Within quantum information processing (QIP), access to pure states is presumed in all
quantum computation models that can provably achieve an exponential speed-up over classical ones12,13, and cold
ancilla qubits are critical to the success of fault-tolerant quantum error correction14. As a result, schemes for
cooling and purification are being actively investigated15–17, and underlying assumptions and implications for-
malized with added rigor18–21.

While in practice a variety of system-dependent imperfections and technological constraints will inevitably
hinder the achievable performance, a fundamental question is to determine what ultimate limitations may
nevertheless exist on the sole basis of some generic, system-independent assumptions on the underlying dynamics.
Specifically, assume that arbitrary unitary evolution is allowed on the target system S together with its envir-
onment E, starting from arbitrary factorized initial conditions. To what extent does the initial, typically highly-
mixed state of E, limit the degree of purity attainable on S in principle? Conversely, if the environment E and its
initial state can be controllably engineered, what are the minimal resources for purification (cooling) of S to be
guaranteed to a prescribed accuracy?

Our main contribution in this work is the identification of necessary and sufficient conditions for exact as well as
approximate purification and ground-state cooling, given the above ideal scenario. Our starting point is a trivial
example: if both S and E are two-dimensional systems (qubits), purification of S is clearly possible in principle
only if the initial state of E has a lower entropy, in which case the optimal purification dynamics simply amounts
to swapping the two initial states. In a general open-system setting, our strategy is to make precise the intuition
that purity can still only be exchanged but not created between subsystems, albeit the latter need no longer
coincide with the natural ones. The relevant notion is provided by the concept of a ‘‘virtual’’ subsystem as a factor
of a subspace of a larger state space, as introduced by Knill et al.22 in the context of quantum error correction and
extensively used in QIP23–28.

Our results complement existing work and advance current understanding in several ways. While a no-go
theorem for ground-state cooling under initial system-thermal bath factorization was recently established in
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Ref. 20, our analysis further clarifies that such a no-go strictly applies
only to exact cooling. Notwithstanding initial factorization, no fun-
damental limit exists to arbitrarily accurate purification and ground-
state cooling in principle, so long as the environment is effectively
infinite-dimensional, and capable of supporting a sufficiently pure
virtual subsystem. From a quantum-simulation standpoint, this rein-
force the conclusion that a simulated ancillary environment consist-
ing of a single qubit suffices for enacting arbitrary open-system
dynamics, so long as it can be measured and reset to a sufficiently
pure state29, as recently demonstrated in trapped-ion experi-
ments30,31. Conceptually, our analysis points to a generalized swap
process as the unifying physical mechanism through which any puri-
fication or groundstate cooling dynamics may ensue from joint unit-
ary evolution, as opposed to known special instances limited to small
dimension and/or a fixed (thermal) initial environment state20,21.
From an open-system quantum-control perspective, our general pic-
ture may be exploited to design procedures for purification and
ground-state cooling via environment (or ‘‘reservoir’’) engineering,
as potentially relevant to a growing number of quantum technolo-
gies, see e.g. Refs. 29,32,33 and references therein. Interestingly,
within quantum foundations, our results have also implications for
dynamical reduction models34: in order for the ‘‘wave-function col-
lapse’’ predicted by the standard von Neumann postulates to be
consistently reproduced by underlying open-system dynamics, the
environment interacting with the system must, again, harbor a suffi-
ciently pure virtual subsystem.

Results
Setting. The general setting we consider is depicted in Fig. 1. The
target quantum system S, with associated Hilbert space HS of
dimension dS, is coupled to a quantum environment E, with
associated Hilbert space HE of dimension dE, which may generally
include both a component that is not directly controllable (a physical
‘‘bath’’, B) and a fully controllable auxiliary system (or ‘‘ancilla’’, A).

We take dE $ dS, so that we may decompose dE ; dS dF 1 dR, with dF

being is the integer part of dE/dS, and dR , dS the rest. While we
further assume that dS , ‘ in what follows, we may formally extend
our results to infinite-dimensional target systems of interest (notably,
quantum oscillators) by imposing a finite-energy constraint.

A key assumption is that no correlations are initially present
between the constituents of the joint system, i.e., the initial state is
factorized, rSE 5 rS fl rE, with rE a trace-class operator in case
dE 5 ‘. Other than that, and unlike in Refs. 20,21, no restriction is
placed on either rS or rE which, in particular, need not be thermal.
We shall denote by {lj(rE)} the eigenvalues of rE, considered with
their multiplicity and in non-increasing order.

