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Abstract:
The therapeutic landscape of pharmacotherapy for prostate cancer has dramatically evolved, and multiple therapeutic op-
tions have become available for prostate cancer patients. Therefore, useful biomarkers to identify suitable candidates for
treatment are required to maximize the efficacy of pharmacotherapy. Genetic polymorphisms such as single-nucleotide
polymorphisms (SNPs) and tandem repeats have been shown to influence the therapeutic effects of pharmacotherapy for
prostate cancer patients. For example, genetic polymorphisms in the genes involved in androgen receptor signaling are re-
ported to be associated with the therapeutic outcome of androgen-deprivation therapy as well as androgen receptor-path-
way inhibitors. In addition, SNPs in genes involved in drug metabolism and efflux pumps are associated with therapeutic
effects of taxane chemotherapy. Thus, genetic polymorphisms such as SNPs are promising biomarkers to realize personal-
ized medicine. Here, we overview the current findings on the influence of genetic polymorphisms on the outcome of phar-
macotherapy for prostate cancer and discuss current issues as well as future visions in this field.
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Introduction

Androgen-deprivation therapy (ADT) with or without first-
generation anti-androgen agents has been the gold standard as
primary pharmacotherapy for treatment-naïve prostate can-
cer (1). Recently, the therapeutic landscape of pharmacotherapy
for prostate cancer patients has been greatly evolving. Second-
generation anti-androgen agents such as enzalutamide, apalu-
tamide, and darolutamide as well as the CYP17 inhibitor abir-
aterone have been developed for castration-resistant prostate
cancer (CRPC) (2). Although these drugs were initially devel-
oped for the treatment of CRPC, enzalutamide, apalutamide,
and abiraterone have expanded for use in hormone-sensitive
prostate cancer (HSPC) (3). In addition, taxane chemotherapy
(docetaxel and cabazitaxel) and radioisotopes (radium-223)
have been applied for the treatment of CRPC, and docetaxel
has been indicated for HSPC (2). Thus, multiple therapeutic
options for CRPC and HSPC are available. Therefore, useful
biomarkers to identify patients that are suitable candidates for
these treatments are required to maximize the efficacy of phar-
macotherapy.

Genetic polymorphisms are considered one of the most

promising biomarkers for the realization of personalized medi-
cine (4). Genetic polymorphisms are inter-individual differen-
ces in germline DNA and defined as differences in genomic se-
quences between individuals that occur at a frequency of 1%
or more in a population. Most genetic polymorphisms are sin-
gle-nucleotide polymorphisms (SNPs), and polymorphisms
are also detected in repeated sequences such as microsatellites.
SNPs are observed at a frequency of ~1 in 1000 nucleotides,
and more than 2 million SNPs exist in the entire human ge-
nome. SNPs are classified into the following types according
to their function: regulatory SNPs (rSNPs), which are located
in promoter regions; coding SNPs (cSNPs), which are located
in exons and cause an amino acid substitution; silent SNPs
(sSNPs), which are located in an exon but do not cause an
amino acid substitution; intron SNPs (iSNPs), which are lo-
cated in introns; and genome SNPs (gSNPs), which are locat-
ed in intergenic regions (Figure 1). Accordingly, rSNPs and
cSNPs are likely to change gene expression and protein func-
tion, which results in functional and phenotypic differences,
respectively. In addition, sSNPs and iSNPs may affect expres-
sion levels of genes. Conversely, gSNPs are speculated to not
play a direct functional role, but these may serve as genomic
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markers linked with distinct functional SNPs.
Genetic polymorphisms can cause various phenotypic dif-

ferences through changes of expression and/or activity in the
corresponding gene. Genetic polymorphisms are also associat-
ed not only with disease susceptibility but also with treatment
outcomes. For example, a genetic polymorphism in UGT1A1
(UGT1A1*28 and UGT1A1*6), which encodes UDP-glucuro-
nosyltransferase, decreases enzyme activity, and delays the me-
tabolism of SN-38, the active metabolite of irinotecan, which
results in a higher incidence of adverse events by irinotecan (5).
A test for genetic polymorphisms in UGT1A1 has been ap-
proved in Japan for patients who will be treated with irinote-
can chemotherapy. A SNP in Nudix hydrolase 15 (NUDT15),
which encodes the enzyme involved in the metabolism of thio-
purines, was shown to be useful in predicting adverse events
of thiopurines. A test for genetic polymorphisms in NUDT15
was recently approved in Japan for patients who will be treat-
ed with thiopurines (6). Thus, the significance of testing genetic
polymorphisms including SNPs in medical care has been
growing.

