
A Network Approach to Genetic Circuit Designs
Matthew Crowther, Anil Wipat, and Ángel Goñi-Moreno*

Cite This: ACS Synth. Biol. 2022, 11, 3058−3066 Read Online

ACCESS Metrics & More Article Recommendations

ABSTRACT: As genetic circuits become more sophisticated, the
size and complexity of data about their designs increase. The data
captured goes beyond genetic sequences alone; information about
circuit modularity and functional details improves comprehension,
performance analysis, and design automation techniques. However,
new data types expose new challenges around the accessibility,
visualization, and usability of design data (and metadata). Here, we
present a method to transform circuit designs into networks and
showcase its potential to enhance the utility of design data. Since
networks are dynamic structures, initial graphs can be interactively
shaped into subnetworks of relevant information based on
requirements such as the hierarchy of biological parts or
interactions between entities. A significant advantage of a network
approach is the ability to scale abstraction, providing an automatic sliding level of detail that further tailors the visualization to a
given situation. Additionally, several visual changes can be applied, such as coloring or clustering nodes based on types (e.g., genes or
promoters), resulting in easier comprehension from a user perspective. This approach allows circuit designs to be coupled to other
networks, such as metabolic pathways or implementation protocols captured in graph-like formats. We advocate using networks to
structure, access, and improve synthetic biology information.

■ INTRODUCTION
The design and implementation of genetic circuits1−3 that
allow cells to perform predefined functions lie at the core of
synthetic biology.4,5 An example is the engineering of
increasingly complex Boolean logic circuits6 that use cascades
of transcriptional regulators. Other types of circuits are
routinely engineered, such as switches,7 counters,8 and
memories,9 using not only transcriptional, but also post-
transcriptional processes.10 Different host organisms such as
bacteria,11 yeasts,12 and mammalian13 cells are used to test
circuits in several applications,14 ranging from pollution
control15 to medical diagnosis.16 Furthermore, the function-
alities of genetic circuits will only improve as scientists control
the information processing abilities of biological systems:
signal noise,17,18 metabolic dynamics,19,20 context-circuit
interplay,21,22 stability,23 and more.24

Designs are often the first step in each iteration of a
synthetic biology project, and an implementation can be
challenging without a well-conceived design and solid
understanding. Furthermore, mathematical and computational
tools,25 automation methods,26,27 knowledge-based sys-
tems,28,29 and repositories30 assist circuit design to minimize
the iterations within the design-build-test-learn research cycle.
These processes generate a consortium of information beyond
DNA sequences, such as modularity, hierarchy, implementa-
tion instructions, dynamical predictions, and validation

strategies. However, this information is often disparate and
seldom formalized, resulting in inaccessibility and threatening
to undermine the success of such endeavors.

What has been termed network biology31 deals with the
quantifiable representation of complex cellular systems in
graphs and their study to characterize functional behavior.
Graph theory methods can assist the interrogation of network
structures in several ways32 for circuit designs, and produce
subnetworks of particular interest hidden within design
formats. Graphs are represented in the form of nodes
(individual points of data) and edges (relationships between
the data).33 For example, when building networks from circuit
designs, a repression relationship edge links two nodes
representing a regulator protein (e.g., aTc) and its cognate
promoter (pTet). The primary advantage of the approach
described in this work is that graphs are inherently dynamic.
Therefore, converting an existing genetic design into a network
structure allows user-driven analysis and visualizations beyond
current capabilities. Furthermore, a network approach is often

Received: May 16, 2022
Published: August 31, 2022

Research Articlepubs.acs.org/synthbio

© 2022 The Authors. Published by
American Chemical Society

3058
https://doi.org/10.1021/acssynbio.2c00255

ACS Synth. Biol. 2022, 11, 3058−3066

https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Matthew+Crowther"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Anil+Wipat"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="A%CC%81ngel+Gon%CC%83i-Moreno"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/showCitFormats?doi=10.1021/acssynbio.2c00255&ref=pdf
https://pubs.acs.org/doi/10.1021/acssynbio.2c00255?ref=pdf
https://pubs.acs.org/doi/10.1021/acssynbio.2c00255?goto=articleMetrics&ref=pdf
https://pubs.acs.org/doi/10.1021/acssynbio.2c00255?goto=recommendations&?ref=pdf
https://pubs.acs.org/doi/10.1021/acssynbio.2c00255?fig=agr1&ref=pdf
https://pubs.acs.org/toc/asbcd6/11/9?ref=pdf
https://pubs.acs.org/toc/asbcd6/11/9?ref=pdf
https://pubs.acs.org/toc/asbcd6/11/9?ref=pdf
https://pubs.acs.org/toc/asbcd6/11/9?ref=pdf
pubs.acs.org/synthbio?ref=pdf
https://pubs.acs.org?ref=pdf
https://pubs.acs.org?ref=pdf
https://doi.org/10.1021/acssynbio.2c00255?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://pubs.acs.org/synthbio?ref=pdf
https://pubs.acs.org/synthbio?ref=pdf
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://acsopenscience.org/open-access/licensing-options/


successfully implemented within systems biology to represent
both simulation models and knowledge models,34 for example,
to depict multiple omics data within a single network.

Early efforts in modeling biological systems using networks31

had a limitation: the lack of semantic labels for the types and
roles of entities and connections. For example, if two nodes
representing proteins are linked, it is helpful to know what type
of connection this is, like a binding, repression, or activation
interaction. To overcome this limitation, more recent efforts
are based on knowledge graphs, which are structured directed
graphs where nodes and edges contain known semantic labels
and specific rules govern their connectivity. Knowledge graphs
have been widely used in the biological sciences�from
building knowledge bases to predicting biological reac-
tions35�and are used here as the basis for structuring input
data. The addition of semantics allows for more complex
control over the underlying data, e.g., the ability to arrange
information into several layers of abstraction.

Data formats have emerged that effectively capture and
represent increasingly complex designs. A leading example is a
standard to implement a synthetic biology knowledge graph:
Synthetic Biology Open Language36 (SBOL), which describes
both structural (e.g., DNA sequences) and functional (e.g.,
regulation interactions) information. Also, the GenBank37

format, overwhelmingly used to formalize and share genetic
sequences, allows simple annotations to be defined, but they
are often open to interpretation due to a lack of standard
semantics and structure. The overarching challenge is to
access, use, visualize, and analyze this information so that
genetic designs become dynamic data structures that are easy
to handle computationally to improve accessibility. This
challenge underpins this work, where we propose networks
to help solve these problems.

Visualizing complex information is a challenge shared by
many areas of research, and networks offer a powerful
solution.38 Genetic circuit designs capture multidimensional
data, and a one-size-fits-all approach is often not feasible; i.e., a
single representation of a multidimensional data set cannot
satisfy the requirements of all users at once. For example, the
glyph approach of SBOL Visual39,40 allows researchers to
generate diagrams of somewhat abstract designs. However, the
level of detail must be selected in advance, and diagrams
remain fixed�the user cannot interact with the visualization to

rearrange it according to specific requirements. In contrast, a
network approach to visualization can be dynamically adjusted
according to user demands, such as highlighting proteins,
interactions, or hierarchy. Here, we demonstrate how to apply
network techniques to genetic circuit design data analysis with
a knowledge graph approach to produce tailored visual
representations of existing genetic designs automatically.
Graphs are not only visualizations of a design; they are the
design.