While the inclusion of both a bath and an ancillary system allows
for different physical scenarios to be discussed within the same
framework (see caption), the central mathematical assumption is
that suitable Hamiltonian control is available on S 1 E together, so
that any unitary operator in HSEð Þ can be obtained at some time T.
In control-theoretic terms, this is equivalent to assuming complete
joint propagator controllability35,39. Hence, at any given time T, the
joint evolution of S 1 E is described by some USE(T) that we are free
to choose. The conditions for this to be possible have been extensively
investigated within the geometric control framework. At least ifHSE

has finite dimension, complete controllability is generic35, albeit effi-
cient constructive methods for control design are still object of
ongoing research, along with controllability conditions for infinite-
dimensional quantum systems40,41.

Starting from factorized initial conditions, the reduced state of the
system after the unitary (controlled) evolution takes place is given by

r’S:TrE r’SEð Þ~TrE USErS6rEU{
SE

� �
: ð1Þ

Exact purification of S is attained if r’S is pure irrespective of the
initial state rS, that is, r’S: yj i yh j for some yj i[HS, so that
Tr r’S

2� �
~1. However, this requirement is too strong in practical

situations of interest. We say that (e-)approximate purification of S
can be attained if the state of S may be brought to within distance e
from a pure state irrespectively of the initial rS, that is, there exists
yj i[HS such that

d r’S, yj i yh jð Þƒe, VrS: ð2Þ

Here, d X,Yð Þ: 1
2

Tr X{Yj jð Þ~ 1
2

X{Yk k1 is the quantum total-

variation distance, which is a natural measure of distinguishability
between quantum states12,26,27. (Note that the robustness requirement
with respect to the system initialization makes our purification
notion stronger than used in both Refs. 20,21. For given initial rS

and rE with known spectrum, an upper bound on the purity of the
final state r’S may be additionally established21.) Exact purification is
recovered by requesting e 5 0. In the following, we shall consider
0ƒe=1.

The fact that the joint dynamics rSE.r’SE is unitary is equivalent
to the preservation of the spectrum of the joint density operator at
any time. However, one still intuitively expects purification of a
‘‘portion’’ of the overall system to be possible in an appropriate sense,
the limitations on what can be achieved stemming from the initial
state of E. Let us first consider a trivial example.

Example 1.– Suppose that both the target system and the envir-
onment are a qubit. The factorized initial state can then be parame-
trized by the maximum eigenvalue of its two components rS, rE, say,
1/2 # pS, pE # 1 respectively, with the value 1/2 corresponding to a
fully mixed state. That is, rSE 5 diag(pS, 1 2 pS) fl diag(pE, 1 2 pE).
Since for qubits the von Neumann’s entropy S rð Þ is completely
determined by, and is a decreasing function of, the maximum eigen-
value of the state, we can pursue a direct information-theoretic ana-
lysis. Achieving maximal purification is thus equivalent to achieving
the (reduced) state r’S in Eq. (1) with minimum entropy with respect

Figure 1 | The system of interest, S, may be generally coupled to a

quantum bath, B, and an engineered auxiliary system, A. We collectively

refer to the pair (B, A) as the environment. The initial state on

HSE:HS6HE~HS6 HB6HAð Þ is assumed to be fully factorized with

respect to this partition, i.e., rSE 5 rS fl rE 5 rS fl (rB fl rA). The joint

dynamics is generated by a total Hamiltonian of the form

H:H0zHc tð Þ~ HS6 Ez S6HEzHSEð ÞzHc tð Þ, where the control

Hamiltonian Hc tð Þ:
X

‘
u‘ tð ÞHc,‘ acts trivially on B. If dim HSEð Þv?,

complete propagator controllability is ensured in the generic case where

the Lie algebra of skew-symmetric operators generated by the control

Hamiltonians {iHc,,}, together with the natural ‘‘drift’’ Hamiltonian iH0, is

the whole dS|dEð Þ35. If so, there exist some time T . 0 and control

functions u,(t), t g [0, T], that allow to reach any element in HSEð Þ to

arbitrary precision. For our discussion, it is not essential to specify how the

control actions are enacted. For instance, if HA^C, our setting includes

open-loop control of S via a semiclassical controller36,37. In this case, B is

controlled via its interaction with S, yet indirect controllability of B given an

arbitrary initial state of S still suffices for complete joint controllability, as

we assume38. If dim HAð Þw1, dynamics in the presence of a coherent

‘‘quantum controller’’ and/or an an engineered quantum reservoir16,37 may

be accounted for. In this case, the uncontrollable component B may couple

to both S and A in general.
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to the choice of USE. Using the standard definitions of joint and
conditional entropy12, we may write

S r’Sð Þ~S Sð Þ~S S,Eð Þ{S EjSð Þ,

where S S,Eð Þ~S r’SEð Þ~S rS6rEð Þ, and the conditional entropy is
maximal when the state is factorized. Hence, the maximal purifica-
tion is attained by either swapping the states (when pE . pS), or
leaving them as they are (when pE , pS). In other words, some
purification is possible only if the entropy of the auxiliary qubit is
lesser than the one of the system qubit, and exact purification can
only be achieved if the former is in a pure state to begin with.