Several genome-wide associated studies (GWASs) on pros-
tate cancer susceptibility in large cohorts have been reported,
showing the value of hundreds of SNPs with prostate cancer
incidence (7), (8). In addition, various studies have reported the
significance of SNPs in the outcome of pharmacotherapy for
prostate cancer (9). An association of genetic background such
as race and family history with the outcome of prostate cancer
has been shown, which suggests that genetic factors play an
important role in pharmacotherapy (10), (11). In this review, we
provide an overview of the current findings on the influence
of genetic polymorphisms in pharmacotherapy for prostate
cancer and discuss current issues and future directions in this
field.

Genetic Polymorphisms and Primary
ADT for HSPC

Aberrant activation of androgen receptor (AR) signaling is
one of the main causes by which prostate cancer acquires cas-
tration resistance. Therefore, polymorphisms in genes related
to the AR pathway may affect the therapeutic efficacy of pri-
mary ADT through influencing AR signaling activity (9). To

date, 63 SNPs in 49 genes have been reported to be associated
with the outcome of primary ADT for HSPC (Table 1).

De novo androgen synthesis in prostate cancer cells is a ma-
jor source of androgen under castrated condition during ADT
and is shown to play an important role in the progression to
CRPC (59). Multiple studies have indicated the association of
SNPs in genes involved in androgen metabolism, including
CYP17A1, CYP19A1, HSD3B1, HSD17B2, HSD17B3,
HSD17B4, AKR1C3, and SRD5A2, with the outcome of
ADT (Figure 2). For example, a cSNP (rs1047303,
1245A>C, N367T) in HSD3B1, which encodes 3β-hydroxys-
teroid dehydrogenase 1 (3β-HSD1), results in a variant of 3β-
HSD1 with high activity, and the prognosis of carriers of this
variant is poor (18), (19), (20), (21), (22), (60). The prognostic impact of the
cSNP (rs1047303) in HSD3B1 in the United States was vali-
dated in an Asian cohort (21), although variant carriers were rare
in Asian patients (~15%) compared with Caucasian patients
(~50%) (Table 2). The prognostic impact of the cSNP
(rs1047303) in HSD3B1 was validated in primary ADT plus
docetaxel for HSPC (22). In addition, the prognostic difference
by another SNP (rs1856888) in HSD3B1 was also indicated.
Ross et al. initially reported that the variant G allele in
rs1856888 was associated with a low risk of disease progres-
sion among men in the United States (15); however, a recent
study from the United States showed poor prognosis in pa-
tients carrying the variant G allele in rs1856888 (23). Because of
the strong linkage disequilibrium between the SNPs
(rs1047303 and rs1856888) in HSD3B1(23), the variant allele in
the SNPs (rs1047303 and rs1856888) in HSD3B1 is likely to
be associated with poor prognosis in patients treated with pri-
mary ADT. In a study on an iSNP (rs1870050) in CYP19A1,
Ross et al. reported that the variant C allele in rs1870050 was
associated with a high risk of disease progression among men
in the United States (15). However, two recent studies showed a
low risk of progression and better prognosis among Asian
men with the variant C allele in rs1870050 (12), (16). In addition,
the prognostic significance of an rSNP (rs743572) in the 5′
untranslated region of CYP17A1 has been shown (13), (14).

In addition to enzymes for androgen metabolism, the
pump for androgens such as dehydroepiandrosterone
(DHEA) and testosterone also plays a key role in the develop-
ment of CRPC (29). SNPs in SLCO1B3 and SLCO2B1 genes,

Figure 1. Schematic of single-nucleotide polymorphism (SNP) types according to the location and function. UTR, untranslated
region.
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Table 1. Genetic Polymorphisms Associated with Treatment Outcomes for Hormone-Sensitive Prostate Cancer.