■ RESULTS AND DISCUSSION
Establishing Networks from Design Files. Figure 1

shows the process of structuring, querying, and visualizing the
data encoded within an existing genetic circuit design using
networks (see Methods for details). We used the design of the
NOR logic gate built by Tamsir and colleagues41�this gate
outputs 1 (i.e., target gene expressed) if both inputs are 0, and
outputs 0 (i.e., target gene not expressed) in any other case.
The NOR circuit is a frequently built device,6,42 since any logic
function can be achieved by assembling NOR gates only.

The functional diagram for the NOR gate (Figure 1A, top)
is often represented with the specific names of the input and
output compounds. In this case, the inputs are the inducers
arabinose (Ara) and anhydrotetracycline (aTc), and the output
reporter is yellow fluorescent protein (YFP). A more
implementation-focused diagram (Figure 1A, bottom) is
usually labeled with names for specific DNA parts�three
promoters in this example�and connections are explicitly
drawn. While these representations are often used to
communicate functional aspects of a design,39 they are not
the actual design, and the automatic generation of diagrams
from annotated files43 is still a challenge that deserves further
attention. Our approach to this issue is based on substituting
the design file with a network that can be directly visualized
and analyzed.

The quality and variance of the input data are fundamental
to meaningful representation. Without rich data, expressive
visualization is not feasible irrespective of the visualization
method. Here, we used a design of the NOR logic gate in
SBOL format, which captures data about genetic elements,
connections, proteins, types, roles, and more. Figure 1B shows
the results of building a network with all data and metadata

Figure 1. Converting and visualizing the design data of a NOR logic gate. (A) NOR logic function and genetic diagram, with inputs (arabinose;
aTc) and output (YFP). (B) Displaying all design information encoded from the source in network format. The network is unreadable but
computationally tractable. (C) A network is generated from the same design where only the physical elements (i.e., DNA and molecular entities
described) are shown. (D) Depending on their role, the network is adjusted to display colors for the nodes for visualization purposes. Roles (e.g.,
promoter, proteins) are automatically clustered by the same color. For clarity purposes, labels were not included, but full graphs are available in a
public repository (see Methods).

ACS Synthetic Biology pubs.acs.org/synthbio Research Article

https://doi.org/10.1021/acssynbio.2c00255
ACS Synth. Biol. 2022, 11, 3058−3066

3059

https://pubs.acs.org/doi/10.1021/acssynbio.2c00255?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/acssynbio.2c00255?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/acssynbio.2c00255?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/acssynbio.2c00255?fig=fig1&ref=pdf
pubs.acs.org/synthbio?ref=pdf
https://doi.org/10.1021/acssynbio.2c00255?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


available in the original design file. The complete design graph
is a multipartite containing numerous data types, for example,
parts, interactions, sequences, and metadata (e.g., entity role,
free text descriptions, or data type). Before building this graph,
design data was converted into an intermediate data structure
that is the same regardless of input format; that is, the resulting
graphs are compatible and not format-dependent (see
Methods). Although the network of Figure 1B is too
convoluted and visually meaningless because the significance
of nodes and connections is lost, computational manipulation
is easy to perform based on specific user requirements.44

Upon conversion, networks generated from designs are
suitable for analysis. Graph theory methods and tools45,46 (e.g.,
calculate shortest paths between entities, clustering, inter-
sections, etc.) are directly applicable to genetic designs since
nodes and edges have semantic information about types, roles,
and relationships. The network of Figure 1C is an example of
how to query the initial structure and is a specific subgraph
that focuses on physical elements only (e.g., DNA and
molecular entities) and omits metadata details according to
user requirements. By presenting a single perspective, overall
cognition is increased, but it is visually incoherent since the
position of nodes�its layout�is random. A final module
within our design-to-network conversion software deals with
visualizing graphs. The layout, which determines the arrange-
ment of nodes combined with other features such as color, size,
and shape,47 provides a visual representation of information
that ensures clarity and understanding. When a simple radial
layout (Figure 1D) (e.g., nodes do not overlap) is combined
with node clustering and coloring depending on types and
roles, it results in a final visual output that is considerably
clearer than Figure 1B.

In what follows we explore several complex features of
network designs that showcase the benefits (and limitations) of
having data captured by dynamic structures.
Dynamic Abstraction Levels. The design of a biological

system implies dealing with complexity. Therefore, it is crucial
to abstract away superfluous details to describe and

communicate the design with clarity.48 Nevertheless, what is
an appropriate level of abstraction for a circuit design? The
answer depends on two primary factors: what information
needs to be communicated, e.g., structural or functional, and
the requirements of the person consuming the information,
e.g., bioinformatician or wet lab scientist. Precisely, a vital
advantage of a network structure is its inherent ability to
arrange itself�dynamically�into several levels of abstraction.

Interaction networks provide a high-level metric with the
potential to scale, and this view into the data has been chosen
to display dynamic abstraction. The network in Figure 2A
displays all molecular, genetic, element types and relational
information, i.e., an interaction network. An interaction
network is generated by querying the data to find nodes and
edges with semantic labels denoting interactions and trans-
forming the following structure (see Methods for a more in-
depth description): physical entity (node) → interaction
(edge) → physical entity (node). One example is to abstract all
nongenetic elements (Figure 2B), limiting the information to
only the indirect effects of DNA based features (e.g.,
promoters and genes) on one another. Even in this case,
relational information remains; for instance, when expressing,
the coding sequence araC represses the promoter node
BBa_J23117. Therefore, the visualization is simplified by
abstracting mechanistic details such as the production of
regulatory proteins. The automatic level of detail can be taken
to a conclusion by displaying input and output elements for the
whole system (Figure 2C). The highest abstraction level allows
for quick circuit performance communication while abstracting
all implementation details and internal workings. This
oversimplification may be excessive for a relatively simple
design but could benefit more extensive and complex
structures. Scaling abstraction is achieved using transitive
closure, i.e., the reachability matrix to reach node n from node
v. Practically, it estimates the costs of different paths across the
network to merge nodes along a path49 (see Methods for an
expanded explanation). Within all graphs displayed in Figure 2,
biological roles and conceptual processes (interaction types)

Figure 2. Adjusting network abstraction levels using a NOR gate design41 modeled in SBOL (see Methods). (A) The NOR gate design is turned
into a network with all molecular and genetic elements (nodes); and interactions between entities (edges). (B) Nongenetic elements, i.e., non-
DNA based elements, are merged into the appropriate genetic elements. For instance, Ara and Ara-araC are merged into the pBAD node. (C)
Maximum abstraction into input−output data. The color scheme is constant regardless of abstraction levels.

