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Kidney disease encompasses a complex set of diseases that can aggravate or start
systemic pathophysiological processes through their complex metabolic mechanisms
and effects on body homoeostasis. The prevalence of kidney disease has increased
dramatically over the last two decades. CD4+CD25+ regulatory T (Treg) cells that express
the transcription factor forkhead box protein 3 (Foxp3) are critical for maintaining immune
homeostasis and preventing autoimmune disease and tissue damage caused by
excessive or unnecessary immune activation, including autoimmune kidney diseases.
Recent studies have highlighted the critical role of metabolic reprogramming in controlling
the plasticity, stability, and function of Treg cells. They are also likely to play a vital role in
limiting kidney transplant rejection and potentially promoting transplant tolerance.
Metabolic pathways, such as mitochondrial function, glycolysis, lipid synthesis,
glutaminolysis, and mammalian target of rapamycin (mTOR) activation, are involved in
the development of renal diseases by modulating the function and proliferation of Treg
cells. Targeting metabolic pathways to alter Treg cells can offer a promising method for
renal disease therapy. In this review, we provide a new perspective on the role of Treg cell
metabolism in renal diseases by presenting the renal microenvironment、relevant
metabolites of Treg cell metabolism, and the role of Treg cell metabolism in various
kidney diseases.
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INTRODUCTION

The kidney is an important organ for excreting metabolic waste
and maintaining internal environmental stability and plays an
extremely important role in metabolic activities (1) (Figure 1).
Treg cells are typical CD4+ cells that constitutively express high
levels of the interleukin-2 (IL-2) receptor CD25, along with the
transcription factor Foxp3, which plays a central role in
generating and maintaining Treg cell-specific gene expression
by cooperating with other transcription factors, such as runt-
related transcription factor 1 (RUNX1) and gata binding protein
3 (GATA3) (2).

Treg cells in vivo can be divided into two types (3): thymus
Treg cells (tTreg), which mature after positive and negative
selection in the thymus and play an immunosuppressive role
in peripheral blood and lymphoid tissues; and peripherally
induced Treg (pTreg) cells, which originate from T cells after
antigenic stimulation and are converted by inhibitory cytokines
(Figure 2). Treg cells in vitro are induced by cytokines and other
factors, often referred to as induced CD4+ T regulatory cells
(iTreg). In vitro and in vivo, CD4+CD25+Foxp3+ Treg cells
inhibited the activation, proliferation, and effector function of a
wide range of immune cells, such as CD4+ and CD8+ T cells,
natural killer (NK) cells, and NKT cells. They are indispensable
for the maintenance of self-tolerance and immune homeostasis
by inhibiting excessive or misdirected immune responses to
foreign or autogenous targets (4).

It is important to note that phenotypic differences between
tTreg cells and pTreg cells have not been clearly defined, which
poses challenges in distinguishing the exact proportions of these
two subpopulations in secondary lymphoid organs and non-
lymphoid tissues. Studies have shown that neuropilin (Nrp-1)
and Helios are highly expressed on tTreg in mice, but not on
pTreg/iTreg cells (5, 6). Therefore, some researchers believe that
tTreg cells and pTreg cells can be distinguished by Nrp-1 and
Helios. However, this hypothesis has been controversial,
especially when it comes to the distinction between human
tTreg cells and pTreg cells (7, 8). Therefore, in the following
review, we tried our best to use accurate classification to describe
Treg cells, such as tTreg cells, pTreg cells, and iTreg cells. Where
we were unable to distinguish the origins of the Treg cells from
the original article, we have described the population studied
using ‘Treg cell’ only.

Recently, increasing evidence has shown that Treg cells can
take part in various renal diseases. Treg cells can play a negative
regulatory role in kidney diseases and inhibit the immune
response through direct cell contact or secretion of inhibitory
cytokines (9). At the same time, kidney diseases, in turn, affect
the function of Treg cells. For example, the number of Treg cells
in patients with IgA nephritis is significantly reduced (10).

It is well known that renal disease is accompanied by
significant changes in metabolic patterns (11), such as changes
in glucose (12), amino acid (13), and lipid metabolism (14),
which are essential for the activation and proliferation of Treg
cells. Moreover, the metabolic pattern of Treg cells is also
regulated by the metabolic state of nephropathy, and the type
of nutrients used by Treg cells in nephropathy changes their
Frontiers in Immunology | www.frontiersin.org 2
differentiation, resulting in alterations in their phenotype and
proportion. In addition to nutritional supply, the accumulated
byproducts of renal metabolism significantly impair the
immunosuppressive function of Treg cells, and the loss or
functional deficiency of Treg cells affects the immune
homeostasis of the kidney (15–18).

In the following sections, we will introduce renal
microenvironment. Treg cell metabolism, the role of Treg cells
in various renal diseases, and the importance of abnormalities
in various metabolic pathways for the function of Treg cells,
and will discuss the factors of abnormal metabolic pathways,
which may be the goal of immunotherapy for related
renal diseases.
RENAL MICROENVIRONMENT

The kidney is the most important organ in the human urinary
system, which undertakes the important mission of filtering
metabolic waste, excreting them from the body, and
reabsorbing various nutrients (19). The kidney can maintain
the body fluid and electrolyte balance by the distal tubule of the
collecting duct through the absorption and excretion of various
ions (electrolytes) in the body, such as sodium ions, phosphorus
ions, calcium ions, and magnesium ions (20), at the same time,
discharge the vast majority of metabolic wastes produced by the
human body (21), for example, urea nitrogen, creatinine, uric
acid, etc., to prevent waste products accumulate in the body,
causing various disorders.

The kidney is an organ with important functions and complex
structures, which determines that there are many kinds of cells
involved in the microenvironment of the kidney, including
immune cells and intrinsic cells of the kidney. Cytokines,
chemokines, adhesion molecules, and complement secreted by
immune cells and intrinsic cells of the kidney in the local
immune microenvironment of kidney tissue, which plays a
great role in the occurrence of kidney metabolism and injury.
Immune Cells and Intrinsic Cells of
the Kidney
Macrophages
Macrophages are classified into M1 macrophages and M2
macrophages (22). In healthy kidney tissue, the main function
of macrophages is to phagocytose and digest cell fragments and
pathogens in the form of fixed cells or free cells, and to activate
lymphocytes or other immune cells to respond to pathogens.

Studies have shown that macrophages play an important role
in mediating immunopathology and tissue remodeling in non-
renal disease and renal disease (23). In animal models, blocking
macrophage recruitment and expression of inflammatory factors
can prevent the progression of various kidney diseases (24). At
the same time, the damaged kidney produces a large number of
macrophages, which continuously infiltrate the kidney and
produce pro-inflammatory cytokines, including TNF-a and IL-
1b, to induce kidney inflammation (25). In addition,
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FIGURE 1 | Metabolism of substances in the kidney. Cortical cells undergo gluconeogenesis while medullary cells metabolize glucose. Glutamine is extracte
(NH3). High levels of urea cause the kidneys to produce uremic toxins. Lipid nephrotoxicity could damage the structure and function of the glomerulus and t
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macrophages can produce oxygenated nitric oxide Complement
components can directly damage renal cells and affect the
formation of matrix and blood vessels by expressing matrix
metalloproteinases and vasoactive peptides (26).
Mast Cells
Mast cells have long been considered as effector cells for
mediated hypersensitivity and inflammatory responses (27). Its
role in the kidney has been largely overlooked in comparison to
macrophages and other immune cells. In fact, in a healthy
kidney, mast cells release cytokines that protect the kidney
from immune damage. They also produce chymases, which
produce angiotensin II (28).

Studies have shown that chymase expression is proportional
to the degree of renal interstitial fibrosis (29, 30). Mast cell
infiltration and increased chymase expression are seen in both
glomerulonephritis and ischemia-reperfusion-induced renal
fibrosis (31, 32). Mast cells can also promote the proliferation
of fibroblasts through intercellular interactions (33). But some
researchers have come up with evidence to the contrary. They
used mast cell deficient rats to induce nephritis with Puromycin
Frontiers in Immunology | www.frontiersin.org 4
aminonucleoside (PAN) (34). After 6 weeks, it was found that
the fibrosis degree of the deficient rats was more serious than that
of the wild-type rats, and the expression of TGF-b was
significantly higher than that of the wild-type rats. In vitro
experiments showed that heparin, as an important component
of mast cells, could inhibit the expression of TGF-b in rat
fibroblasts, suggesting that mast cells may reduce the degree of
fibrosis through TGF-b -dependent pathways and play a certain
protective role in the kidney.
Dendritic Cells
Dendritic cells (DCs) can be divided into plasmacytoid dendritic
cells (pDC) and conventional dendritic cells (cDC) (35).
Immature DCs have strong migration ability, mature DCs can
effectively activate primary T cells, and are in the central link of
initiating, regulating, and maintaining immune response (36). It
is rarely present in a healthy kidney and can efficiently absorb,
process, and present antigens to maintain the stability of the
renal internal environment.