Gene name Function rs number Polymorphism types Treatment Validation Reference

CYP17A1 Androgen metabolism rs6162 sSNP ADT (12)

rs743572 rSNP ADT Validated (13), (14)

CYP19A1 Androgen metabolism rs1870050 iSNP ADT Almost validated (12), (15), (16)

rs4775936 iSNP ADT (17)

HSD3B1 rs1047303 cSNP ADT Validated (18)-(22)

ADT+Docetaxel (22)

rs1856888 gSNP ADT Almost validated (15), (23)

HSD17B2 Androgen metabolism rs4243229, rs7201637 iSNP ADT (12)

HSD17B3 Androgen metabolism rs2257157 iSNP ADT (12)

HSD17B4 Androgen metabolism rs7737181 iSNP ADT (15)

AKR1C3 Androgen metabolism rs12529 cSNP ADT Controversial (24), (25)

SRD5A2 Androgen metabolism rs523349 cSNP ADT (26)

SLCO1B3 Androgen transporter rs4149117 cSNP ADT Validated (27)-(29)

SLCO2B1 Androgen transporter rs1077858 iSNP ADT Validated (30), (31)

rs1789693 iSNP ADT (30)

rs12422149 cSNP ADT Almost validated (29)-(32)

GNRH2 Androgen synthesis rs6051545 cSNP ADT (33)

SHBG Androgen-binding protein rs6259 cSNP ADT Controversial (34), (35)

AR Steroid receptor CAG repeat Coding region ADT Almost validated (24), (36), (37)

ESR1 Steroid receptor rs1062577 rSNP ADT (12)

NR3C2 Steroid receptor rs5522 cSNP ADT (38)

YB-1 Transcription factor rs12030724 iSNP ADT Validated (39), (40)

HIF1A Transcription factor rs11549465 cSNP ADT (41)

ARRDC3 Target gene of AR rs2939244 rSNP ADT (42)

FLT1 Target gene of AR rs9508016 rSNP ADT (42)

SKAP1 Target gene of AR rs6054145 rSNP ADT (42)

FBXO32 Target gene of AR rs7830622 rSNP ADT (42)

BNC2 Target gene of ER rs16934641 rSNP ADT (43)

TACC2 Target gene of ER rs3763763 rSNP ADT (43)

ALPK1 Target gene of ER rs2051778 rSNP ADT (43)

LSAMP Target gene of NFκB rs13088089 rSNP ADT (44)

CCL17 Target gene of NFκB rs223899 rSNP ADT (44)

PSMD7 Target gene of NFκB rs2387084 rSNP ADT (44)

MON1B Target gene of NFκB rs284924 rSNP ADT (44)

GSTM3 Antioxidant rs7483 cSNP ADT Validated (45)

CAT Antioxidant rs564250 gSNP ADT (45)

SLC28A3 Nucleoside transporter rs56350726 cSNP ADT (46)

LRP2 Sterol and steroid transporter rs6433107, rs3944004, rs830994,
rs3770613, rs831003

iSNP ADT (47)

EGF Growth factor rs4444903 rSNP ADT (48)

IRS2 Growth factor rs7986346 gSNP ADT (49)

(Table continued on next page)
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which encode proteins responsible for the import of testoster-
one and DHEA, respectively, were reported to be associated
with the prognosis of patients treated with primary
ADT (27), (28), (29), (30), (31), (32). Higher testosterone uptake in patients
with the variant allele of the cSNP (rs4149117, 334G>T,
A112S) in SLCO1B3 was shown, and a causal variant of
SLCO1B3 was reported to be associated with poor progno-
sis (27), (28), (29). Several studies demonstrated that the cSNP
(rs12422149, 935G>A, R312Q) in SLCO2B1 resulted in
higher activity of DHEA-sulfate uptake and the wild-type al-
lele in SLCO2B1 (rs12422149) was associated with early re-
currence and poor prognosis after primary ADT (29), (30), (31), (32).
Another SNP (rs1077858) in SLCO2B1 was also associated
with prognosis (30), (31). Thus, SNPs in the genes involved in an-
drogen metabolism and uptake in prostate cancer cells play a
key role in the progression of prostate cancer through persis-
tent androgen synthesis in prostate cancer under castrated
condition (Figure 3).

SNPs in other molecules related to the AR pathway were
also shown to have prognostic impact after primary ADT. For
example, the CAG repeat in AR correlated with prognosis, al-
though null results were also reported (24), (36), (37), (61). In addition,
the iSNP (rs12030724) in YB-1 that regulates YB-1 expres-
sion, which results in AR and AR variant expression, was also
associated with the prognosis of Japanese men with advanced
prostate cancer treated with primary ADT (39), (40). The cSNP
(rs7483, I224V) in GSTM3, which encodes an antioxidant en-
zyme, was also reported to be prognostic in Japanese patients

with nonmetastatic and advanced prostate cancer treated with
primary ADT (45).