ACS Synthetic Biology pubs.acs.org/synthbio Research Article

https://doi.org/10.1021/acssynbio.2c00255
ACS Synth. Biol. 2022, 11, 3058−3066

3060

https://pubs.acs.org/doi/10.1021/acssynbio.2c00255?fig=fig2&ref=pdf
https://pubs.acs.org/doi/10.1021/acssynbio.2c00255?fig=fig2&ref=pdf
https://pubs.acs.org/doi/10.1021/acssynbio.2c00255?fig=fig2&ref=pdf
https://pubs.acs.org/doi/10.1021/acssynbio.2c00255?fig=fig2&ref=pdf
pubs.acs.org/synthbio?ref=pdf
https://doi.org/10.1021/acssynbio.2c00255?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


are mapped to colors to encode information without an
increase in perceived complexity. For example, two nodes: yfp
(yellow) and YFP (red) are connected by an edge denoting
protein production (yellow). Also, the arrangement of the nodes
(layout) helps transmit the flow of information. In this case,
data flow from inputs (upper nodes) to outputs (lower nodes).
Hierarchical Trees. Hierarchically representing genetic

parts is a core principle to promote engineering in biology50

because this provides structure to increasingly complex circuits.
A tree data structure is a fundamental network topology
commonly used and represents data hierarchically and at an
arbitrary depth. Figure 3 shows the hierarchical network
corresponding to the digitalizer genetic circuit.51 This device is
far more complex than the previous NOR logic gate, both in
terms of interactions and dynamic performance, and therefore
ideal for showcasing the use of hierarchical representation. Its
hierarchical tree (Figure 3B), which is automatically built from
the design file, displays the conceptual modules into which
single parts are structured. This information is often particular
for each circuit�even similar or identical circuits�since it
follows the authors’ conceptual framework. In this case, the top
module represents the whole device and is broken down into
four modules, which are, in turn, leading either to the final

parts (e.g., promoters Pm and P_A1/04S) or to smaller
submodules (e.g., GFP cassette). Specific structural details that
refer to implementation strategies are essential in those genetic
circuits whose goal is to let users modify parts of them. The
digitalizer circuit is an example where the user is meant to
switch the reporter gene to their gene of choice. By browsing
through the network in Figure 3B, the user can find a module
where the reporter is included (named GFP cassette) and the
hard-coded procedure for cutting out the gene (restriction sites
NheI and EcoRI) without looking at the genetic sequence of
the design. Hierarchical representations are formed by finding
“parent-child” relationships (ownership labels attached to
edges to denote a node “owns” another node) encoded within
semantic labels.

Within the graphs displayed in Figure 2, biological roles are
mapped to colors to encode information without an increase in
perceived complexity. Also, the pyramid shape of the nodes
(layout) helps transmit information concerning the hierarch-
ical nature, with each level of the hierarchy decreasing in
abstraction from top to bottom.
Protein Interaction Maps for Representing the

Function. The information captured by designs can be
broadly split into two groups (discounting metadata): First,

Figure 3. A hierarchical network of increasing abstraction, from modules to parts. (A) Glyph representation of the digitalizer51 synthetic circuit.
The circuit is based on two negative interactions between the regulatory protein LacI and a small RNA and offers the ability to plug and play any
gene of interest the user wants to digitalize�the reporter gfp gene is used for characterization. The goal of the digitalizer circuit is to minimize the
leakage expression of a specific gene of interest while maximizing the full production. That is to say, to enlarge its dynamic range. (B) The
hierarchical network; nodes represent biological and conceptual entities, i.e., nodes at the bottom represent DNA parts and nodes at higher levels
represent modules (the top node is the entire circuit), and edges represent hierarchical direction. Circuit building details are highlighted within the
network, e.g., restriction sites or sequence to couple lacI to msf-GFP.

Figure 4. Displaying the protein interaction graph within a complex circuit design. (A) Boolean gene circuit 0x87.6 The circuit couples four NOR
logic gates and one OR logic gate (top diagram) and uses three molecular reagents, five regulatory proteins, five genes, and ten promoters (bottom
diagram). (B) Network with all encoded information from the source design. (C) Network with protein (nodes) and interaction (edges)
representing negative regulation.

ACS Synthetic Biology pubs.acs.org/synthbio Research Article

https://doi.org/10.1021/acssynbio.2c00255
ACS Synth. Biol. 2022, 11, 3058−3066

3061

https://pubs.acs.org/doi/10.1021/acssynbio.2c00255?fig=fig3&ref=pdf
https://pubs.acs.org/doi/10.1021/acssynbio.2c00255?fig=fig3&ref=pdf
https://pubs.acs.org/doi/10.1021/acssynbio.2c00255?fig=fig3&ref=pdf
https://pubs.acs.org/doi/10.1021/acssynbio.2c00255?fig=fig3&ref=pdf
https://pubs.acs.org/doi/10.1021/acssynbio.2c00255?fig=fig4&ref=pdf
https://pubs.acs.org/doi/10.1021/acssynbio.2c00255?fig=fig4&ref=pdf
https://pubs.acs.org/doi/10.1021/acssynbio.2c00255?fig=fig4&ref=pdf
https://pubs.acs.org/doi/10.1021/acssynbio.2c00255?fig=fig4&ref=pdf
pubs.acs.org/synthbio?ref=pdf
https://doi.org/10.1021/acssynbio.2c00255?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


constructional details, i.e., the DNA sequence and related data;
Second, functional information, i.e., nongenetic elements and
their relationships once built. While constructional details are
commonly communicated, functional elements are often less
clear and can provide insight that the former cannot offer.
Therefore, it is essential to complement sequence-based
designs and visualizations with regulatory information. Specific
interaction networks can provide a higher-level understanding
by visualizing regulatory proteins and abstracting relationships.
For example, the mechanisms that allow a regulator to bind its
cognate promoter and repress a downstream gene’s expression
into another regulator can be abstracted into a simple network
with two nodes (one per regulatory protein) with an edge
denoting effect. While this network lacks structural information
at the sequence level (e.g., implementation details), it
maximizes the functional aspect of the circuit.

The circuit-orientated diagram (Figure 4A, top) provides
only a high-level indication of function. Also, the construct-
oriented diagram (Figure 4A, bottom) offers more specific
functional and structural information, but even with this
modestly sized circuit can be challenging to comprehend
quickly. The graph representation of all data encoded within
the circuit design is shown in Figure 4B; while not displaying
helpful information, it gives an idea of how much data even a
design of moderate size has. From that data, a subnetwork with
regulators (nodes) and relationships (edges) is generated to
display the protein interaction map (Figure 4C), explicitly
displaying the three input regulators (LacI, TetR, and AraC)
and the output protein (YFP), including information flows.
This representation provides a middle ground between the
Figure 4A top and bottom details (or lack of). The layout
makes visualization easier since nodes are arranged following
functional criteria rather than sequentially. Moreover, the
Boolean logic of the network becomes apparent; for example,
the network contains a final OR logic gate based on the
regulators PhiF or BetI repressing the presence of YFP.

Figure 4B contained 201 nodes and 376 edges. From this,
141 nodes and 331 edges were pruned, i.e., edges which do not
relate to the protein interaction graph, such as metadata.
Finally, the graph traversals collapsed 52 nodes and 55 edges,
resulting in Figure 4B with 8 nodes and 10 edges.
Biodesign beyond Genetic Circuits. An advantage of a

network approach is that data integration is easier when the
underlying information is represented as graphs with unified
semantics. While this is useful when representing designs, as
many types of data constitute a design, this characteristic can
excel in unifying more disparate or loose data. We briefly cover
two such elements, namely metabolic pathways and exper-
imental protocols, and discuss the potential of networks to
provide a general framework for biodesign efforts.