Studies have shown that DCs induce and maintain immune
responses through migration and maturation in the kidney (37).
FIGURE 2 | Differentiation of Treg cells in vivo. TTreg cell development is initiated by TCR signal transduction. CD4+CD8- thymocytes that bind with high affinity to
their self- peptides-MHC complex are positively selected in the thymus. Immature T cells with low affinity for their own peptide-MHC complex are also positively
selected and subsequently differentiated into different subtypes, including pTreg, Tr1 and Th3.
February 2022 | Volume 13 | Article 826732
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DCs, although rarely present in normal kidneys, are significantly
increased in chronic kidney disease (CKD) and diabetic
nephropathy (DN) (38). A 5/6 nephrectomy model was used
to induce renal fibrosis, CD1a+CD80+DCs was found to
accumulate in the renal interstitial from 1 week after modeling
and peaked at 12 weeks (39). In another study, galectin 3 protects
cisplatin-induced acute kidney injury by promoting TLR-2
dependent activation of the IDO1/Kynurenine acid pathway in
renal DCs (40). These two studies suggest that DCs were
associated with the severity of interstitial fibrosis.
T Lymphocyte
T cells are characterized by the expression of co-receptor
molecules CD4 and CD8 on their cell surface (41). CD4+T
cells, also known as T helper cells (Th), recognize antigen/
MHC-II complexes on antigen-presenting cells (42) and
coordinate the activation of other immune cells, including B
cells, macrophages. CD8+ cells, on the other hand, called T
cytotoxic cells, recognize antigens/MHC-I complexes and are
responsible for killing pathogen-infected cells (43). In healthy
kidney tissue, T lymphocytes protect the kidney by performing a
variety of biological functions to fight infection.

Th cells are thought to play an important role in kidney
disease. Th cells were divided into Th1, Th2, Th17 and Treg cells
according to the different cytokines secreted (44). Th1 cells
mainly secreted IFN-g, IL-2, IL-12, and so on. Th2 cells mainly
secrete IL-4, IL-5, IL-13, etc (45). Th17 cells mainly secrete IL-17.
Treg cells mainly secrete IL-10 and TGF-b (46). In a study of rats
with idiopathic nephrotic syndrome, proteinuria and focal
segmental glomerular injury were observed at 10 weeks of age.
Renal T cell infiltration was detected before proteinuria, Th1 and
Th2 cells were increased, and Th2 cells were dominant (46). But
exactly what the Th1/Th2 equilibrium theory means is still up in
the air. The main problem is that the activity of cytokines and
other immune messengers rarely falls into strict Th1 or Th2
patterns, and some immune cells, such as Treg cells, stimulate
the Th1/Th2 immune system (47). The imbalance of the Th17/
Treg ratio plays a role in tissue inflammation, autoimmune, and
various diseases. Recently, researchers have proved that the
increased ratio of Th17/Treg cells is related to the progression
of CKD (48).

Most CD8+T cells are cytotoxic, which can induce apoptosis
through perforin or Fas/FasL pathway, and can also directly
stimulate fibroblast proliferation and extracellular matrix
production by secreting TGF-b, IL-4, TNF-a, and other factors,
thus aggravating kidney injury (49). Depletion of CD8+T cells
with antibodies can reduce interstitial dilatation, reduce fibrosis,
and alleviate renal parenchymal lesions and renal damage (50).
On the contrary, the depletion of CD4+T cells aggravated kidney
injury, partly because the decrease of CD4+T cells caused the
increase of CD8+T cells (50).
B Lymphocyte
B cells have a variety of functions. In addition to the function of
antibody secretion, B cells also have the function of releasing
Frontiers in Immunology | www.frontiersin.org 5
inflammatory cytokines, chemokines, and antigen presentation
(51). In healthy kidney tissue, B cells make up a small proportion
and, together with other immune cells, maintain the stability of
the immune microenvironment of the kidney.

There is growing evidence that B cells play an important role
in kidney disease. In lupus nephritis(LN), the researchers treated
NZB/W lupus mice with a selective histone deacetylase 6
(HDAC6) inhibitor for 4 weeks and showed that HDAC6
inhibition decreased B-cell activating signaling pathways,
resulting in a significant reduction in LN symptoms (52). In a
clinical trial on patients with IgA nephropathy, the investigators
found that toll-like receptor 7 (TLR7) can activate B cells through
the TLR7- GALNT2 axis, which produces high levels of
galactose-deficient IgA1 (Gd-IgA1) (53).
Renal Tubular Epithelial Cells
Renal tubule epithelial cells(RTECs) are composed of a single
layer of epithelium and have different morphological
characteristics and functions according to the position of renal
tubules. For example, in the proximal convoluted tubules, the
wall is composed of a single layer of cuboidal epithelial cells
(54). The lumen is small and irregular and is an important
part of tubular reabsorption. The free surface of the cell has a
bristle margin, which enlarges the cell surface area and
facilitates reabsorption.

RTECs are involved in the occurrence of kidney injury in
many aspects. RTECs can be activated by a variety of cytokines,
such as IL-1 and TNF-a produced by monocytes (55). IL-17 is a
pro-inflammatory cytokine released by activated T cells. In vitro,
activation of RTECs with IL-17 can promote the production of
IL-6, IL-8, and MCP-1 (56). RTECs are not only important
sources of cytokines and chemokines but also can produce pro-
fibrotic factors, such as TGF-b, PDGF, CTGF, etc (57). In
addition, RTECs are important antigen-presenting cells that
can interact with T cells and monocytes.

RTECs are also involved in an important process in renal
fibrosis called epithelial-mesenchymal transition (EMT) (58).
After EMT, morphological and proteomic changes occurred in
RTECs. The so-called EMT is the process in which epithelial cells
lose their cellular characteristics, such as polarity and
intercellular adhesion, gain the ability to migrate and invade,
enter the stroma to obtain new phenotypes, and eventually
become mesenchymal cells. In renal fibrosis, EMT refers to the
transformation of epithelial cells into myofibroblasts, which are
the primary source of the extracellular matrix (59). The
expression of various proteins, such as TGF-b, MMPs, FSP-1,
and vimentin, increased after EMT. In contrast, some proteins,
such as e-cadherin and keratin -18, which are the signature
proteins of epithelial cells, are also reduced in expression.
Glomerular Mesangial Cells
In healthy renal tissue, glomerular mesangial cells (MCs) only
perform the functions of contraction, phagocytosis, and
maintenance of normal matrix metabolism. Under pathological
conditions, MCs can be transformed from a normal quiescent
February 2022 | Volume 13 | Article 826732
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phenotype to an active proliferation/secretion phenotype with
increased extracellular matrix secretion (60). The activation
phenotype of MCs has myofibroblast-like characteristics and is
characterized by the expression of A-SMA and ED-A fibronectin.
After activation, MCs can release a variety of growth factors, such
as TGF-b, CTGF, PDGF, etc. through the autocrine or paracrine
form to promote self-proliferation (61). At the same time, MCs
can synthesize a large amount of extracellular matrix, and
mesangial matrix aggregation is the main pathological feature
of glomerulosclerosis (62).

In NZB/WF1 mice, the binding of autoantibodies to MCs
leads to the initiation of an inflammatory response, an early-
stage marker of glomerulonephritis (63). In an in vitro model of
lupus nephritis (LN), MCs participate in the inflammatory
environment of LN by producing cytokines involved in
leukocyte recruitment, activation, and maturation. Treatment
of MCs with cytokines or patient serum induces TGF-b1
secretion, suggesting that MCs are also involved in the fibrosis
process of LN (64).
Major Metabolites in the Kidney
Urea
Urea is a protein metabolite that is produced in the liver and
travels through the blood to the kidneys. Some urea is retained in
the blood by glomerular filtration and has the opportunity to be
transported to the digestive tract as a nitrogen source for
microorganisms, while some urea forms tubule fluid and is
reabsorbed by the collecting tube of the kidney and returned to
the blood.

Urea transporter is a membrane protein that mediates urea
transmembrane transport along a concentration gradient, mainly
including urea transporter B(UT-B) and urea transporter A(UT-
A) (65). UT-A1 is generally distributed in the apical membrane
of collecting duct cells in the renal medullary loop (66), UT-A2 is
distributed in the descending branch of the loop of the spinal
cord (67), UT-A3 is distributed in collecting duct cells in the
renal medullary loop basolateral (68), and UT-B1 is mainly
distributed in the descending branches of straight small vessels
of the nephron (69, 70).