Genetic Polymorphisms and Treatment
with Novel AR-pathway Inhibitors
(ARPIs) for CRPC

Novel ARPIs such as enzalutamide, apalutamide daroluta-
mide, and abiraterone have been demonstrate to improve sur-
vival in patients with CRPC (2). Because abiraterone is taken
up into cells by OATP2B1, which is encoded by SLCO2B1,
and then metabolized by 3β-HSD and 5α-reductase, the ther-
apeutic effect of abiraterone treatment may depend on the ac-
tivities of the molecules involved in androgen metabolism and
uptake (Figure 2) (73), (78). Recent reports showed that SNPs in
genes involved in androgen metabolism and transport such as
CYP17A1, HSD3B1, SRD5A2, and SLCO2B1 correlate with
the outcome of abiraterone treatment (Table 3). An rSNP
(rs2486758, -362T>C) in CYP17A1 was associated with prog-
nosis after abiraterone treatment (68), (69). In addition, variant
carriers of the cSNP (rs1047303) in HSD3B1 showed poor
prognosis after treatment with ARPI (65), (66). The prognostic
impact of the cSNP (rs1047303) in HSD3B1 for both primary
ADT for HSPC as well as ARPIs for CRPC may be because
of hyperactive androgen synthesis in variant carriers. The var-
iant allele in HSD3B1 is expected to lead to increased conver-
sion from abiraterone to the more potent delta-4-abirater-
one (78). Accordingly, the cSNP (rs1047303) in HSD3B1 was

Table 1. Continued.

Gene name Function rs number Polymorphism types Treatment Validation Reference

TGFBR2 TGF-β signaling rs3087465 iSNP ADT (50)

BMP5 TGF-β signaling rs317027 gSNP ADT (49)

IL18 Cytokine rs187238 rSNP ADT (51)

APC Wnt signaling rs2707765, rs497844 iSNP ADT (52)

BGLAP Bone metabolism rs1800247 rSNP ADT (53)

EDN1 Vasoconstrictor rs1800541, rs2070699 iSNP ADT (54)

CASP3 Apoptosis rs4862396 gSNP ADT (49)

TRMT11 Methyltransferase rs1268121, rs6900796 iSNP ADT (55)

COMT Methyltransferase rs4680 cSNP Estramustine phosphate (56)

KIF3C miRNA target site rs6728684 rSNP ADT (57)

CDON miRNA target site rs3737336 rSNP ADT (57)

IFI30 miRNA target site rs1045747 rSNP ADT (57)

PALLD miRNA target site rs1071738 rSNP ADT (57)

GABRA1 miRNA target site rs998754 rSNP ADT (57)

SYT9 miRNA target site rs4351800 rSNP ADT (57)

- - rs16901979, rs7931342 gSNP ADT (58)

ADT, androgen deprivation therapy; AR, androgen receptor; ER, estrogen receptor; NFκB, nuclear factor-κ B; SNP, single-nucleotide polymorphism; TGF, tumor
growth factor
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Figure 2. Gene function of single-nucleotide polymorphisms (SNPs) associated with therapeutic effects and adverse events of
drug therapy. Underlined organs and treatments in parentheses mean target organ and treatment in which the gene function of
SNPs is involved, respectively. ADT, androgen-deprivation therapy; ARPI, androgen receptor-pathway inhibitor.

Table 2. Outcome and Frequencies of the rs1047303 Variant Allele of HSD3B1.

Outcome Variant carrier Number Frequency carrying a variant allele Reference

Prostate cancer susceptibility High 626 48% (AC/CC, US) (62)

Hereditary prostate cancer susceptibility High 98 53% (AC/CC, US) (63)

Prognosis in primary ADT Poor 118/137/118 51% (AC/CC, US) (18)

Prognosis in primary ADT Poor 102 53% (AC/CC, US) (19)

Prognosis in primary ADT Poor 218 54% (AC/CC, US) (20)

Prognosis in Abiraterone Insignificant 76 45% (AC/CC, US) (64)

Progression in primary ADT or ADT+Docetaxel Poor in low volume 475 53% (AC/CC, US) (22)

Prognosis in Ezalutamide or Abiraterone Poor 266 8% (CC, US/UK) (65)

Prognosis in Ezalutamide or Abiraterone Poor 547 15% (CC, Canada/Europe) (66)

Prognosis in primary ADT Insignificant 103 18% (AC/CC, China) (67)

Prognosis in primary ADT Poor 104 9% (AC/CC, Japan) (21)

Prognosis in Abiraterone Favorable 99 14% (AC/CC, Japan) (21)

ADT, androgen deprivation therapy; UK, United Kingdom; US, United States
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shown to be associated with comparable or better treatment
efficacy of abiraterone (21), (64).