Genetic circuits run inside a cellular host (except cell-free
systems52), and the host context, particularly its metabolism,
impacts circuit performance. A grand challenge is to enhance
genetic circuits by exploiting metabolic mechanisms that offer
dynamics beyond the genetic toolkit catalogue.20 As far as the
design process is concerned, a question that needs to be
answered is whether we can design merged metabolic−genetic
circuits.53 To this end, we show in Figure 5A that the
descriptions of a NOR logic gate and a metabolic pathway can
dynamically interact if they are encoded into compatible data
structures. Specifically, the NOR logic gate uses arabinose as
input, which interacts with the same node of the arabinose
degradation pathway. Having this information within the same
network allows formalizing the impact of metabolic dynamics
on one of the inputs of the target genetic circuit. The addition
of metabolic pathways is achieved by simply merging the new
data into the graph, while ensuring that already encoded data
within the graph as nodes are not duplicated, and instead, new
edges are attached to old nodes.

The goal of all circuit designs is to be built and validated
experimentally. However, the formalization of implementation
protocols into well-characterized steps and their representation
in standard data structures is still a significant challenge54−56

Figure 5. Networks beyond gene circuitry: coupling circuit designs to host metabolic networks and circuit-building protocols. (A) The network of a
gene circuit that uses arabinose as input can interact with the arabinose degradation pathway. Top figure: abstract network displaying critical
components of a NOR gate and the initial steps of the arabinose pathway. Bottom figure: linking the corresponding extended networks. (B) NOR-
gate experimental protocol formalized as a network structure. The network can be interactively adjusted to show different levels of abstraction.
Nodes represent reagents or subprotocols, and edges imply input/output relationships.

ACS Synthetic Biology pubs.acs.org/synthbio Research Article

https://doi.org/10.1021/acssynbio.2c00255
ACS Synth. Biol. 2022, 11, 3058−3066

3062

https://pubs.acs.org/doi/10.1021/acssynbio.2c00255?fig=fig5&ref=pdf
https://pubs.acs.org/doi/10.1021/acssynbio.2c00255?fig=fig5&ref=pdf
https://pubs.acs.org/doi/10.1021/acssynbio.2c00255?fig=fig5&ref=pdf
https://pubs.acs.org/doi/10.1021/acssynbio.2c00255?fig=fig5&ref=pdf
pubs.acs.org/synthbio?ref=pdf
https://doi.org/10.1021/acssynbio.2c00255?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


that deserves more attention. Therefore, finally, we showcase
the use of networks for representing experimental protocols.
Figure 5B shows the network that corresponds to the protocol
for building and testing the NOR gate used as an example.
Here, we chose (from the many options available) to represent
materials and methods as nodes and information flow as edges.
As in other examples, protocol graphs can also be adjusted at
different levels of abstraction. For instance, the assembly node
(Figure 5B, top) includes processes such as restriction,
purification, and ligation�which are conveniently clustered
to provide an overview of the inputs (i.e., what the assembly
process gets) and outputs (i.e., what it returns). This network
can be linked to the NOR graph at the top node of the
hierarchy, therefore having genetic circuits and protocol within
the same data structure. The integration and visualization of
protocol data are similar to handling design data but with a
critical difference. Primarily, the protocol data were encoded
using the autoprotocol standard, while all design data displayed
were modeled using the SBOL standard. However, when the
input data have been transformed into a formalized knowledge
graph, the same processes of querying semantic labels to
produce focused subgraphs can be applied (see Methods for
further discussion).

■ CONCLUSION
Here, we present a graph-based methodology for representing,
analyzing, and visualizing circuit design information. Our
approach transforms design files into networks, which are
dynamic structures able to be automatically modified on
demand according to user specifications.

When molecular entities, relationships, and other informa-
tion (e.g., types and roles) are encoded into nodes and edges
using semantic labels, a network representation of a genetic
design can be established. We have showcased the benefits of
this approach by converting into networks the structural and
functional data available within several genetic circuits.
Specifically, we showed that design networks could be
automatically adjusted to display different levels of detail,
from full molecular representation to input/output information

only and single-type graphs (e.g., protein interactions). The
selection of abstraction as a metric to showcase the potential of
networks is rooted in the intrinsic complexity of designs and
the need to separate high-value information from superfluous
details for a given purpose�thus improving understanding.
These network manipulations are only an initial subset of the
many possibilities available,45 since network science46 is an
active field with applications in many disciplines, including the
life sciences.31,57 For example, community detection58 is the
process of partitioning the network into multiple communities
and can help to reveal hidden relations that may not be
explicitly encoded. Also, network robustness59 is the process of
measuring the robustness of a network by exploring the
structure, which can be used to analyze the biological feasibility
of the design.

The intrinsic modularity of networks allows for coupling
genetic circuit designs to other data types providing these are
also represented in graphs. We have demonstrated this in two
different ways. We showed that a genetic circuit that uses
arabinose as input could be automatically coupled to the
arabinose degradation pathway graph. By doing this, circuit
designs can be extended to include information from their host
context, improving the functional description of the device.
Second, we have represented an implementation protocol in
network format. While this is just a preliminary effort, which
deserves further attention, it shows that protocol networks can
also interact with circuit designs for the sake of building a data
structure that can be shared along the design-build-test-learn60

(DBTL) research cycle. In short, when data are represented as
a graph, merging and clustering potentially disparate entities
become far less challenging tasks, and the graph could be the
key to unifying data.

In order to generate high-quality and information-rich
networks, designs should capture as much information as
possible. Indeed, networks can only work with the provided
data�networks cannot fabricate entirely new data, only
derived from existing sources. While commonly used formats,
such as GenBank, still capture information beyond genetic
sequences, this information can be challenging to manage

Figure 6. Workflow for transforming designs into dynamic network structures. (A) The input design should be formalized using existing formats.
We advocate for the use of SBOL for genetic designs since it allows for capturing complex information. (B) Input data is normalized into an
internal structure by mapping semantic labels or keywords to a predefined network data model. (C) The graph with all design information is
represented and ready for algorithmic analysis. (D) The builder module of the software produces specific subnetworks based on user requirements
and the resulting analysis over the original structure. (E) The visualizer calculates all visual specific elements (layout, color, shape, size) and renders
the graph accordingly. (F) The dashboard is the user aspect of the application. It handles the graph rendering and user inputs by sending callback
requests back to the server.

ACS Synthetic Biology pubs.acs.org/synthbio Research Article

https://doi.org/10.1021/acssynbio.2c00255
ACS Synth. Biol. 2022, 11, 3058−3066

3063

https://pubs.acs.org/doi/10.1021/acssynbio.2c00255?fig=fig6&ref=pdf
https://pubs.acs.org/doi/10.1021/acssynbio.2c00255?fig=fig6&ref=pdf
https://pubs.acs.org/doi/10.1021/acssynbio.2c00255?fig=fig6&ref=pdf
https://pubs.acs.org/doi/10.1021/acssynbio.2c00255?fig=fig6&ref=pdf
pubs.acs.org/synthbio?ref=pdf
https://doi.org/10.1021/acssynbio.2c00255?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


computationally due to the inherent informality and loose
connections. Therefore, we advocate using knowledge graphs
because more abstract questions can be formed, and more in-
depth analyses can be made with the data�more specifically, a
knowledge graph that implements the Synthetic Biology Open
Language (SBOL) standard, since it represents formal
information, such as modularity or hierarchy, that cannot be
captured otherwise.