In mouse kidneys, after the deletion of UT-A1 and UT-A3
genes, urine nitrogen excretion increased significantly. After the
deletion of UT-B genes, urea in ascending branches of straight
small vessels could not penetrate to descending branches of
straight small vessels, and the concentration of urea in inner
myelin decreased, leading to a decrease in urea circulation in the
kidney (71). In conclusion, UT-B, UT-A1, and UT-A3 play
irreplaceable roles in the renal urea cycle.

Aquaporin (AQP) is a membrane protein that regulates the
infiltration of water into and out of cells (72). It is embedded in
the cell membrane and controls the entry and exit of water
molecules. Its mechanism of action is similar to urea transporter.
So far, 13 aquaporin subtypes, namely AQP1-AQP12, have been
identified in animals, but only AQP3, AQP7, AQP9, and AQP10
have clear permeability to urea, which are collectively referred to
as water-glycerin channel (AQGP) protein (73–75). Studies have
shown that AQGP can also mediate urea transport (76, 77).
Frontiers in Immunology | www.frontiersin.org 6
In addition to excreting nitrogen, urea also mediates urine
concentration through specific urea transport proteins (78, 79).
The establishment of the renal medullary osmotic gradient is a
necessary condition for the formation of concentrated urine. The
active reabsorption of NaCl in the crude segment of the
ascending ramus of the medullary loop is the main driving
force for the establishment of the medullary osmotic gradient.
Urea and NaCl are the main solutes for the establishment of a
medullary osmotic gradient.

Proximal tubules are moderately permeable to urea and can
reabsorb up to 50% of filtered urea. The collecting tubes in the
distal convoluted tubules, cortex, and outer medullary part of
the ascending branch of the loop are almost opaque to urea. As
the tubule fluid flows through these areas, the water is reabsorbed
by collecting tubes in the cortex and the outer medulla, and the
concentration of urea in the tubule fluid increases. The collecting
tube in the inner medullary region contains UT-A1 and UT-A3,
which are activated by several factors and promote the diffusion
of urea into the interstitial fluid in the inner medullary region.
Urea can re-enter the medullary loop and be reused with a high
concentration in the inner medullary region. Urea in the
interstitial fluid of the inner medullary is in equilibrium with
urea in the collecting tube so that other substances in the
interstitial fluid (such as NaCl) are in equilibrium with other
substances in the urine to facilitate urine concentration.

Urea transporters can be mediated by several factors in the
renal microenvironment that increases urea transport. In short
term rapid regulation, Vasopressin signals through two cAMP-
dependent pathways: protein kinase A and cAMP-activated
exchange proteins (80), high osmotic pressure signals through
increased protein kinase Ca, and intracellular calcium (81),
thereby increasing UT-A1 and UT-A3 phosphorylation and
urea transport (82–84). Vasopressin increases the abundance
of UT-A1 and UT-A3 proteins in long-term regulation (85). In
addition, urea transporters are affected by low-protein diets (86,
87), adrenal steroids (86, 88), hypokalemia (86), and
acidosis (87).
Ammonia
Renal ammonia metabolism plays an important role in the
maintenance of acid-base homeostasis (88). Almost all urinary
ammonia is produced in the kidney, and glutamine in the blood
flows through the kidney and is broken down into ammonia in
the tubular epithelial cells (89). Urinary ammonia is mainly
produced by the decomposition of glutamine, and a small
amount comes from the catabolism of other amino acids (90).

In proximal tubules, glutamine uptake requires complete
metabolism of glutamine through the involvement of root tip
Na+ dependent neutral amino acid transporter-1 and basolateral
sodium-coupled neutral amino acid transporter-3 (SNAT3) to
produce two NH4+ and two HCO3- ions per glutamine (91). The
resulting bicarbonate then passes through the basolateral
membrane into the blood vessels via the electric-sodium
coupled bicarbonate cotransporter isoform 1A (NBCE-1A).

Ammonia reabsorption occurs in the ascending part of the
medullary loop. Ammonia is reabsorbed as NH4+ mainly
February 2022 | Volume 13 | Article 826732
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through the transporter NKCC2 and then transported by NHE4,
a sodium-hydrogen exchanger on the basolateral membrane
(92). NH4+ is a weak acid, and intracellular acidification
inhibits ammonia reabsorption (93). Sodium bicarbonate
enters cells through electrically neutral sodium-sodium
bicarbonate cotransporter subtype 1 (NBCn1) on the
basolateral membrane, which appears to buffer intracellular
acidification and promote ammonia reabsorption (94).

The collecting tube secretes large amounts of ammonia. The
secretion of NH3 is accompanied by the secretion of H+ (95).
NH3 secretion seems to be related to the transport of ammonia-
specific transporters Rhbg and Rhcg expressed on the collector
tube (96, 97). In addition, Na+-K+-ATPase proteins are present
on the basolateral side of collecting duct cells, which are involved
in ammonia secretion of the intramedullary collecting duct
through their ability to transport NH4+ (98).

In summary, ammonia in renal tubular epithelial cells has two
pathways: on the one hand, it is discharged into the tubular fluid
and excreted in urine; the other is reabsorbed into the blood.
NH3 easily passes through the biofilm, while NH4+ does not, so
the path of ammonia in the kidney depends on the relative PH of
blood and tubular fluid. The PH of blood is generally constant,
and therefore actually depends on the PH of the tubule fluid.
When the PH value of the tubule fluid is acidic, the NH3
discharged into the tubule fluid combines with H+ to form
NH4+ and is discharged with urine. If the PH value of the tubule
is high, NH3 is easily reabsorbed into the blood.

Metabolic acidosis can affect ammonia metabolism. During
metabolic acidosis, acidosis stimulates the degradation of skeletal
muscle protein, which binds to intrahepatic glutamine and
increases extrarenal glutamine, leading to increased glutamine
flow through the kidneys and increased urinary ammonia
production (99, 100). The kidneys remove excess acid from the
body by increasing ammonia metabolism (101). Notably,
glucocorticoids can modulate ammonia excretion induced by
acidosis, possibly by stimulating acidosis-induced extrarenal
glutamine increase (102, 103).

Hypokalemia also results in altered ammonia metabolism in
the kidneys. Metabolic alkalosis of hypokalemia is often
associated with increased bicarbonate production (104). In
both adults and children, increased ammonia excretion due to
hypokalemia can lead to a negative nitrogen balance and impair
health (105).

In addition, a protein diet also regulates ammonia excretion.
A high protein diet, especially the intake of sulfur-containing
amino acids, lowers PH and promotes ammonia excretion (106).
Conversely, a low protein diet reduces ammonia excretion (107).
H2O, Na+
Water is filtered through the glomerulus and reabsorbed by the
renal tubules. The glomerular filtration of protopuria was about
170-180L/d, and the final urine was about 1.5L/d. The
reabsorption of water by the kidney can be divided into two
forms: passive absorption and active absorption. About 90% of
tubule fluid is reabsorbed in renal tubules, and proximal
convoluted tubules reabsorb glucose, amino acids, electrolytes,
Frontiers in Immunology | www.frontiersin.org 7
and other substances, and reabsorb water by an osmotic pressure
gradient, which is the main form of passive water absorption,
accounting for about 80%~90% of water reabsorption (108). The
rest are absorbed actively in the medullary loops of renal tubules,
distal convoluted tubules, and some collecting tubules, which are
regulated by ADH.

There are mainly 8 aquaporins in the kidney, which are
AQP1, AQP2, AQP3, AQP4, AQP5, AQP6, AQP7, and
AQP11. AQP1 is located at the top of proximal renal tubular
epithelial cells, basolateral membrane, and descending branch of
the medullary loop. AQP2, AQP3, AQP4, AQP5, and AQP6 are
located in the collecting duct, AQP7 is distributed in the brush
edge of the proximal convoluted tubule, and AQP11 is located in
the endoplasmic reticulum of the proximal tubule cells.

ADH binds with AQP2 in the basement membrane of renal
collecting duct epithelial cells to promote the generation of
cAMP, activate adenosine cyclase in the perimembrane of
tubular cells, increase intracellular cAMP, and then activate
protein kinase, phosphorylation of protein located at the
luminal surface of the plasma membrane of epithelial cells, and
thus increase membrane permeability to water.