Interestingly, several genes are overlapping in association
with the prognosis between primary ADT and ARPIs, which
both target the AR pathway (Table 4). SNPs in CYP17A1
and YB-1 are associated with the outcome of primary ADT
and ARPIs, although the SNPs in each gene are different. Fur-
thermore, the cSNP (rs1047303) in HSD3B1, cSNP
(rs523349) in SRD5A2, and SNPs (rs1077858, rs1789693,

and rs12422149) in SLCO2B1 were shown to be common
prognosticators in both primary ADT for HSPC and ARPIs
for CRPC. The prognostic and antitumor impacts of the
cSNP (rs523349) in SRD5A2 and SNPs (rs1077858,
rs1789693, and rs12422149) in SLCO2B1 were consistent be-
tween primary ADT and abiraterone. Intriguingly, a variant
allele in HSD3B1 (rs1047303) was differentially associated
with prognosis in patients treated with abiraterone and other
therapies. These findings suggest that HSD3B1 (rs1047303)

Figure 3. Schematic of molecules involved in androgen synthesis and uptake. The metabolisms surrounded by red, light blue,
and blue are mainly processed in adrenal glands, prostate cancer, and both, respectively. OATP2B1 uptakes DHEA into prostate
cancer cells. DHEA, dehydroepiandrosterone; DHT, dihydrotestosterone.

Table 3. Genetic Polymorphisms Associated with the Prognosis of Patients with Castration-Resistant Prostate Cancer Treated
with Androgen Receptor-Pathway Inhibitors.

Gene name Function rs number Polymorphism types Treatment Validation Reference

CYP17A1 Androgen metabolism rs2486758 rSNP Abiraterone Validated (68), (69)

rs10883783 iSNP Abiraterone (70)

HSD3B1 Androgen metabolism rs1047303 cSNP Abiraterone (21)

Abiraterone or
Enzalutamide

Validated (65), (66)

SRD5A2 Androgen metabolism rs523349 cSNP Abiraterone (71)

SLCO2B1 Androgen transporter rs1077858, rs1789693,
rs34550074

iSNP, iSNP, cSNP Abiraterone (72)

rs12422149 cSNP Abiraterone (73)

YB-1 Androgen receptor regulator rs10493112 iSNP Abiraterone (74)

CYB5A CYP17A1 activity regulator rs1790834 iSNP Abiraterone (75)

TSPYL1 CYP17A1 and CYP3A4
regulator

rs3828743 cSNP Abiraterone (76)

SULT1E1 Estrogen metabolism

Group 1 (rs3775777,
rs4149534, rs10019305)

iSNP Abiraterone (77)

Group 2 (rs3775770,
rs4149527, rs3775768)

SNP, single-nucleotide polymorphism
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may be a promising marker to select appropriate combination
therapy with ADT. Further studies on the prognostic impact
of these SNPs will be important to evaluate candidates for per-
sonalized medicine.