As the complexity of genetic circuits increases, we advocate
for networks to manipulate, analyze, and communicate design
information. We hope networks can maximize the efficiency of
design automation procedures and help unification by
providing standard61 data structures for merged mathematical,
genetic, protocol, and other prominent data sets established
during synthetic biology projects.

Design visualization for the representation of genetic design
is only one application of networks. Networks have been
successfully applied to specification and analysis tasks within
and outside biology. Future efforts will focus on adding
information into the original data set, including the develop-
ment of methods to infer new data automatically when using
abstract projections.

■ METHODS
The software tool we developed to carry out the design-to-
network conversion is accessible from the repository available
at https://github.com/intbio-ncl/genet2.git. The repository
includes the software, instructions on how to run it, and
documents describing use-cases and examples. The tool runs
from a flask application where a neo4j graph datastore holds
design data and is visualized using dash-Cytoscape. Full graphs
of the networks used in this work, genetic design files, protocol
files, and network files were also included. All data required to
replicate the networks described in the Results and Discussion
are available at https://github.com/MattyCrowther/network-
visualisation-supplementary.git.

The functioning of our methodology is described in Figure
6, which shows the different steps (A−F) involved in
converting an input design into a visual representation of a
graph. Each step works as follows.
Input (Figure 6A). The method gets a design file as input.

It is important to note that the resulting networks will only
work with the information captured within the input file.
Therefore, the more information is captured, the more

extensive the graph analysis. For the examples of genetic
circuits shown in this work, we used SBOL36 files. Unlike other
standards for capturing genetic designs (e.g., GenBank), SBOL
is highly structured and formalized into specific semantic labels
that computer programs can easily understand. Besides, SBOL
allows for capturing data with different types of functional
information, including interactions and non-DNA components,
and our approach exploits that ability to represent information.
For the protocol network (Figure 5B), we used Autoprotocol
files. Other files in GenBank format and Opentrons OT2
format are provided in the repository as examples.
Conversion (Figure 6B). This step converts the input data

into a unique internal graph representation. This conversion
aims at unifying data structures, so that resulting interaction
graphs share the same features. We developed a knowledge
graph that formally specifies rules, including what semantic
labels can be used and how objects can connect, called an
ontology. This ontology captures physical (DNA, protein,
pipet, etc.) and conceptual (repression, binding, liquid transfer,
etc.) entities while not being specific to one format alone (e.g.,
SBOL-OWL62). This ontology is not designed for general use
(SBOL and Autoprotocol, for example, are preferable for data
exchange). Still, this approach allows for analysis across
formats, a method to produce viewgraphs does not need to
be created for each type, and the structure is tailored for
network analysis.
Graph (Figure 6C). The internal graph representation is

turned into a directed multigraph: a graph where edges are
directed, and multiple edges can connect two nodes. The
resulting network�embedding all design information�is
ready to receive queries from the user and perform algorithmic
analysis before returning specific subnetworks.
Builder (Figure 6D). This module handles the con-

struction of viewgraphs with specific representations, e.g.,
functional or structural. Multiple viewgraphs can be generated
from a single data source�the vast amount of graph theory
methods can be used to query the internal structure (Figure
6C) in various ways. For example, Figure 7A shows the
building of an interaction graph, where nodes are physical
entities and edges their relationships, and is achieved by graph
queries for specific semantic labels. Another function of this
module is scaling abstraction via transitive closure, which finds
reachable nodes with certain semantic tags from source nodes.
This method can be used to find protein interaction maps

Figure 7. Example output of the builder module. (A) The production of a view is the standard operation. In this case, the interaction graph of the
0xF7 circuit as described in Nielsen et al.6 (B) The previous graph is abstracted into protein interactions by transitive closure via depth-first-
searches (left) and intersected with another network (middle) to identify common nodes and subgraphs between the two (right).

ACS Synthetic Biology pubs.acs.org/synthbio Research Article

https://doi.org/10.1021/acssynbio.2c00255
ACS Synth. Biol. 2022, 11, 3058−3066

3064

https://github.com/intbio-ncl/genet2.git
https://github.com/MattyCrowther/network-visualisation-supplementary.git
https://github.com/MattyCrowther/network-visualisation-supplementary.git
https://pubs.acs.org/doi/10.1021/acssynbio.2c00255?fig=fig7&ref=pdf
https://pubs.acs.org/doi/10.1021/acssynbio.2c00255?fig=fig7&ref=pdf
https://pubs.acs.org/doi/10.1021/acssynbio.2c00255?fig=fig7&ref=pdf
https://pubs.acs.org/doi/10.1021/acssynbio.2c00255?fig=fig7&ref=pdf
pubs.acs.org/synthbio?ref=pdf
https://doi.org/10.1021/acssynbio.2c00255?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


(Figure 7B, left) which reduces the size of visualizations to
only protein entities. As a more complex example, Figure 7B
shows the intersection between two designs containing similar
elements. This method outputs the intersection of both graphs,
i.e., those nodes shared by both.
Visualizer (Figure 6E). The module handles all visual

elements, including layout, color, shape, and size, then
combines these with the viewgraph and returns a visualization.
Users can modify graph visuals on demand, e.g., layouts stop
edges from overlapping, and color encodes another data
dimension. These features are delivered by different methods,
e.g., semantic mapping to identify colors or spatial config-
urations to arrange information into geometric, hierarchical, or
force-directed layouts.
Dashboard (Figure 6F). Lastly, a dashboard renders the

graph, takes instructions from the user, and sends requirements
to the server for analysis. This user interface is the client-side
aspect of the application.

■ ASSOCIATED CONTENT
Special Issue Paper
Invited contribution from the 13th International Workshop on
Bio-Design Automation.

■ AUTHOR INFORMATION
Corresponding Author

Ángel Goñi-Moreno − Centro de Biotecnología y Genómica de
Plantas, Universidad Politécnica de Madrid, Instituto
Nacional de Investigación y Tecnología Agraria y Alimentaria
(INIA-CSIC), 28223 Madrid, Spain; orcid.org/0000-
0002-2097-2507; Email: angel.goni@upm.es

Authors
Matthew Crowther − School of Computing, Newcastle
University, Newcastle Upon Tyne NE4 5TG, United
Kingdom; Centro de Biotecnología y Genómica de Plantas,
Universidad Politécnica de Madrid, Instituto Nacional de
Investigación y Tecnología Agraria y Alimentaria (INIA-
CSIC), 28223 Madrid, Spain

Anil Wipat − School of Computing, Newcastle University,
Newcastle Upon Tyne NE4 5TG, United Kingdom

Complete contact information is available at:
https://pubs.acs.org/10.1021/acssynbio.2c00255

Author Contributions
M.C., A.W., and A.G.M. conceived the study. M.C. built the
network model and carried out the computational analysis. All
the authors (M.C., A.W., A.G.M.) contributed to the
discussion of the research, interpretation of the data, and
writing of the study.
Notes
The authors declare no competing financial interest.