It is believed that the water metabolism of the kidney is
related to the ball-tube balance. The colloid osmotic pressure in
peritubular capillaries can regulate the reabsorption of sodium
and water in proximal convoluted tubules. When the glomerular
filtration rate (GFR) increases, the filtration excretion fraction
(GFR/RPF) also increases. Due to the decrease of protein content
in the filtrate, the protein concentration in the blood flowing into
the capillaries around the renal tubules increases, and the colloid
osmotic pressure in the capillaries also increases, thus promoting
the reabsorption of sodium and water in proximal convoluted
tubules. In addition, the hydrostatic pressure of peritubular
capillaries also regulates the reabsorption of sodium and water
in proximal convoluted tubules.

On the other hand, when GFR increased, the amount of Na+
passing through the macula densa also increased, thus increasing
the secretion of renin and angiotensin formation in parabulbar
cells. Increased angiotensin-2 (AT-2) causes constriction of the
entering arterioles, which results in a decrease in GFR and
restores the ball-tube balance. Conversely, when GFR
decreases, AT-2 production decreases, which causes dilation of
the entering arterioles and increase of GFR, and restores the
bulbal-tubular balance.
Glucose
Renal regulation of glucose metabolism mainly includes
gluconeogenesis, glomerular glucose filtration, and proximal
convoluted tubules glucose reabsorption. In the fasting state of
normal individuals, the kidney produces 15-55g/d glucose
through gluconeogenesis, accounting for about 20%-25% of all
endogenous glucose. Renal gluconeogenesis is further increased
after eating. Renal gluconeogenesis occurs mainly in the
proximal convoluted tubules of the renal cortex and is
regulated by insulin and catecholamines (109).

Under physiological conditions, the glomerular filtration of
approximately 180g of glucose per day is followed by almost
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complete reabsorption in the proximal convoluted tubules, so
urine glucose monitoring should be negative. However, when
plasma glucose concentrations reach nearly 10.0mmol/L, the
renal glucose threshold will be exceeded, resulting in detectable
glucose in urine (110).

The renal glucose reabsorption process is completed in the
proximal convoluted tubule S1-S3 segment. The Na+ is pumped
out of the cells and into the interstitial fluid by the Na+-k–ATP
pump located in the basolateral membrane of renal tubules,
thereby reducing the concentration of sodium ion in the cells and
forming an electrochemical gradient of about -70 mV. Glucose in
the tubule fluid is actively transported to renal tubule cells by the
sodium glucose cotransporter (SGLT) in a secondary, inverse
concentration gradient. Finally, the glucose transporter (GLUT)
binds glucose and changes its conformation, and glucose is then
returned to the blood via facilitated diffusion from renal tubule
cells (111).

SGLT belongs to the SLC5 gene family. SGLT1 and SGLT2
play a role in glucose reabsorption, and their differences in
expression and the driving force of their cotransport function
help to minimize glucose loss from urine. SGLT2, with high
volume and low affinity, is mainly distributed in the proximal S1
segment of the proximal convoluted tubules of the kidney and
combines actively transported sodium ions and glucose into the
blood circulation in a ratio of 1:1, playing a major role in the
renal glucose reabsorption function. SGLT1 is mainly distributed
in the brush edge of intestinal mucosal epithelial cells and plays
an important role in intestinal glucose and galactose absorption.
SGLT1 is also expressed in the distal S3 segment of the proximal
convoluted tubules of the kidney with a higher affinity than
SGLT2. Glucose that is not bound by SGLT2 is responsible for
SGLT1, and glucose and Na+ are reabsorbed into the blood in a
ratio of 1:2 (109).

Glucose transporter 1 (GLUT1) and GLUT2 are mainly
related to the process of renal glucose reabsorption in the
GLUT family. GLUT2 is expressed in the basolateral
membrane of renal tubular cells in the S1 segment and is
responsible for releasing glucose reabsorbed by SGLT2 into the
blood through facilitated diffusion. GLUT1 is responsible for
the release of glucose from small tubules into the blood at the
proximal convoluted tubule S3 segment (112).

Amino Acids
Amino acid metabolism is closely related to the kidney. On the
one hand, the absorption, release, metabolism, and excretion of
amino acids by the kidney can effectively regulate the level of
amino acids in the circulation system and the transport of amino
acids between organs. On the other hand, orderly amino acid
metabolism is beneficial to regulate renal hemodynamics and
protein synthesis, maintain the integrity of renal function, and
environmental acid-base balance in the body. Under the normal
physiological state, the kidney mainly absorbs glutamine,
citrulline, phenylalanine, S-adenosine homocysteine, and
proline from the blood, and participates in the synthesis and
release of serine, tyrosine, arginine, cysteine, and a small amount
of threonine and lysine.
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After the kidney absorbs glutamine from the blood, NH4+
and glutamate are mainly metabolized by phosphate-dependent
glutamine enzyme, and only a small amount of them
metabolized by g -glutamine transferase in the distal tubules
(113). Under the normal physiological state, about 70% OF NH4
+ enters the renal vein, and the rest is discharged through urine
(114). When PH in the kidney increases, a high concentration of
NH4+ inhibits glutaminase activity and increases NH4+
excretion to maintain acid-base balance in the body.

Citrulline is a nitrogenous product of glutamine metabolism
in the intestinal tract. Most citrulline is synthesized in the
intestinal tract and absorbed by the kidney (115). After the
kidney absorbs a large amount of citrulline from the blood,
arginine is synthesized and released into the blood with the
participation of arginine succinic acid synthase and succinic acid
lyase, which accounts for 10-20% of the total plasma arginine
(116). Compared with the normal diet, intestinal arginine
absorption is reduced in the low-protein diet, resulting in
reduced urea synthesis in the liver. At the same time, because
citrulline is not taken up by the liver, more citrulline in the low-
protein diet enters the kidney to synthesize arginine to maintain
normal physiological function.

Arginine can be degraded to guanidine acetic acid and urea,
or oxidized by nitric oxide synthase to citrulline and nitric oxide
(NO). About 1% of the daily intake of arginine is used to
metabolize NO, which is the main source of NO synthesis
(117). NO is a small gas molecule that can regulate endothelial
cell function and is of great significance in regulating glomerular
hemodynamics, maintaining glomerular filtration rate, local
vascular tension, and renal blood flow (118, 119).

Asymmetric dimethylarginine (ADMA), symmetric
dimethylarginine (SDMA), and N(G)-monomethyl-L-arginine
(NMMA) are generated from arginine residues after
methylation and proteolytic reaction. Both ADMA and
NMMA can inhibit the activity of arginine synthase. NMMA is
the precursor of ADMA and SDMA, and the content of NMMA
is small but the inhibition effect is strongest. The kidney also
plays an important role in the clearance of ADMA and SDMA.
The clearance of ADMA mainly relies on renal conversion into
citrulline and dimethylamine, and the remaining small amount
of ADMA is excreted through urine, while SDMA is mainly
cleared through renal excretion (120).

S-adenosine homocysteine is a by-product of methionine
methyl transfer reaction and a precursor of homocysteine
synthesis. The arteriovenous difference of S-ADENosine
homocysteine was up to 40%, indicating that the kidney is the
main excretion site of S-adenosine homocysteine (121).

Tyrosine, as a non-essential amino acid, can be synthesized by
phenylalanine 4-hydroxylase catalyzed by phenylalanine as a
substrate in the body. The synthesis process of tyrosine was first
discovered in the liver, and it can also be synthesized in the renal
cortex in the later study (122). Moreover, tyrosine synthesized by
the kidney is the main source of maintaining the level of tyrosine
in the circulatory system (123). Glycine is taken up by the
kidneys to synthesize serine, which only accounts for 5-7% of
the total amount of serine in the body. High arginine is mainly
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derived from lysine in the kidney, which can increase
intracellular arginine concentration, promote the effective
synthesis of NO and improve the dysfunction of endothelial
cells and cardiomyocytes (124).

Causes of Renal Microcirculation
Disorders
Dietary preferences can cause gastrointestinal microbiota imbalance
and translocation, resulting in renal microcirculation disorders. For
example, a high-salt diet can induce oxidative stress in the kidney,
resulting in increased renal perfusion pressure and immune cell
infiltration, thus leading to kidney damage (125, 126). Meanwhile,
under high-salt conditions, serum and glucocorticoid-regulated
kinase 1 (SGK1)-mediated phosphorylation of forkhead box of
transcription factors O1 (FOXO1) and forkhead box of
transcription factors O3 (FOXO3) may lead to instability of
Foxp3, thus reducing the inhibitory function of Treg cells (127)
(Figure 4B). A high protein diet leads to increased urea production
in the body. Excessive urea will lead to uremia toxin production in
the kidney (128), thus changing the integrity of the intestinal barrier,
resulting in the migration of intestinal flora into the blood, resulting
in inflammation and cardiovascular diseases (129, 130) (Figure 1).