Despite its simplicity, this example suggests a general strategy to
tackle the purification problem: given a target system to be purified, if
in its environment we may identify a ‘‘subsystem’’ of the same
dimension, that is initially in a more pure state, all we need to do is
to swap these two states. Formalizing this idea leads to the rigorous
conditions we are seeking.

Main result: necessary and sufficient conditions for purification.
In common physical situations, subsystems may be naturally
identified with (distinguishable) quantum particles and/or degrees
of freedom, and their state space directly associated to different
factors of the overall tensor-product Hilbert space. This view is
not, however, sufficiently general to capture all relevant settings
that arise both physically and in the context of QIP applications.
Within quantum error correction theory, for instance, ‘‘noise-
protected’’ quantum-information-carrying logical degrees of free-
dom are associated with virtual subsystems that typically do not
correspond with the original qubit subsystems22,25,42. This more
general subsystem notion will also be key to our analysis.
Mathematically, a virtual quantum subsystem ~S of a larger system
E (the environment in our case) is associated with a tensor factorH~S
of a subspace of HE

22–25, that is, we may write

HE~ H~S6HF
� �

+HR, ð3Þ

for some factorHF and a (generally non-trivial) remainder spaceHR.
System E is said to be initialized in subsystem ~S if its state may be
decomposed as rE~r~S6rF+0R, where 0R is the zero operator on
HR and rF a state onHF ; in particular, E is initialized in a subsystem
pure state if r~S~ ~Qj i ~Qh j, for ~Qj i[H~S

26,43,44. While virtual subsystems
are most compactly described in terms of an operator-algebraic
characterization22,23,27,28, a basis with the correct tensor/direct
product structure may also be straightforwardly constructed (see
Methods). We are now ready to state our central result:

Theorem. Assume complete unitary controllability and factorized
initial conditions rS fl rE and on HS6HE. Then the following
conditions hold:

(i) For every e . 0, e-approximate purification of S may be
achieved if there exists a decomposition ofHE as in Eq. (3), with
H~S^HS, and a pure-state initialization of E in ~S,
~rE~ ~Qj i ~Qh j6rF+0R, such that

d rE,~rEð Þƒe: ð4Þ

(ii) Exact purification of S (e 5 0) may be achieved if and only if
the initial state of the environment has exactly the form
rE~ ~Qj i ~Qh j6rF+0R, for some ~Qj i[H~S.

(iii) e-approximate purification is always possible provided that
e§~e rEð Þ, where

~e rEð Þ:~e~1{
XdF

j~1

lj rEð Þ§0: ð5Þ

~e-purification is optimal whenever dR 5 0. In particular, arbit-
rarily accurate purification (~e~0, e . 0) is always possible for
dE 5 ‘.

Part (i) of the above theorem can be easily proven by considering a
unitary operator WSE that at some time T swaps the state of S with the
one of its isomorphic copy ~S, which is initially in a pure state ~Qj i ~Qh j.
With the precise definition of WSE being given in the Methods sec-
tion, the basic observation is to note that if rE satisfies Eq. (4), then it
can be written as

rE:~rEzDrE, 1
2 Tr DrEj jð Þƒe: ð6Þ

By implementing the swap dynamics, it thus follows that

r’S~TrE WSErS6rEW{
SE

� �

~TrE ~Qj i ~Qh j6 r~S6rF+0R
� �

zWSErS6DrEW{
SE

h i

: ~Qj i ~Qh jz ~E rS6DrEð Þ,

ð7Þ

where ~E is a trace-preserving completely-positive map and hence a
trace-norm contraction12. Since, together with Eq. (6), this implies
that

d r’S, ~Qj i ~Qh jð Þƒe, VrS ,

the target system S is e-purified, as desired. It is immediate to see that
the same argument also applies if e 5 0. In other words, the condition
of Eq. (4) is always sufficient for e-purification with e $ 0, indepen-
dently of the dimension and the initial state of E.

Establishing that Eq. (4) remains necessary is relatively straight-
forward for exact purification [as in part (ii)], but more subtle in the
approximate case [part (iii)]. While full proofs are given in the
Methods section, the gist of the argument showing why e-purifica-
tion is indeed always possible for e§~e may be summarized as follows.
Assume that for an initial state rSE 5 rS fl rE, the desired purifica-
tion can be attained at some final time T. Then there exists an
orthogonal projector, say, PT 5 jyæÆyjS fl IE, such that
Tr PT r’SEð Þ§1{e, for all rS. If we define a new projector
P0:U{

SEPT USE, this condition clearly also implies that Tr(P0rSE)
$ 1 2 e. This inequality shows that a pure subsystem of dimension dS

may be identified to within distance e from the initial joint state as
well. The tricky part is to establish that this in turn implies the
existence of an ~e-pure subsystem in the environment alone.