■ ACKNOWLEDGMENTS
This work was supported by the Grants BioSinT-CM (Y2020/
TCS-6555) and CONTEXT (Atracción de Talento Program;
2019-T1/BIO-14053) Projects of the Comunidad de Madrid,
MULTI-SYSBIO (PID2020-117205GA-I00) and the Severo
Ochoa Program for Centres of Excellence in R&D (CEX2020-
000999-S) funded by MCIN/AEI/10.13039/501100011033
and the EPSRC studentship 34000024085 (M.C.)

■ REFERENCES
(1) Benenson, Y. Biomolecular computing systems: principles,

progress and potential. Nat. Rev. Genet. 2012, 13, 455−468.
(2) Brophy, J. A.; Voigt, C. A. Principles of genetic circuit design.
Nat. Methods 2014, 11, 508−520.
(3) Amos, M.; Goni-Moreno, A. Computational Matter; Springer,

2018; pp 93−110.
(4) Ausländer, S.; Ausländer, D.; Fussenegger, M. Synthetic

biology�the synthesis of biology. Angew. Chem., Int. Ed. 2017, 56,
6396−6419.
(5) Andrianantoandro, E.; Basu, S.; Karig, D. K.; Weiss, R. Synthetic

biology: new engineering rules for an emerging discipline. Mol. Syst.
Biol. 2006, 2, 2006−0028.
(6) Nielsen, A. A.; Der, B. S.; Shin, J.; Vaidyanathan, P.; Paralanov,

V.; Strychalski, E. A.; Ross, D.; Densmore, D.; Voigt, C. A. Genetic
circuit design automation. Science 2016, 352, aac7341.
(7) Lou, C.; Liu, X.; Ni, M.; Huang, Y.; Huang, Q.; Huang, L.; Jiang,

L.; Lu, D.; Wang, M.; Liu, C.; et al. Synthesizing a novel genetic
sequential logic circuit: a push-on push-off switch. Molecular systems
biology 2010, 6, 350.
(8) Friedland, A. E.; Lu, T. K.; Wang, X.; Shi, D.; Church, G.;

Collins, J. J. Synthetic gene networks that count. science 2009, 324,
1199−1202.
(9) Shipman, S. L.; Nivala, J.; Macklis, J. D.; Church, G. M.

Molecular recordings by directed CRISPR spacer acquisition. Science
2016, 353, aaf1175.
(10) Kawasaki, S.; Ono, H.; Hirosawa, M.; Saito, H. RNA and

protein-based nanodevices for mammalian post-transcriptional
circuits. Curr. Opin. Biotechnol. 2020, 63, 99−110.
(11) Wong, A.; Wang, H.; Poh, C. L.; Kitney, R. I. Layering genetic

circuits to build a single cell, bacterial half adder. BMC Biol. 2015, 13,
1−16.
(12) Chen, Y.; Zhang, S.; Young, E. M.; Jones, T. S.; Densmore, D.;

Voigt, C. A. Genetic circuit design automation for yeast. Nature
Microbiology 2020, 5, 1349−1360.
(13) Lillacci, G.; Benenson, Y.; Khammash, M. Synthetic control

systems for high performance gene expression in mammalian cells.
Nucleic acids research 2018, 46, 9855−9863.
(14) Meng, F.; Ellis, T. The second decade of synthetic biology:

2010−2020. Nat. Commun. 2020, 11, 1−4.
(15) De Lorenzo, V.; Prather, K. L.; Chen, G.-Q.; O’Day, E.; von

Kameke, C.; Oyarzuń, D. A.; Hosta-Rigau, L.; Alsafar, H.; Cao, C.; Ji,
W.; et al. The power of synthetic biology for bioproduction,
remediation and pollution control: the UN’s Sustainable Develop-
ment Goals will inevitably require the application of molecular
biology and biotechnology on a global scale. EMBO Rep. 2018, 19,
No. e45658.
(16) Slomovic, S.; Pardee, K.; Collins, J. J. Synthetic biology devices

for in vitro and in vivo diagnostics. Proc. Natl. Acad. Sci. U. S. A. 2015,
112, 14429−14435.
(17) Goñi-Moreno, Á.; Benedetti, I.; Kim, J.; de Lorenzo, V.

Deconvolution of gene expression noise into spatial dynamics of
transcription factor−promoter interplay. ACS synthetic biology 2017,
6, 1359−1369.
(18) Eldar, A.; Elowitz, M. B. Functional roles for noise in genetic

circuits. Nature 2010, 467, 167−173.
(19) Moser, F.; Espah Borujeni, A.; Ghodasara, A. N.; Cameron, E.;

Park, Y.; Voigt, C. A. Dynamic control of endogenous metabolism
with combinatorial logic circuits. Mol. Syst. Biol. 2018, 14, No. e8605.
(20) Goñi-Moreno, A.; Nikel, P. I. High-performance biocomputing

in synthetic biology−integrated transcriptional and metabolic circuits.
Front. Bioeng. Biotechnol. 2019, 7, 40.
(21) Tas, H.; Grozinger, L.; Stoof, R.; de Lorenzo, V.; Goñi-Moreno,

Á. Contextual dependencies expand the re-usability of genetic
inverters. Nat. Commun. 2021, 12, 1−9.
(22) Boo, A.; Ellis, T.; Stan, G.-B. Host-aware synthetic biology.
Current Opinion in Systems Biology 2019, 14, 66−72.

ACS Synthetic Biology pubs.acs.org/synthbio Research Article

https://doi.org/10.1021/acssynbio.2c00255
ACS Synth. Biol. 2022, 11, 3058−3066

3065

https://pubs.acs.org/action/doSearch?field1=Contrib&text1="A%CC%81ngel+Gon%CC%83i-Moreno"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://orcid.org/0000-0002-2097-2507
https://orcid.org/0000-0002-2097-2507
mailto:angel.goni@upm.es
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Matthew+Crowther"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Anil+Wipat"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/doi/10.1021/acssynbio.2c00255?ref=pdf
https://doi.org/10.1038/nrg3197
https://doi.org/10.1038/nrg3197
https://doi.org/10.1038/nmeth.2926
https://doi.org/10.1002/anie.201609229
https://doi.org/10.1002/anie.201609229
https://doi.org/10.1038/msb4100073
https://doi.org/10.1038/msb4100073
https://doi.org/10.1126/science.aac7341
https://doi.org/10.1126/science.aac7341
https://doi.org/10.1038/msb.2010.2
https://doi.org/10.1038/msb.2010.2
https://doi.org/10.1126/science.1172005
https://doi.org/10.1126/science.aaf1175
https://doi.org/10.1016/j.copbio.2019.11.019
https://doi.org/10.1016/j.copbio.2019.11.019
https://doi.org/10.1016/j.copbio.2019.11.019
https://doi.org/10.1186/s12915-015-0146-0
https://doi.org/10.1186/s12915-015-0146-0
https://doi.org/10.1038/s41564-020-0757-2
https://doi.org/10.1093/nar/gky795
https://doi.org/10.1093/nar/gky795
https://doi.org/10.1038/s41467-020-19092-2
https://doi.org/10.1038/s41467-020-19092-2
https://doi.org/10.15252/embr.201745658
https://doi.org/10.15252/embr.201745658
https://doi.org/10.15252/embr.201745658
https://doi.org/10.15252/embr.201745658
https://doi.org/10.1073/pnas.1508521112
https://doi.org/10.1073/pnas.1508521112
https://doi.org/10.1021/acssynbio.6b00397?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acssynbio.6b00397?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1038/nature09326
https://doi.org/10.1038/nature09326
https://doi.org/10.15252/msb.20188605
https://doi.org/10.15252/msb.20188605
https://doi.org/10.3389/fbioe.2019.00040
https://doi.org/10.3389/fbioe.2019.00040
https://doi.org/10.1038/s41467-020-20656-5
https://doi.org/10.1038/s41467-020-20656-5
https://doi.org/10.1016/j.coisb.2019.03.001
pubs.acs.org/synthbio?ref=pdf
https://doi.org/10.1021/acssynbio.2c00255?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