Genetic Polymorphisms and Taxane
Treatment for CRPC

The taxane docetaxel is widely used not only for prostate can-
cer but also for various cancers such as lung, uterine, and ovar-
ian cancers. Many reports have demonstrated the relationship
between genetic polymorphisms and the efficacy and adverse
events of docetaxel therapy. Previous studies, including several
in prostate cancer, reported associations between drug trans-
port genes (ABCB1, ABCC2, ABCG1, ABCG2, SLCO1B3) or
drug metabolism genes (CYP1B1, CYP2C8, CYP3A4,
CYP3A5) with therapeutic efficacy or adverse events
(Figure 2) (81). As shown in Table 5, the cSNP (rs1056836,
4326C>G, L432V) in CYP1B1 was associated with poor re-
sponse and prognosis (82), (83). In addition, SNPs in estrogen re-
ceptor 1 (ESR1) were also associated with treatment efficacy in
prostate cancer (80). SNPs in ESR1 were reported to be associat-
ed with the outcome of primary ADT and taxane chemother-
apy although the position of SNPs in ESR1 is different
(Table 4). Then, SNPs in ESR1 may serve as a predictive
marker for taxane chemotherapy. OATP1B3, which is encod-
ed by SLCO1B3, plays a role in taxane uptake into cells and is
involved in taxane resistance in prostate cancer cells. SNPs in
SLCO1B3 may be associated with the treatment efficacy of
taxane (88). However, a recent study showed comparable prog-
nosis after cabazitaxel for CRPC between genotypes in
SLCO1B3 (rs4149117) (79). Because prognostic impact in pri-
mary ADT has been shown(27), (28), (29), the cSNP (rs4149117) in
SLCO3B1 may serve as a predictive marker in pharmacothera-
py for prostate cancer.

Current Research Issues and Future
Prospects for Personalized Medicine

The associations between multiple SNPs and therapeutic ef-
fects of pharmacotherapy for prostate cancer have been report-
ed, as described above. However, to date, no genetic marker
has been clinically utilized in pharmacotherapy for prostate
cancer, which suggests potential issues as described in the fol-
lowing. While some SNPs have been reproducible in valida-
tion studies, others have not yielded consistent results across
studies (Table 1, 3, 5). This may be because of racial differen-
ces in the frequency of genetic polymorphisms and linkage
disequilibrium (a phenomenon in which there is a correlation
between genetic polymorphisms in a population). To resolve
this issue, multiple studies with large populations and meta-
analysis studies are required. In addition, advances in technol-
ogy such as artificial intelligence may serve as a breakthrough
method to resolve the complex linkage disequilibrium among

individuals.
Another problem is that the data in most study cohorts

were retrospectively collected in daily practice. A daily clinical
follow-up generally shows deviations from the strict follow-up
schedule in a clinical trial. To improve the quality of data, col-
lecting clinical data using a strict protocol is desirable to ob-
tain more robust findings. In addition, most studies to date
have focused on target genetic polymorphisms of individual
genes. Because this method may miss useful SNPs, compre-
hensive methods such as GWAS are required. In addition, a
single marker may be not enough for accurate predictive abili-
ty, and this may be overcome by using multiple SNPs. GWASs
indicated that a single SNP generally provides only a modest
(odds ratio, 1.1-1.5) increased susceptibility risk of prostate
cancer, where polygenic risk score (PGS) using multiple risk
SNPs was developed and validated (89), (90). Therefore, the PGS
approach would be useful to increase diagnostic ability.

Furthermore, the genes of SNPs associated with therapeu-
tic outcome can be the cause of treatment resistance. There-
fore, these genes are promising targets to overcome treatment
resistance. Genes involved in androgen metabolism such as
CYP17A1, HSD3B1, AKR1C3, and SRD5A2 have been can-
didate targets for drug discovery and drug development, and
the SNPs may be crucial in therapeutic efficacy (Table 6).

Conclusion

Here, we summarized the known associations between genetic
polymorphisms and the outcomes of pharmacotherapy in
prostate cancer patients. Recently, multiple novel therapeutic
options for HSPC have emerged, and the stratification of suit-
able patients for each option will be required. Genetic bio-
markers such as SNPs will be beneficial for stratifying patients
and for estimating the treatment́ response of an individual
patient. The combination of genetic biomarkers with tradi-
tional clinicopathological parameters could improve the prog-
nostication and the choice of the most appropriate treatment
for each patient, which will be helpful in clinical decision
making. Thus, personalized medicine using genetic biomark-
ers is expected to be realized in pharmacotherapy for prostate
cancer. However, unresolved issues remain, such as inconsis-
tent results among studies as well as the current lack of GWAS
and PGS approaches, and these issues should be addressed in
future research.
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Table 4. Genetic Polymorphisms Associated with the Outcomes of Multiple Treatments.

Gene name rs number Treatment regimen Risk allele Outcome Reference
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rs1856888 ADT A PFS (15)

ADT G OS (23)

SRD5A2 rs523349 ADT G PFS, OS (26)

Abiraterone G PFS (71)
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ADT, androgen deprivation therapy; MRD, minimal residual disease; OS, overall survival; PFS, progression-free survival
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