In order to do so, we may consider the worst-case scenario, that is,
a fully mixed (infinite temperature) initial state on S, with
rSE:~rSE~ 1=dSð ÞIS6rE . The idea is to construct a projector of
the form ~P0:I~S6P1, where P1 is a projector on dF eigenvectors
of rE with highest eigenvalues, which projects on a subspace, say
H1(= HE , of the same dimension of PT. This is the best possible
strategy whenever dR 5 0, and we may show that:

Tr P1rEð Þ~Tr ~P0~rSE

� �
~1{~e, ~eƒe: ð8Þ

Accordingly, the subspace H1, onto which P1 projects, collects
(1{~e) of the total probability. The existence of such a subspace
may be shown to be equivalent to the existence of a virtual subsystem
~S, such that E is ~e-close to pure-state initialization in ~S, as desired.

Our theorem points to an interesting dichotomy between finite-
vs. infinite-dimensional environments. If dE , ‘, e-purification of S
may or may not be achievable, depending on whether the conditions
on the spectrum of rE imposed by Eq. (8) are fulfilled, for arbitrary
rS. If dE 5 ‘, however, then ~e~0 and for any trace-class state of E
and any fixed e . 0, a sufficiently pure subsystem always exists. We
illustrate how to explicitly construct such a e-pure subsystem in the
case where the target system is a qubit, as the generalization to a
higher-dimensional system (qudit) is straightforward.

Let rE be a trace-class environment state, and consider its spectral

representation, say, rE~
X?

j~1
pj jj i jh j,

X?

j~1
pj~1. The iden-

tification of the desired e-pure subsystem may be accomplished by

www.nature.com/scientificreports

SCIENTIFIC REPORTS | 4 : 5192 | DOI: 10.1038/srep05192 3



identifying two orthogonal subspaces H1, H2(= HE each of dimen-
sion M, one of which accounts for (at least) (1 2 e) probability. Since
rE is trace class, hence its spectrum is absolutely summable, for any
e . 0 there exists an M large enough such that

X
jwM

pjve. Define

H1:span jj if gj~1,...,M , and H2 any M-dimensional subspace
orthogonal to H1. From these two subspaces, we can easily con-
struct a subsystem decomposition as in Eq. (3), with H~S

� �
~2,

dim HFð Þ~M, such that the final reduced state r’S is e-close to a pure
state. The strategy is pictorially illustrated in Fig. 2. The general qudit
case can be obtained along the same lines, by considering dS copies of
the M-dimensional subspace, where again only one accounts for (at
least) (1 2 e) of the total probability. Similar considerations also
apply to typical physical scenarios where dF<dE=dS<dE?dS, in
which case nearly arbitrary accuracy ~e<0 may still be achieved in
principle.

Our results show how there is no fundamental limit to arbitrarily
accurate purification when coupling the target system to an effec-
tively infinite-dimensional environment. Exact purification, on the
other hand, would require a sufficiently large number of eigenvalues
of rE to be precisely zero. Since this is not a generic condition, in
particular it cannot be obeyed if rE is thermal, the no-go theorem of
Ref. 20 is recovered. With this general conceptual framework in
hand, we next proceed to examine in more detail relevant applica-
tions, beginning from the special important case of ground-state
cooling.

Ground-state cooling given initial system-bath factorization.
Consider a setting where, as in Fig. 2, the environment consists of
a physical bath (E ; B), and let HS denote the (free) Hamiltonian of
the target system S, so that the corresponding initial energy is
Tr(HSrS).

Assume first that the minimum eigenvalue Emin of HS is not degen-
erate, in which case exact cooling of S to its ground state entails
preparing it in the unique pure state jygsæ corresponding to eigen-
value Emin. It is then a straightforward corollary of our theorem that
exact ground-state cooling can be obtained only if the environment
contains a virtual subsystem of the same dimension of the target,
which is initialized in a pure state. Under the complete joint unitary

controllability assumption, however, the ability to prepare a given
pure state also imply the ability to prepare any pure state in HS.
Hence, the existence of a pure virtual subsytem of the environment
is also necessary for exact cooling, fully consistent with the conclu-
sions reached in Ref. 20.

On the other hand, suppose that only e-approximate purification
may be achieved in the sense of Eq. (2), so that the state of S can only
be cooled down to within distance e . 0 from the unique ground
state jygsæ of HS. Then the final energy of the system may be esti-
mated as

Tr HSr0S
� �

~Tr HS 1{eð Þjygsihygsjzetex

� �h i

ƒ 1{eð ÞEminzeEmax,

where tex and Emax denote some state in the orthogonal complement
to the ground manifold and the maximal eigenvalue of HS, respect-
ively. Accordingly, approximate ground-state cooling may be
attained with an ‘‘excess’’ energy that is upper-bounded by eEmax.
We already observed that when E is infinite-dimensional, e can in
principle be chosen arbitrarily small, albeit not zero. Thus, as soon as
one allows for approximate yet arbitrarily good cooling, the no-go
theorem can be effectively evaded20.