When the imbalance and displacement of microbial flora, a
stressor, appears, it will stimulate the activation of the stress
response mechanism related to metabolism, leading to excessive
passive and active absorption of nutrients by the human body.
Excessive absorption of nutrients cannot be efficiently and timely
metabolized by the body, easy to lead to nutrient metabolism
disorder. For example, lipid substances (triglyceride, cholesterol,
etc.), glucose, amino acids, etc., and the disorder of metabolism of
these intermediates lead to the impairment of the morphology and
function of Treg cells (131–133), the blockage of renal capillaries,
and then the occurrence of renal microcirculation disorders (134).

Disturbances in the microcirculation of renal resident cells
(RTECs and MCs) impair the exchange of cells with external
substances, leading to metabolic disturbances in renal cells (135).
Due to the tiny blood vessels front-end blood-supply artery
atherosclerosis in silt, the various cells of the kidney can’t get
enough nutrients and energy supply, leading to large proteins,
lipids, creatinine, urea, renin, prostaglandins, mineral ions, etc.
cannot be effectively out of shipping, and metabolism thus can
lead to kidney tissue cell metabolism disorder. For example, renal
tissue ischemia and hypoxia activate hypoxia-inducible factor 1a
(HIF-1a) and destabilize Foxp3 expression, thus inhibiting Treg
cell proliferation (136) (Figure 4B).

Treg Cells Metabolism
Cell metabolism is the core of T cell differentiation (137). Resting
T cells require little energy production or consumption; however,
after activation, their energy demand increases significantly, and
they use glucose, amino acids, and fatty acids to meet this
requirement (138, 139). An overview of the metabolic
pathways is shown in Figure 3. Treg cells mainly utilize fatty
acid and pyruvate oxidation (mitochondrial oxidative
metabolism) to produce energy, which has a different signal
and metabolic characteristics from other T cells (139).
Frontiers in Immunology | www.frontiersin.org 9
Glucose Metabolism in Treg Cells
Glucose is required for the activation and proliferation of Treg
cells. They can make use of glycolysis and oxidative
phosphorylation for energy production (140). Glycolysis occurs
in the cytoplasm by converting glucose to pyruvate (producing
two ATP molecules), which is converted to lactate by lactate
dehydrogenase A (LDH-A), or to acetyl-CoA by pyruvate
dehydrogenase (PDH), which then travels to the mitochondria
to participate in the tricarboxylic acid (TCA) cycle, producing
ATP (36 molecules) through oxidative phosphorylation (141).
Moreover, the pentose phosphate pathway (PPP) that branches
from the glycolysis pathway converts glucose-6-phosphate to
ribose-5-phosphate for the synthesis of nucleotides.

Foxp3 itself inhibits glycolysis and promotes oxidative
phosphorylation (OXPHOS), while Foxp3 deficiency
dysregulates mammalian target of rapamycin complex 2
(mTORC2) and promotes glycolysis (132, 142). Upregulation of
GLUT1 in Treg cells inhibited Foxp3 expression (142, 143). A
study showed that Treg cells had higher levels of C2 and C4-OH
carnitine, higher expression of fatty acid transport protein
carnitine palmitoyltransferase 1A (CPT1A) and electron
transport chain component cytochrome C, and lower levels of
GLUT1, a key protein expressed in pyruvate, lactic acid, and
glycolysis pathways, suggesting that the energy of Treg cells
depends more on oxidative phosphorylation than glycolysis
(144). Moreover, some studies have shown that a high glycolysis
rate is not conducive to the differentiation of Treg cells.
Conversely, inhibition of glycolysis can promote the formation
of Treg cells (145, 146). It can be explained because, mechanically,
glycolysis requires activation of MYC proto-oncogene (MYC) and
Foxp3 binds to the promoter of MYC to inhibit expression of
MYC and MYC-dependent transcripts (147).

The glycolytic enzyme enolase 1, relocating from the
cytoplasm (where it regulates the glycolysis pathway) to the
nucleus, is required for the induction and function of human
pTreg cells following suboptimal T cell receptor (TCR)
stimulation of T cells in the periphery (138). In the nucleus,
enolase 1 binds to the epigenetic promoter region of the Foxp3
gene to inhibit transcription of specific Foxp3 exon-2 (E2)
(148) (Figure 4B).

As mentioned above, pyruvate can be converted to lactic acid
by LDH-A under anaerobic conditions. For example, in ischemic
tissue, due to the accumulation of lactic acid caused by ischemia
and hypoxia, lactic acid mediates increased HIF-1a production
and inhibits pTreg function, which may lose the metabolic
advantage of function under low glucose conditions (149).
However, in prostate cancer models, lactic acid produced by
cancer-associated fibroblasts (CAFs) stimulates Treg
proliferation by promoting Foxp3 activation (150). These two
contradictory results are currently unclear and may be
interpreted that lactic acid increases the number of Treg cells,
and the inhibitory ability of Treg cells decreases during Treg
proliferation. In addition, lactic acid can also be converted to
pyruvate through lactate dehydrogenase B (LDH-B) (151). One
study showed that in tumor cells, oxidation of lactic acid to
pyruvate changed the ratio of NAD+/NADH, thereby activating
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the Silencing information regulator 2 related enzyme 1/
proliferator-activated receptor g coactivator-1a (Sirtuin1/PGC-
1a) axis of NAD+ dependent deacetylase, enhancing the
mitochondrial metabolism and invasion ability of prostate
cancer cells (152).

Moreover, glycolysis of Treg cells can be inhibited by the
binding of effector molecules on cytotoxic T lymphocyte antigen
4 (CTLA4) and programmed death 1 (PD-1) found on the
surface of Treg cells (153). In turn, the inhibition of glycolysis
can also suppress the migration of Treg cells, and to meet their
glucose demand, Treg cells upregulate insulin receptors (154).
Several recent studies have indicated that Treg mobility is
regulated by the metabolism of glucose through glycolysis, via
glucokinase (GCK) activation and phosphoinositide 3-kinase
(PI3K)- protein kinase B (Akt) pathways (155).

Fatty Acid Metabolism in Treg Cells
Fatty acids are transformed into acyl-coenzyme A (FA-CoA) in
the cytoplasm, and FA-CoA enters mitochondria under the
action of carnitine palmityl transferase I (CPT I) and carnitine
palmityl transferase II (CPT II) (156). After b-oxidation, acetyl-
CoA is formed and enters the tricarboxylic acid cycle. Fatty acid
oxidation requires the involvement of four enzymes that produce
NADH and xanthine dinucleotide (FADH2), which are used by
the electron transport chain to produce ATP (157). Acetyl-CoA
Frontiers in Immunology | www.frontiersin.org 10
in the mitochondria is transported to the cytoplasm through the
citrate-pyruvate cycle for the synthesis of fatty acids,
triglycerides, cholesterol, and protein acetylation (158). The
fatty acid synthesis requires acetyl CoA carboxylase 1 (ACC1)
(159), and the cholesterol synthesis requires the participation of
acetyl-CoA and hydroxymethylglutaryl-CoA (160).

Acetyl-CoA may promote the acetylation of Foxp3 protein by
activating lysine acetyltransferases (KATs) and prevent Foxp3
protein ubiquitination degradation, thus helping to maintain the
function of Treg cells (161), while NAD+/NADH activates the
deacetylase activity of Sirtuin-1 and inhibits Foxp3 protein (162)
(Figure 4B). CPT I, a rate-limiting enzyme in fatty acid
oxidation (FAO), enhances FAO efficiency, and adenosine
monophosphate activated protein kinase (AMPK) induces CPT
I expression (163, 164). In fatty acid synthesis (FAS), acetyl-CoA
is carboxylated into malonyl-CoA ACC1, the rate-limiting
enzyme, and its phosphorylation can inhibit FAS (165). ACC1
inhibits the polarization of Treg cells and inhibition of ACC1 can
promote the induction of Treg cells in vivo and in vitro (166).
The inhibition of Fatty acid Binding protein 5 (FABP5) in Treg
cells can trigger the release of mitochondrial DNA (mtDNA) and
the subsequent cyclic GMP-AMP synthase-stimulator of
interferon genes (cGAS-STING) dependent type I interferon
(IFN) signal transduction, thus inducing the production of the
regulatory cytokine interleukin-10 (IL-10) and promoting the
FIGURE 3 | Main metabolic pathways in T cells. T cells generate ATP by glycolysis and oxidative phosphorylation. Pentose phosphate pathway (PPP) is a branch of
glycolysis pathway. Cells also generate energy by using glutamine (Gln), which is metabolized by glutaminolysis, and lipids(b-oxidation). Additionally, Serine enters the
cell from the extracellular space and then, either enters one-carbon metabolism (1CM), which generating one-carbon (1C) building blocks for anabolism, or produces
the ROS scavenger glutathione (GSH).
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inhibitory activity of Treg cells, suggesting that FABP5 maintains
mitochondrial integrity and can regulate the function of Treg
cells (167).