(23) Zhu, R.; del Rio-Salgado, J. M.; Garcia-Ojalvo, J.; Elowitz, M. B.
Synthetic multistability in mammalian cells. Science 2022, 375,
No. eabg9765.
(24) Grozinger, L.; Amos, M.; Gorochowski, T. E.; Carbonell, P.;

Oyarzuń, D. A.; Stoof, R.; Fellermann, H.; Zuliani, P.; Tas, H.; Goñi-
Moreno, A. Pathways to cellular supremacy in biocomputing. Nat.
Commun. 2019, 10, 1−11.
(25) Lopiccolo, A.; Shirt-Ediss, B.; Torelli, E.; Olulana, A. F. A.;

Castronovo, M.; Fellermann, H.; Krasnogor, N. A last-in first-out
stack data structure implemented in DNA. Nat. Commun. 2021, 12,
1−10.
(26) Appleton, E.; Madsen, C.; Roehner, N.; Densmore, D. Design

automation in synthetic biology. Cold Spring Harbor perspectives in
biology 2017, 9, a023978.
(27) Kitney, R.; Adeogun, M.; Fujishima, Y.; Goñi-Moreno, Á.;

Johnson, R.; Maxon, M.; Steedman, S.; Ward, S.; Winickoff, D.; Philp,
J. Enabling the advanced bioeconomy through public policy
supporting biofoundries and engineering biology. Trends Biotechnol.
2019, 37, 917−920.
(28) Mante, J.; Hao, Y.; Jett, J.; Joshi, U.; Keating, K.; Lu, X.;

Nakum, G.; Rodriguez, N. E.; Tang, J.; Terry, L.; et al. Synthetic
Biology Knowledge System. ACS synthetic biology 2021, 10, 2276−
2285.
(29) Mısırlı, G.; Hallinan, J.; Pocock, M.; Lord, P.; McLaughlin, J.

A.; Sauro, H.; Wipat, A. Data integration and mining for synthetic
biology design. ACS synthetic biology 2016, 5, 1086−1097.
(30) McLaughlin, J. A.; Myers, C. J.; Zundel, Z.; Mısırlı, G.; Zhang,

M.; Ofiteru, I. D.; Goni-Moreno, A.; Wipat, A. SynBioHub: a
standards-enabled design repository for synthetic biology. ACS
synthetic biology 2018, 7, 682−688.
(31) Barabasi, A.-L.; Oltvai, Z. N. Network biology: understanding

the cell’s functional organization. Nat. Rev. Genet. 2004, 5, 101−113.
(32) Ideker, T.; Krogan, N. J. Differential network biology.Molecular
systems biology 2012, 8, 565.
(33) Krempel, L. Network Visualization. In The SAGE Handbook of
Social Network Analysis; SAGE Publishing, 2011; pp 558−577.
(34) Yan, J.; Risacher, S. L.; Shen, L.; Saykin, A. J. Network

approaches to systems biology analysis of complex disease: integrative
methods for multi-omics data. Brief. Bioinf. 2017, 19, 1370−1381.
(35) Mohamed, S. K.; Nounu, A.; Novác ̌ek, V. Biological

applications of knowledge graph embedding models. Briefings in
bioinformatics 2021, 22, 1679−1693.
(36) Madsen, C.; Moreno, A. G.; Umesh, P.; Palchick, Z.; Roehner,

N.; Atallah, C.; Bartley, B.; Choi, K.; Cox, R. S.; Gorochowski, T.
Synthetic biology open language (SBOL) version 2.3. J. Integr. Bioinf.
2019, DOI: 10.1515/jib-2019-0025.
(37) Sayers, E. W.; Cavanaugh, M.; Clark, K.; Ostell, J.; Pruitt, K. D.;

Karsch-Mizrachi, I. GenBank. Nucleic acids research 2019, 47, D94−
D99.
(38) Hütter, C. V.; Sin, C.; Müller, F.; Menche, J. Network

cartographs for interpretable visualizations. Nature Computational
Science 2022, 2, 84−89.
(39) Beal, J.; Nguyen, T.; Gorochowski, T. E.; Goñi-Moreno, A.;

Scott-Brown, J.; McLaughlin, J. A.; Madsen, C.; Aleritsch, B.; Bartley,
B.; Bhakta, S.; et al. Communicating structure and function in
synthetic biology diagrams. ACS synthetic biology 2019, 8, 1818−1825.
(40) Baig, H.; Fontanarossa, P.; Kulkarni, V.; McLaughlin, J.;

Vaidyanathan, P.; Bartley, B.; Bhakta, S.; Bhatia, S.; Bissell, M.;
Clancy, K.; et al. Synthetic biology open language visual (SBOL
Visual) version 2.3. J. Integr. Bioinf. 2021, DOI: 10.1515/jib-2020-
0045.
(41) Tamsir, A.; Tabor, J. J.; Voigt, C. A. Robust multicellular

computing using genetically encoded NOR gates and chemical ‘wires’.
Nature 2011, 469, 212−215.
(42) Tas, H.; Grozinger, L.; Goñi-Moreno, A.; de Lorenzo, V.

Automated design and implementation of a NOR gate in
Pseudomonas putida. Synth. Biol. 2021, 6, ysab024.
(43) Bartoli, V.; Dixon, D. O.; Gorochowski, T. E. Synthetic Biology;

Springer, 2018; pp 399−409.

(44) Eick, S. Aspects of network visualization. IEEE Computer
Graphics and Applications 1996, 16, 69−72.
(45) Gosak, M.; Markovic,̌ R.; Dolensěk, J.; Rupnik, M. S.; Marhl,

M.; Stozěr, A.; Perc, M. Network science of biological systems at
different scales: A review. Phys. Life Rev. 2018, 24, 118−135.
(46) Barabási, A.-L. Network science. Philosophical Transactions of
the Royal Society A: Mathematical, Physical and Engineering Sciences
2013, 371, 20120375.
(47) Karim, R. M.; Kwon, O.-H.; Park, C.; Lee, K. A Study of

Colormaps in Network Visualization. Appl. Sci. 2019, 9, 4228.
(48) Serrano, L. Synthetic biology: promises and challenges. Mol.
Syst. Biol. 2007, 3, 158.
(49) Liang, P.; Naik, M. Scaling abstraction refinement via pruning.