If Emin has degeneracy dgs . 1, being able to prepare a pure state
still suffices for exact ground-state cooling, but is no longer needed.
Sufficient and necessary conditions for approximate cooling in a
degenerate subspace may be derived using the same reasoning used
in establishing necessity of our condition for ew~e – by finding a
virtual dS-dimensional subsystem ~S such that E is ~e-close to initiali-
zation in a subspace of dimension dgs in H~S.

Arbitrary purification and ground-state cooling with an engineered
qubit reservoir. From an open-system quantum-control perspective,
our theorem may be used to explicitly characterize what quantum
resources may suffice to arbitrarily purify/cool the target system, by
coupling it to a suitably engineered environment (E ; A). Let us focus
on the simplest yet paradigmatic case in which S is a single qubit and A

consists itself of N qubits, so that HA^ C
2� �6N

.
Building on the previous discussion, identifying the desired virtual

qubit-subsystem entails to splitHA into two isomorphic, orthogonal
subspaces. For the resulting ‘‘virtual state’’ to be approximately pure,
we further require the probability for A to be found in one of such
subspaces to be much higher than the one for its complementary. A
natural approach is to invoke a ‘‘typical subspace’’ argument. Let
each auxiliary qubit be prepared in the same state, say, r ; diag(q,
1 2 q), 1/2 # q # 1, with respect to a standard basis {j0æ, j1æ}, so that
the joint initial state rSA ; rS fl rflN. As N grows, the state of A will
populate with increasing probability the -typical subspace. Recall
that a sequence x(N) of N zeroes and ones, in which each entry is
chosen independently at random with probability P 0ð Þ~q,
P 1ð Þ~1{q, is -typical if12

2{N S xð Þzð Þ
ƒP x Nð Þð Þƒ2{N S xð Þ{ð Þ,

or, equivalently, its total Shannon entropy is -close to N times the
binary entropy of the single symbol. Let T N,ð Þ be the set of -typical
sequences. In the quantum case, such a set naturally generalizes to
the -typical subspace: in our qubit setting, the latter is spanned by
those computational basis states that include (approximately) qN
zeroes and (1 2 q)N ones:

HT N,ð Þ:span x Nð Þj i x Nð Þ[T N,ð Þjf g:

Let now PT N,ð Þ denote the orthogonal projection onto the -typ-
ical subspace. Then the following asymptotic result holds (see e.g.
Theorem 6.3 in Ref. 45):

Figure 2 | The target system (with dS-dimensional state space HS) is

coupled to an infinite-dimensional quantum bath (with state space HB),

initially in an arbitrary state rB. To construct a subsystem of B which is

arbitrarily (yet not perfectly) pure, we identify a finite-dimensional

subspaceH1 that collects the first M eigenvectors of rB accounting for (1 2

e) of the total probability. To complete this virtual subsystem, we only need

to identify (dS 2 1) orthogonal subspaces Hi, each of dimension M.

Purification is then attained by swapping the virtual subsystem’s state with

the one of the target system.

www.nature.com/scientificreports
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lim
N??

qtyp Nð Þ: lim
N??

Tr PT N,ð Þr
6N

� �
~1: ð9Þ

Furthermore, for any fixed w0 and a sufficiently large N, the size
of the typical subspace satisfies:

dim HT N,ð Þ
� �

ƒ2N S rð Þzð Þ:

Hence, if is sufficiently small, the dimension of the -typical
subspace becomes less or equal than half of the total space dimension
as soon as NS rð ÞvN{1, or, S rð Þv1{1=N . Therefore, provided
that the entropy of each of the auxiliary qubits is strictly less than one,

namely r=
1
2

I, the typical subspace’s dimension will become less

than half of the dimension ofHA for large enough N. If so, we know
how to explicitly construct a unitary transformation WSA that
achieves (optimal) ~e-purification in principle: it suffices to swap
the state of S with the state of a virtual qubit system ~S that exploits
the typical-subspace structure. We further illustrate this strategy by
specializing, again, to ground-state cooling.