TTreg cells and pTreg cells together constitute the Treg cell
population in vivo, and they have different metabolic
characteristics. PTreg cells can utilize both the mevalonate
pathway and end products of glycolysis for the synthesis of
fatty acids (168). During the induction of Treg cells in the
periphery, increased expression of Foxp3 reprograms the cell
to exert action in low-glucose environments (169). Therefore, the
cell preferentially metabolizes lipids over glucose to maintain the
suppressive function of pTreg cells, which maintains peripheral
immune tolerance during tissue injury, even under metabolically
challenging conditions (e.g., in ischemic tissues) (170). TTreg
cells are induced and maintained by exogenous fatty acids (138).
For example, Treg cells in adipose tissue express leptin receptors,
and the leptin/leptin receptor axis induces an mTOR metabolic
state to inhibit Foxp3 expression (171, 172) (Figure 4B). In
addition, Treg cells in tissues are involved in suppressing
Frontiers in Immunology | www.frontiersin.org 11
inflammation and have regenerative functions in wound
healing (173).

Short-chain fatty acids (SCFAs), including acetic, propionic,
and butyric acids, are produced by dietary fiber and other
undigested carbohydrates in the colon (174). At the molecular
level, SCFAs inhibit histone deacetylase (HDAC) in Treg cells in
colon tissue and enhance histone acetylation at Foxp3,
promoting pTreg cells formation (175). Interestingly, SCFAs-
induced IL-10+pTreg cells were not associated with suppression
of the immune response in kidney hydronephrosis (C2RD), since
the number of Th1 and Th17 cells increased as the number of
regulatory T cells increased, suggesting a general increase in
SCFAs-induced T-cell response in C2RD (176).

MTOR drives FAS and cholesterol production in Treg cells,
while SCFAs can activate the mTOR pathway (177, 178). Studies
have shown that the activity of mTOR- S6 kinase (S6K) in
SCFAs-induced Treg cells is increased, revealing that SCFAs may
regulate Treg cells through the mTOR-S6K pathway (173, 176).
Meanwhile, with the activation of the mTOR pathway, SCFAs
A

B

FIGURE 4 | Metabolic regulation in Treg cells. (A) Regulatory T cells have a crucial role in establishing an IFN-g-rich environment that activates Indoleamine 2, 3-
dioxygenase (IDO)- and IDO+ dendritic cells (DCs), either by forward signaling to DCs or by direct production of the cytokine. (B) Cell-intrinsic metabolic programs
and environmental factors that can modulate FOXP3 expression ultimately affect Treg cells fate.
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also enhance the activity of signal transducers and activators of
transcription 3 (STAT3) (176). In addition, impaired Treg
homeostasis in mTOR deficient mice was associated with
defective lipid biosynthesis (177).

OX40 can also trigger the proliferation of lipid-rich Treg cells
in naive mice (168). It has been found that OX40/OX40L
signaling occurring in the hepatocellular carcinoma
microenvironment may be directly involved in the FAS of Treg
cells (179).

In addition, researchers found high expression of peroxisome
proliferation-activated receptor gamma (PPARg) in TUM-Treg
cells (Treg cells extracted from the tumor bed) (168). PPARg is a
nuclear factor that controls fatty acid uptake and FAS in adipose
tissue (180), and it is believed that excessive FAS induces
PPARg expression.

Amino Acid Metabolism in Treg Cells
Amino acids also play a crucial role in Treg cell regulation. 2-
Hydroxyglutarate (2-HG), the metabolite of glutamine, can lead
to hypermethylation of the Foxp3 gene locus and then suppress
Foxp3 transcription (181); this action further inhibits Treg
generation. Tryptophan can produce kynurenine, which is able
to combine with the aryl hydrocarbon receptor and then
accelerate pTreg generation (182). Moreover, the enzymes that
pTreg express participates in the synthesis of amino acids, which
play an essential role in the proliferation and function of Treg
cells (183, 184). Indoleamine-2,3-dioxygenase (IDO) is expressed
on Treg cells and can inhibit mTOR signaling by phosphatase
and tensin homolog (PTEN), thus promoting the generation of
Treg cells (185). After tryptophan is metabolized by IDO, the
metabolite kynurenine will bind to the transcription factor aryl
hydrocarbon receptor (AHR), thereby activating Foxp3+ Treg
cells (186), and these Treg cells will reverse or inhibit the activity
of effector T cells. Kynurenine could also recruit other cell types
to the regulatory response, including dendritic cells (DCs), in
which the function of IDO is inhibited posttranslationally
(187) (Figure 4A).

mTOR/AMPK Signal Pathway in Treg Cells
mTOR, a member of the phosphatidylinositol 3-kinase-related
kinase family, induces the expression of multiple genes that play
a key role in a variety of metabolic processes and is necessary for
Treg differentiation, function, and survival (177) The increase in
mTOR pathway activity has a negative impact on the generation
and function of Treg cells (188) Transient TCR stimulation can
induce the PI3K-Akt-mTOR signaling pathway to antagonize the
expression of Foxp3 (189).

MTOR consists of the protein complex mTOR complex 1
(mTORC1) and mTOR complex 2 (mTORC2). Increased
mTORC1 activity is not only a typical characteristic of Th1
cells and Th17 cells differentiation (190) but also has a negative
impact on the generation and function of Treg cells (188). The
mTORC1 signaling pathway in Treg cells is inhibited by serine/
threonine protein phosphatase 2A (PP2A). In the absence of
PP2A, the glycolysis and oxidative phosphorylation rates of Treg
cells were increased (191), as well as the expression of small
subunit 1 (LAT1), a neutral amino acid transporter dependent
Frontiers in Immunology | www.frontiersin.org 12
on mTORC1 activity (177). The increase of glycolysis, oxidative
phosphorylation, and LAT1 expression made Treg cells develop
into Teff cells. However, whether PP2A has an effect on
mTORC2 requires further study (192).

In fact, the relationship between mTORC1 and mTORC2
remains at odds. Aysegul V. Ergen et al. suggested that
rapamycin inhibited mTORC1 but not mTORC2 (193).
However, Rosner M et al. suggested that chronic treatment
with rapamycin also inhibited mTORC2 activity (194).
Takahito Kawata et al. argued that mTORC1 negatively
regulates mTORC2 (195); Wang et al. believed that mTORC1
maintained mTORC2 activity, while mTORC2 negatively
regulated mTORC1 signal activation (196). These differences
may be related to researchers’ experimental conditions and
models, which need further study.

IDO activity reduces local tryptophan availability in the
vicinity of Treg cells in the tumor microenvironment (197). A
low concentration of tryptophan inhibits mTORC2 through
protein kinase and prevents its phosphorylation of Akt, which
helps maintain the inhibitory function of Treg cells, suggesting
that the MTORC2-Akt signaling pathway has a negative
regulatory effect on the differentiation of Treg cells (198).

AMPK can be activated by Treg cells and can inhibit
mTORC1, reduce the expression of GLUT1 and promote fatty
acid oxidation (199). Liver kinase B1 (Lkb1) is considered to be
an AMPK-independent metabolic sensor in Treg cells because it
stabilizes the expression of Foxp3 by changing the methylation
state of CNS2 (200).

Other Metabolic Pathways in Treg Cells
As mentioned above, SGK1-mediated phosphorylation of
FOXO1 and FOXO3 may lead to instability of Foxp3 under
high salt conditions, thus reducing the inhibitory function of
Treg cells (127). However, in another study, high salt only
inhibited the function of tTreg cells and had little effect on
TGF-b -induced iTreg cell function (201). This may be due to the
different disease models selected by the authors.

Excessive urea will lead to uremia toxin production in the
kidney, studies have shown that uremia patients have reduced
Treg cells numbers and impaired function (202, 203) However,
the specific mechanism of how urea acts on Treg cells
remains unclear.