In Proceedings of the 32nd ACM SIGPLAN Conference on Programming
Language Design and Implementation; Association for Computing
Machinery, 2011; pp 590−601.
(50) Heinemann, M.; Panke, S. Synthetic biology�putting

engineering into biology. Bioinformatics 2006, 22, 2790−2799.
(51) Calles, B.; Goñi-Moreno, Á.; de Lorenzo, V. Digitalizing

heterologous gene expression in Gram-negative bacteria with a
portable ON/OFF module. Mol. Syst. Biol. 2019, DOI: 10.15252/
msb.20188777.
(52) Tinafar, A.; Jaenes, K.; Pardee, K. Synthetic biology goes cell-

free. BMC Biol. 2019, 17, 1−14.
(53) Chavarría, M.; Goñi-Moreno, Á.; de Lorenzo, V.; Nikel, P. I. A

metabolic widget adjusts the phosphoenolpyruvate-dependent
fructose influx in Pseudomonas putida. mSystems 2016, 1, e00154-16.
(54) Yaman, F.; Adler, A.; Beal, J. AI challenges in synthetic biology

engineering. In Proceedings of the AAAI Conference on Artificial
Intelligence; Association for the Advancement of Artificial Intelligence,
2018.
(55) Beal, J.; Weiss, R.; Densmore, D.; Adler, A.; Appleton, E.; Babb,

J.; Bhatia, S.; Davidsohn, N.; Haddock, T.; Loyall, J.; et al. An end-to-
end workflow for engineering of biological networks from high-level
specifications. ACS Synth. Biol. 2012, 1, 317−331.
(56) Sainz de Murieta, I.; Bultelle, M.; Kitney, R. I. Toward the first

data acquisition standard in synthetic biology. ACS synthetic biology
2016, 5, 817−826.
(57) Ravasz, E.; Somera, A. L.; Mongru, D. A.; Oltvai, Z. N.;

Barabási, A.-L. Hierarchical organization of modularity in metabolic
networks. science 2002, 297, 1551−1555.
(58) Fortunato, S. Community detection in graphs. Physics reports
2010, 486, 75−174.
(59) Albert, R.; Jeong, H.; Barabási, A.-L. Error and attack tolerance

of complex networks. nature 2000, 406, 378−382.
(60) Tellechea-Luzardo, J.; Otero-Muras, I.; Goñi-Moreno, A.;

Carbonell, P. Fast biofoundries: coping with the challenges of
biomanufacturing. Trends Biotechnol. 2022, 40, 831.
(61) Beal, J.; Goñi-Moreno, A.; Myers, C.; Hecht, A.; de Vicente, M.

d. C.; Parco, M.; Schmidt, M.; Timmis, K.; Baldwin, G.; Friedrichs, S.;
et al. The long journey towards standards for engineering biosystems:
Are the Molecular Biology and the Biotech communities ready to
standardise? EMBO Rep. 2020, 21, No. e50521.
(62) Mısırlı, G.; Taylor, R.; Goni-Moreno, A.; McLaughlin, J. A.;

Myers, C.; Gennari, J. H.; Lord, P.; Wipat, A. SBOL-OWL: An
ontological approach for formal and semantic representation of
synthetic biology information. ACS Synth. Biol. 2019, 8, 1498−1514.

ACS Synthetic Biology pubs.acs.org/synthbio Research Article

https://doi.org/10.1021/acssynbio.2c00255
ACS Synth. Biol. 2022, 11, 3058−3066

3066

https://doi.org/10.1126/science.abg9765
https://doi.org/10.1038/s41467-019-13232-z
https://doi.org/10.1038/s41467-021-25023-6
https://doi.org/10.1038/s41467-021-25023-6
https://doi.org/10.1101/cshperspect.a023978
https://doi.org/10.1101/cshperspect.a023978
https://doi.org/10.1016/j.tibtech.2019.03.017
https://doi.org/10.1016/j.tibtech.2019.03.017
https://doi.org/10.1021/acssynbio.1c00188?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acssynbio.1c00188?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acssynbio.5b00295?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acssynbio.5b00295?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acssynbio.7b00403?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acssynbio.7b00403?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1038/nrg1272
https://doi.org/10.1038/nrg1272
https://doi.org/10.1038/msb.2011.99
https://doi.org/10.1093/bib/bbaa012
https://doi.org/10.1093/bib/bbaa012
https://doi.org/10.1515/jib-2019-0025
https://doi.org/10.1515/jib-2019-0025?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1093/nar/gky989
https://doi.org/10.1038/s43588-022-00199-z
https://doi.org/10.1038/s43588-022-00199-z
https://doi.org/10.1021/acssynbio.9b00139?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acssynbio.9b00139?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1515/jib-2020-0045
https://doi.org/10.1515/jib-2020-0045
https://doi.org/10.1515/jib-2020-0045?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1515/jib-2020-0045?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1038/nature09565
https://doi.org/10.1038/nature09565
https://doi.org/10.1093/synbio/ysab024
https://doi.org/10.1093/synbio/ysab024
https://doi.org/10.1109/38.486685
https://doi.org/10.1016/j.plrev.2017.11.003
https://doi.org/10.1016/j.plrev.2017.11.003
https://doi.org/10.1098/rsta.2012.0375
https://doi.org/10.3390/app9204228
https://doi.org/10.3390/app9204228
https://doi.org/10.1038/msb4100202
https://doi.org/10.1093/bioinformatics/btl469
https://doi.org/10.1093/bioinformatics/btl469
https://doi.org/10.15252/msb.20188777
https://doi.org/10.15252/msb.20188777
https://doi.org/10.15252/msb.20188777
https://doi.org/10.15252/msb.20188777?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.15252/msb.20188777?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1186/s12915-019-0685-x
https://doi.org/10.1186/s12915-019-0685-x
https://doi.org/10.1128/mSystems.00154-16
https://doi.org/10.1128/mSystems.00154-16
https://doi.org/10.1128/mSystems.00154-16
https://doi.org/10.1021/sb300030d?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/sb300030d?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/sb300030d?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acssynbio.5b00222?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acssynbio.5b00222?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1126/science.1073374
https://doi.org/10.1126/science.1073374
https://doi.org/10.1016/j.physrep.2009.11.002
https://doi.org/10.1038/35019019
https://doi.org/10.1038/35019019
https://doi.org/10.1016/j.tibtech.2021.12.006
https://doi.org/10.1016/j.tibtech.2021.12.006
https://doi.org/10.15252/embr.202050521
https://doi.org/10.15252/embr.202050521
https://doi.org/10.15252/embr.202050521
https://doi.org/10.1021/acssynbio.8b00532?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acssynbio.8b00532?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acssynbio.8b00532?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
pubs.acs.org/synthbio?ref=pdf
https://doi.org/10.1021/acssynbio.2c00255?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as