Example 2.– Assume, similar to Example 1, that the initial state of
the target system rS ; diag(pS, 1 2 pS), with respect to the qubit
energy basis, say, {jy,æ} ; {jygsæ, jyexæ} and pS , q. The action of the
unitary transformation WSA may be explicitly described by intro-
ducing a factorized basis {jy,æ fl jj(N)æ} on HS6HA, where
{jj(N)æ < jjtypæ, jjntypæ} in the large-N limit, with {jjtypæ} and {jjntypæ}
denoting orthonormal bases for the typical subspace and its ortho-
gonal complement, respectively. The idea is then to swap <2NS rð Þ

typical basis states which have non-zero probability and are assoc-
iated to jyexæ, with <2NS rð Þ non-typical basis states which are in
tensor product to jygsæ but are associated to low probability. If we
compute the final energy of the system, by using Eq. (9) we obtain
Tr HSr’S½ �<qtyp Nð ÞEmin~ 1{eð ÞEmin, with arbitrarily small ~e (hence
e) as N R ‘, as desired.

Altogether, our results imply that, for a target qubit system, arbit-
rary accuracy in purification and cooling may be achieved through
fully coherent (unitary) interaction with sufficiently many copies of
any auxiliary qubit state which is not the completely mixed one. It is
interesting to notice, however, that repeated interactions with an
identically prepared qubit do not suffice in general: the generalized
swap operation needs to simultaneously operate on multiple qubits
of the engineered environment, pointing to an intrinsic non-
Markovian action.

Robust pure-state preparation with finite control iterations. As a
final application of our framework, our main theorem may be used to
understand and characterize the control resources involved in a
stronger form of purification, whereby the goal is to bring the state
of S to a predetermined target pure state yj itarget[HS, not necessarily
related to the system’s ground state – so-called ‘‘global asymptotic
stabilization’’ in control-theoretic parlance33,35,39,44. In particular, the
case where jyætarget is an entangled pure state on a multipartite n-
qubit target system provides an important quantum-stabilization
benchmark. While it is well-known that access to a single resettable
ancillary qubit A, along with complete unitary control over S and
fully coherent ‘‘conditional’’ interactions between A and S, suffices to
engineer arbitrary dynamics on S29,37 (and hence achieve the desired
stabilization task) in principle, our result sheds light on the
thermodynamical foundation of this result. With reference to the
general setting of Fig. 1, suppose for simplicity that no uncon-
trollable bath is coupled to S (HSB ; 0), and that B represents the
physical degrees of freedom which enact, possibly together with
coherent control between S and A, the resetting process on A.
Then, in order for stabilization of S to be achievable with arbitrary
accuracy e starting from an arbitrary environment state rE ;

rBflrA, an effectively infinite-dimensional environment is
necessary. Furthermore, exact pure-state stabilization is only
achievable provided that A may be perfectly refreshed, which in
turn requires B to be perfectly initialized in a pure, two-level
virtual subsystem. Remarkably, if these conditions are met, an
arbitrary n-qubit pure state jyætarget may in fact be dissipatively
prepared by using a finite number, n, of suitably defined control
iterations46.

Experimentally, controlled dissipation mechanisms are becoming
available in a growing number of scalable platforms for universal
‘‘digital’’ open-system quantum simulators, including trapped-
ion30,31 and superconducting qubit technologies47. In the above-
mentioned experiments on 40Ca1 ions, for instance, the required
re-initialization dynamics of the ancilla qubit to a reference pure
state was realized through a combination of coherent control on A,
in conjunction with optical pumping followed by spontaneous emis-
sion. While a number of details are important and require careful
consideration in practice, conceptually it is this step that ultimately
grants access to virtual subsystems whose states are sufficiently pure,
and can thus be swapped with those of the physical degrees of free-
dom to be purified and/or cooled.

Discussion
We have identified sufficient conditions for purification and ground-
state cooling of a quantum system of interest to be achievable in
principle, under the two assumptions of initial system-environment
factorization and complete unitary controllability. Such conditions
are also necessary in most realistic situations, where the environment
is much larger than the target system. While in essence these condi-
tions make rigorous an intuition that is both compelling and natural
in retrospect – namely, that purity can only be ‘‘swapped’’ across
appropriately defined quantum subsystems – we have shown how
these conditions allow to both elucidate fundamental limitations in
harnessing open-system dynamics as well as identify new opportun-
ities for control engineering. In particular, our analysis makes it clear
that arbitrarily accurate purification and/or ground-state cooling is
always possible in principle as long as the relevant environment is
effectively infinite-dimensional, with a no-go result20 only emerging
in the limiting case of zero error.

From a control-theory standpoint, an interesting direction for
further study is to characterize what (more stringent) limitations
on quantum purification and cooling may arise upon relaxing the
assumption of complete controllability for S 1 E. We envision that
the existence of a sufficiently pure virtual subsystem in the envir-
onment will still be a necessary and sufficient condition, albeit iden-
tification of the relevant subsystem structure will be carried out in
this case by exploiting the dynamical-symmetry decomposition
associated to the reachable control sub-algebra, in analogy to dynam-
ical error-control strategies and encoded tensoriality in QIP48,49.