HIF-1a, which is activated either directly by hypoxia or via
mTORC1, destabilizes Foxp3 expression (204). Moreover, HIF-
1a is downregulated by 2-HG through inhibiting the activity of
prolyl hydroxylase (205). The vitamin A metabolite RA increases
Foxp3 gene expression by maintaining Smad activation (206).
Vitamin C, together with Tet methylcytosine dioxygenase,
increases Foxp3 expression (207). The vitamin D3 metabolite
1,25(OH)2VD3 stabilizes Foxp3 gene expression by maintaining
the state of the VDRE region (208) (Figure 4B).

In addition, we summarized some drugs that target metabolic
pathways; for example, 2-deoxy-d-glucose (2-DG), a drug that
can compete with glucose in binding to hexokinase II (HKII) to
inhibit cellular glycolysis activity and regulate the glycolytic
pathway, induces Treg cell differentiation and suppression and
alleviates the progression of systemic lupus erythematosus (SLE)
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in TC mice (209). More drugs and further details are given in
Table 1. These drugs can change the number and function of
Treg cells by targeting their respective metabolic pathways, thus
alleviating the progression of diseases.
The Role of Treg Cells in Acute Kidney Injury
Acute kidney injury (AKI) refers to a clinical syndrome in which
renal function declines rapidly in a short period caused by a
sudden or continuous decline in the glomerular filtration rate
(212, 213). AKI has multiple etiologies, with hypovolemia,
ischemia-reperfusion injury (IRI), exposure to nephrotoxic
agents, and sepsis among the major causes. The immune
response mediates the various stages of the occurrence,
Frontiers in Immunology | www.frontiersin.org 13
development, and repair of AKI, and Treg cells play a
significant role in the entire developmental stage of AKI (210,
214). Although there is no clinical study of Treg cells in AKI, they
have been indicated to protect and repair the kidney after AKI in
animal models (215).

Abnormal metabolism in AKI affects the signaling pathways
and the extracellular matrix environment, thereby affecting the
differentiation of Treg cells. In AKI patients, due to
mitochondrial damage and impaired FAO metabolism, as well
as decreasing peroxisome proliferation-activated receptor alpha
(PPARa) activity and decreasing peroxisome PGC-1 expression,
the accumulation of triglycerides in AKI patients result in
obvious lipid metabolism abnormalities (216–219). Treg cells
express G protein-coupled receptor 43 (GPR43) in mice, which
TABLE 1 | Inhibitors of the metabolic pathways, their influence on Treg cells and disease applied.

Related
Mechanism
Pathways

Drugs Pharmacological Effects Influence on
Treg Cells

Other biological Functions Experimental
Subject

Associated
Disease

Reference

carbohydrate
metabolism

CG-5 Decrease Glut1 expression Increase Treg
cells
differentiation

In vitro: block glycolysis in
CD4+ T cells

Lupus-prone
mouse model

SLE (220)

2-DG Compete with glucose in binding to HKII
to inhibit cellular glycolysis activity and
regulate the glycolytic pathway

Induce Treg cells
differentiation and
suppression

In vivo: dampen Th1 and Th17
cells development

Lewis rats GBS (221)

Decreased ECAR and OCR in
TC CD4+ T cells

TC mice SLE (210)

DCA Inhibit the dephosphorylation and
deactivation of PDC to keep PDC active

Increase Treg
cells expansion

Inhibit Th17 cells survival and
proliferation

C57BL/6J
mice

EAE (222, 223)

Metho-
trexate

Act by competitive inhibition of
dihydrofolate reductase to deplete One-
carbon metabolism

Increase Treg
cells expansion

Deplete purine biosynthesis
enzymes

Patients with
RA and
healthy
controls

RA (224)

Lipid
metabolism

Piogli-
tazone

Activate PPARg and high affinity binding
to the PPARg ligand-binding

Induce VAT Treg
cells

Decrease the elevated serum
levels of both creatinine and
CK-MB

C57Bl/6 mice Obesity (225, 226)

Sora-
phen A

Lower cellular malonyl CoA, attenuate
DNL and the formation of fatty acid
elongation products derived from
exogenous fatty acids

Induce Treg cells
differentiation

In vivo: inhibit TH17 cell–
associated inflammatory
diseases

TACC1 mice EAE (211, 227)

TOFA Inhibit ACCA to decrease fatty acid
synthesis and induce caspase activation

Inhibit Treg cells
proliferation

In vitro: reduce the MCA38 cell
viability in a dose-dependent
fashion

Tumor-bearing
mice

Tumor (171, 228)

Etomo-
xir

Bind irreversibly to the catalytic site of
CPT-1 to inhibit CPT-1 and up-regulate
fatty acid oxidase activity

Abrogate Treg
cells
development and
suppressive
function

Reduce the production of pro-
inflammatory cytokines in MOG
specific T cells and promote
their apoptosis

C57BL/6J
mice

MS (229, 230)

Amino acid
metabolism

DON Inhibit glutaminase and glutamine
transporters

Promote Treg
cells generation
and frequency

Decrease IFN-g production and
proliferation in activated CD4+
and CD8+ T cells

C57BL/6 mice Skin and heart
transplantation

(231, 232)

mTOR/AMPK
signal
pathway

Rapa-
mycin

Block mTOR downstream targets, such
as p70S6K phosphorylation and
activation

Enhance nTreg
cells proliferation
and function

Suppress proliferation of CD4+
CD25- effector T-cells

Patients with
type 1
diabetes and
healthy
controls

Type 1
diabetes

(233–235)

Metfor-
min

Activate AMPK in liver cells leads to
decreased ACC activity, induction of fatty
acid oxidation, and inhibition of
adipogenic enzyme expression

Induce Treg cells
differentiation

Inhibit IL-17, p-STAT3, and
p-mTOR expression

C57BL/6 mice IBD (236, 237)
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2-DG, 2-deoxy-d-glucose; ACC, acetyl-coa carboxylase; CK-MB, creatine kinase-mb; DCA, dichloroacetate; DON, 6-diazo-5-oxo-L-norleucine; EAE, experimental autoimmune
encephalomyelitis; ECAR, extracellular acidification rate; GBS, Guillain-Barré syndrome; IBD, inflammatory bowel disease; MS, multiple sclerosis; OCR, oxygen consumption rate; RA,
rheumatoid arthritis; SLE, systemic lupus erythematosus; TOFA, 5-tetradecyl-oxy-2-furoic acid.
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when bound to SCFAs results in enhanced differentiation and
function (238). Recent work by Field C. et al. demonstrated that
inhibiting the lcFA-FAO metabolic pathway may be more
favorable as an approach to increasing the suppressive function
of Treg cells (167). It is plausible that various intermediates
produced during FAO, such as acetyl-CoA, and reduced FADH/
NADH, could interfere with Treg cell function through yet
unknown mechanisms (167). Mitochondrial dysfunction is also
one of the important characteristics of AKI (239); the
accumulation of cytochrome C in the mitochondria causes the
oxidative respiratory chain to fail to proceed normally, and
mitochondrial respiration is weakened, which further affects
the metabolism of lactic acid in the kidney tissue, causing
metabolic acidosis (240). In this situation, Treg cells can
convert lactate to pyruvate. Moreover, Foxp3 can modulate
LDH to prevent lactate formation and form pyruvate (241).
While lactate may negatively impact T-cell proliferation as a
whole, it does not impact Treg cell immunosuppression (242).
There are also serious changes in protein metabolism in AKI, and
the rapid catabolism of proteins leads to a negative nitrogen
balance (243). In a long-term high catabolic state, the activity and
metabolism of Treg cells will be affected, resulting in a weakened
immune response and anti-infection mechanism (244). Active
metabolism in AKI will cause hypoxia, which is associated with
increased levels of the HIF-1 complex (245). HIF-1a forms a
complex structure with its counterpart HIF-1b, which then binds
to specific hypoxic response elements (HREs) (243) to influence
Treg cell metabolism/function.
Ischemia–Reperfusion Injury (IRI)
The phenomenon that after blood reperfusion is resumed under
certain conditions, some animals or patients have cellular
functional metabolic disorders and structural damage that are
not reduced but aggravated this is called IRI (246). IRI is a vital
cause of AKI and a serious complication secondary to major
surgery (247). Endogenous Treg cells can mediate immune
responses, reduce the existence of costimulatory molecules
after renal IRI, and improve renal IRI (248). Oxidative stress,
inflammation, and apoptosis are well-known characteristics of
the kidney after AKI (249). In vitro and in mice, IRI causes
persistent mitochondrial damage and energy loss (250),
increased reactive oxygen species (ROS) generation, and
decreased ATP synthesis in iTreg/pTreg cells. Upregulation of
Treg cell lipogenic genes in the kidneys of IRI mice leads to an
associated elevation of lipid deposition (250, 251), indicating the
presence of excessive FAS in Treg cells of IRI mice. The
tryptophan metabolite kynurenine was increased in plasma
and kidney tissues from IRI mice (250, 251). After the
elimination of pTreg/iTreg cells in renal IRI mice by anti-
CD25 + antibody in vivo and in vitro, renal injury and
inflammation were aggravated, and renal function and
mortality continued to deteriorate (252). Adoptive transfer
therapy of iTreg cells after IRI can increase the repair rate of
mouse kidneys (253). In addition (254), Treg effectively prevents
the accumulation of neutrophils and mononuclear phagocytes
Frontiers in Immunology | www.frontiersin.org 14
during renal reperfusion, and its pathway has not been fully
understood yet.