Lastly, it is interesting to comment on our results in relationship to
the third law of thermodynamics in its dynamical formulation – the
so-called ‘‘unattainability principle’’, namely, the impossibility to
cool a system to absolute zero temperature in finite time11.
Throughout our discussion, we have deliberately made no explicit
statement on the time T needed to implement the required general-
ized swap transformation WSE(T). For a standard thermodynamic
setting where the bath is given, and is initially in a generic trace-class
state (say, thermal at non-zero temperature), we have showed that
arbitrarily small cooling error, e . 0, may be achieved only if a
sufficiently large subspace of the bath can correspondingly account
for less than e probability. This, in turn, translates into an increas-
ingly complex (energetically ‘‘delocalized’’) action of the swap trans-
formation WSE(T) to be implemented. Since realistic control
Hamiltonians are inevitably constrained (e.g., bounded in amplitude
and/or speed, as stressed in Refs. 15,16), the limit of perfect accuracy,
e R 0, can only be approached asymptotically in time, T R ‘. While
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this supports the validity of the third law under typical conditions, it
is our hope that our general subsystem-based approach may prove
useful to deepen our understanding of fundamental performance
bounds in more complex thermodynamic scenarios, including
‘‘quantum-enhanced’’ refrigeration as recently proposed in Ref. 50.

Methods
Subsystem construction and generalized swap operation. Starting from a general d-
dimensional Hilbert spaceH, a ‘‘virtual subsystem structure’’ as used in the main text
can be identified by constructing a basis with the correct tensor/direct sum structure.
The main steps may be summarized as follows:

. Identify a (d1 3 d2)-dimensional subspace H1,2, so that H^H1,2+HR, where

HR~H\
1,2:H7H1,2.

. Inside such a subspace, choose d1 mutually-orthogonal subspaces Hj,2, each of

dimension d2, so that we may decompose H1,2^+
d1
j~1Hj,2.

. Pick an orthonormal basis in each of the summands, say, {jwjæk, k 5 1, …, d2}, for
j 5 1, …, d1. We can then establish the following identification:

wj
�� 	

k
~jwjiS6 wkj iF , H1,2^HS6HF ,

and obtain the desired subsystem structure, with dim HSð Þ~d1, dim HFð Þ~d2,

respectively.

Consider now, specifically, a subsystem structure as given in Eq. (3) on the
environment Hilbert space, namely,HE~ H~S6HF

� �
+HR , and let {jyjæS}, wkj i~S


 �
,

{jj,æF}, {jxmæR} be orthonormal (ordered) bases forHS ,H~S ,HF ,HR , respectively. We
may define the required generalized swap unitary operator WSE through its action on
the element of an orthonormal basis. That is, consider the (ordered) basis ofHS6HE

given by:

jyjiS6 wkj i~S6 j‘j iF
n o

| jyjiS6 xmj iR
n o

,

for all j, k, ,, m. The action of WSE is then defined by:

WSE jyjiS6 wkj i~S6 j‘j iF
� �� �

~ ykj iS6jwji~S6 j‘j iF ,

WSE jyjiS+ xmj iR
� �

~jyjiS+ xmj iR:

8><
>:

Proof the main theorem. Assume that, as in the main text, we write dE 5 dS dF 1 dR,
with dR , dS # dE, and let rSE ; rS fl rE denote an arbitrary joint initial state on
HS6HE .

Proof of part (ii). The fact that the existence of an e-pure subsystem in the envir-
onment suffices for e-purification (e $ 0) has already been proved in the text. We
show here that for the case of exact purification (e 5 0), the existence of a purely-
initialized, dS-dimensional subsystem in HE is indeed also necessary.

Recall that exact purification is equivalent to the existence of an orthogonal pro-
jector, PT 5 jyæÆyjS fl IE, such that Tr PT r’SEð Þ~1, and that upon defining

P0:U{
SEPT USE , this also implies that

Tr P0rSEð Þ~Tr P0rS6rEð Þ~1, VrS: ð10Þ

This in particular means that the support of rS fl rE is included in the range ofP0. Let
us consider dS specially chosen initial states rS, associated to an orthonormal basis
{jwjæS} of HS , that is,

rS6rEð Þj~jwjihwjjS6rE, j~1, . . . ,dS:

Since their supports are mutually orthogonal, and each of them has dimension
rank(rE), it follows that:

rank P0ð Þ§
XdS

j~1

rank jwj
Sihw

j
Sj6rE

� �
~dS rank rEð Þ: ð11Þ

On the other hand, since rank(PT) 5 dE, we also have rank(P0) 5 dE. Together with
Eq. (11), this implies:

rank rEð Þƒ
dE

dS
,

and hence, being an integer, rank(rE) # dF. CallH1:supp rEð Þ5HE, and construct a
dS-dimensional virtual subsystem of HE as described above. By construction, rE is
purely initialized in the first elements of the basis associated to the dS-dimensional
subsystem ~HS , leading to the desired conclusion.

Proof of part (iii). Let us define the following two quantities [see also Eq. (5)]:

~e rEð Þ:~e~1{
XdF

j~1

lj rEð Þ,

eR rEð Þ:eR~
dR

dS
ldF z1 rEð Þ:

We next proceed to show that:

1. A lower bound e0 exists for purification of S, independently of the initial state rS;
2. Purification up to ~e~e0zeR is always possible by properly identifying a sub-

system in HE alone and then swapping it with the target.

1. Determining e0.– We look for necessary conditions on e . 0, so that e-purifica-
tion of S can be attained at time T by some joint unitary transformation USE.
Again, this means that there exists an orthogonal projector, PT 5 jyæÆyjS fl IE,
such that Tr PT r’SEð Þ§1{e, for all rS. Upon defining P0:U{

SEPT USE as
above, this also implies that

Tr P0rSEð Þ~Tr P0rS6rEð Þ§1{e, VrS: ð12Þ

Thus, a pure subsystem of dimension dS may be identified to within e-distance
from the joint initial state as well. While Eq. (12) must hold for all rS, in order to
determine the desired lower bound we consider a worst-case scenario where rS

5 (1/dS)IS and, correspondingly, the initial joint state rSE:~rSE~ 1=dSð ÞIS6rE.

1. In fact, consider a basis in which ~rSE is diagonal, ordered in such a way that its
eigenvalues are non-increasing. The eigenvalues of ~rSE are the eigenvalues of rE,
each multiplied by (1/dS) and repeated dS times. Given that P0 has rank dE, the
maximal purification achievable in this case correspond to P0 projecting on the
first dE eigenvalues. It is then easy to show that:

XdE

k~1

lk ~rSEð Þ~
XdF

j~1

lj rEð Þz
dR

dS
ldF z1 rEð Þ: ð13Þ

Since, to guarantee e-purification, the dE-ranked projector P0 must satisfy Eq.
(12) in particular for rSE~~rSE , Eq. (13) implies the following lower bound e0:

e§e0:~e{eR: ð14Þ

We remark that so far nothing guarantees that e0-purification is attainable for
any initial state.

2. Attaining~e-purification.– From Eq. (13), we infer that there exists a subspaceH1

ofHE alone, with dimension dF, that accounts for 1{~e~1{e0{eR of the trace
of rE. We can thus consider the subspace H1(= HE that collects only the one-
dimensional eigenspaces corresponding to the first dF eigenvectors of rE. The
last step is to start fromH1 to construct a virtual subsystem ~S, such that E is ~e-
close to pure-state initialization in ~S.

We can in fact identify additional (dS 2 1) orthogonal subspaces in HE , say,

Hj

 �dS

j~2, all isomorphic to H1 and composed of eigenspaces of rE, so that, by

following the general subsystem construction described above, have:

HE~ +

dS

j~1
Hj

� 
+HR^ H~S6HF

� �
+HR,

where H~S^HS , dim HFð Þ~dF , and HR~HE7+
dS
j~1Hj , dim HRð Þ~dR . Let P1 be

the orthogonal projector ontoH1, and define ~P0:IS6P1. By construction, ~P0 has
rank dSdF # dE. It thus follows that:

Tr ~P0~rSE

� �
~Tr P1rEð Þ~1{~e:

Now notice that with respect to the subsystem decomposition above, we may write
P1~ ~Qj i ~Qh j6IF+0R for some ~Qj i[H~S , and

rE:~rEzDrE~ ~Qj i ~Qh j6tF+0RzDrE,

with tF~
1

1{~e
diag l1 rEð Þ, . . . ,ldF rEð Þð Þ. Accordingly, with respect to the decom-

position HE~H1+H\
1 , we may write DrE~Dr1+Dr\

1 , with

Dr1~
{~e

1{~e
diag l1 rEð Þ, . . . ,ldF rEð Þð Þ,

Dr\
1 ~diag ldF z1 rEð Þ, . . . ,ldE rEð Þð Þ:

Since these matrices correspond to the positive and negative-semidefinite part of
DrE, it follows that
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1
2

Tr DrEj jð Þ~ 1
2

{Tr Dr1ð ÞzTr Dr\
1

� �� �
~~e:

We may thus conclude that rE admits a ~e-pure subsystem, and by using the gen-
eralized swapping we can guarantee ~e-purification of the target, as claimed.

Note that whenever dR 5 0, we have ~e~e0 and thus our generalized swap operator
attains the best possible purification. If, additionally, dE 5 ‘, this also formally
corresponds to dF 5 ‘ hence ~e~0. We have then explicitly shown in the main text
how to achieve purification up to arbitrary finite accuracy e . 0.
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