Sepsis-Induced Acute Kidney Injury
Severe sepsis can also lead to AKI (255). Although the
pathophysiological mechanisms are not fully understood, it is
clear that the inflammatory cascade characteristic of sepsis is
associated with AKI (256). Different from AKI caused by IR,
renal tubular cells in septic AKI are slightly vacuolated and a
large number of renal tubular cells undergo apoptosis, without
obvious renal tissue necrosis (257). In the septic AKI mouse
model, renal tubular cell apoptosis was reduced and renal
function was significantly improved after Treg cells were
removed, which was completely contrary to the findings in IR
mice, since the depletion of Treg cells led to the deterioration
of renal function after IR (254). There was no significant change
in renal function after IL-10 blockade in IR mice, but in septic
AKI, renal function was significantly improved after IL-10
blockade, suggesting that IL-10 reduced the proliferation of
Treg cells, thereby improving the survival rate of patients with
sepsis (258). The opposite role of Treg cells in septic-induced
AKI and IR-induced AKI maybe that Treg cells only play a
protective role in aseptic inflammation-mediated AKI, which
needs further study to explain.

Cisplatin Nephrotoxicity
Cisplatin, one of the most effective chemotherapeutic drugs, can
induce damage in the renal vasculature, which leads to reduced
blood flow and ischemic injury in the kidney, thereby inducing
an AKI model (259). Cisplatin has been widely used to treat
malignant tumors of various organs. It is known that cisplatin
concentrates on epithelial cells in the proximal tubule S3 segment
(260), where it induces necrotic and apoptotic cell death and is
associated with an extensive pro-inflammatory immune
response. Salt may ameliorate symptoms (261, 262). Some
studies have shown nephrotoxicity in clinical trials of cisplatin
chemotherapy (259), and the use of cisplatin is limited because of
its nephrotoxicity (263). CD4+CD25+Foxp3+ Treg cells showed
a protective effect in the cisplatin nephrotoxicity test in mice
(264). Oxidative stress has been considered an essential
component that results in cisplatin nephrotoxicity both in vivo
and in vitro (265, 266). Cisplatin aggregates in the mitochondria
of renal epithelial cells and disrupts the respiratory chain,
resulting in a decrease in ATP production and an increase in
ROS production, which cause inhibition of mitochondrial
activation (259, 263, 264). Mitochondrial dysfunction and
oxidative stress exist in cisplatin-mediated acute renal injury
(267), which causes impaired synthesis of Treg cells (268).

With the in-depth understanding of AKI disease and Treg
cells, AKI, which was previously thought to have little
relationship with immune abnormalities, is partly caused by
abnormal metabolism of immune cells, such as Treg cells.
However, the immune cells involved in AKI disease are not
only Treg cells. What is the proportion of Treg cells interacting
with other immune cells in AKI disease? Does targeted Treg
therapy for AKI affect other abnormalities in immune cell
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function? How do Treg cells affect intrinsic renal immune
response in cisplatin-induced AKI? These all require follow-
up research.
The Role of Treg Cells Metabolism in CKD
CKD is the chronic process resulting from a variety of kidney
diseases, as well as a heterogeneous illness influencing the
morphology and function of the kidney (269). A diverse set of
components can activate various molecular mechanisms of
kidney damage, such as genes, metabolism, autoimmunity,
malignancy, toxins, and the environment (270). All these
injuries contribute to different categories of vascular,
glomerular, and tubulointerstitial renal diseases, which
culminate in decreased kidney function and result in CKD
syndrome (271).

Tissue damage in CKD is directly or indirectly mediated by
the immune system, and the dysfunction of immune cells
promotes CKD inflammation and renal fibrosis (272). Treg
cells play a protective role in CKD by inhibiting inflammation
and immunity, but the number of pTreg cells in the peripheral
blood of CKD patients is significantly reduced (273). TGF-b1 is
an inducer of Treg cells, which are released after renal cell injury
(274). Treg cells can be transformed into Foxp3+IL-17+ T cells
under inflammatory conditions in the kidney and then produce a
large amount of TGF-b1, leading to CKD inflammation and
renal fibrosis (275) (Figure 5). A study illustrated that an
elevated ratio of Th17 cells and a reduced ratio of Treg cells
exist in CKD patients, reflecting that an enhanced Th17/Treg cell
rate is related to the progression of CKD and the severity of
kidney disease (48).

The state of reduced renal function that results from CKD
causes marked alterations in Treg cell metabolism. Typical
alterations include increased intracellular ROS (276), high
levels of 8-hydroxy-2 deoxyguanosine (8-OHdG) (277),
enhanced carbohydrate metabolism (278), and abnormal lipid
metabolism (279). ROS stabilize the nuclear factor of an
activated T cell (NFAT) in the nucleus and bind to CNS2 to
promote Foxp3 expression (280), and interestingly, it can
directly inhibit the enzymatic activity of several elements in the
cellular respiratory chain, while complex III per se is key to
promoting Treg cell suppressive function (242, 281). 8-OHdG
(277) is a marker of oxidative DNA stress. Oxidative stress can
induce the activation of the PI3K/Akt/mTOR signaling pathway
and induce the phosphorylation of mTOR in CKD patients
(282), increasing mTOR activation in cells, which negatively
affects the protective effect of Treg cells on the kidney. Dietary
fiber, a kind of carbohydrate, can be converted into SCFAs,
which are a main source of nutrients for Treg cells. Therefore, a
high fiber diet can potentially attenuate systemic inflammation
and CKD progression (278). Dyslipidemia in CKD patients is
largely due to changes in low-density liptein cholesterol (LDL-C)
levels (283). Researchers have indicated that proteasome
inhibition by ox-LDL leads to CD4+CD25+ Treg apoptosis,
affecting the number and suppressive capability of these Treg
cells in chronic hemodialysis (HD) patients (284). In addition, in
Ldlr−/− mice, Treg cells were found to control very-low-density
Frontiers in Immunology | www.frontiersin.org 15
lipoprotein (VLDL) levels by regulating the lipoprotein binding
protein, sortilin 1, protecting against the development of
CKD (279).
Diabetic Nephropathy
Diabetic glomerulosclerosis is a leading factor of CKD and end-
stage renal disease (ESRD), and an autoimmune renal disease
secondary to diabetes mellitus type 1 (T1DM) or diabetes
mellitus type 2 (T2DM) (285). Diabetic nephropathy (DN) is
characterized by glomerular hypertrophy, basement membrane
thickening, the accumulation of extracellular matrix
components, and kidney inflammation, which are crucial in
promoting the development and progression of DN (286).
Recently, the morbidity and mortality of DN have been
increasing rapidly worldwide (287–290). Some studies have
demonstrated that there is an imbalance in the Treg/Th17 cell
ratio in patients with T1DM, which may be related to the
progression of microangiopathy (291). Treg cells are correlated
with diabetes and DN, and T2DM patients have a low level of
Treg cells relative to Th1 or Th17 (292, 293). The increase in the
number of Th17 cells leads to an increase in the release of pro-
inflammatory factors such as IL-17, which triggers local tissue
inflammation and promotes the development of DM
complications (291). The level of Treg cells in the peripheral
blood of patients with type 2 diabetic nephropathy (T2DN)
decreased, and the use of anti-CD25 antibodies to eliminate
Treg cells aggravated kidney damage, while adoptive transfer of
Treg cells reduced blood sugar and improved diabetic
nephropathy (210).

The progression of diabetic nephropathy is also influenced by
oxidative stress (294), lipid metabolism (295), and mTOR
activation (296). Excessive ROS can damage mitochondria and
increase the production of lipid peroxides (297) in Treg cells.
Normally, sodium-dependent glucose transporter 2 (SGLT-2)-
reabsorbed glucose is utilized by mitochondria to synthesize ATP
by oxidative phosphorylation (OXPHOS) (298). However,
mitochondrial dysfunction occurs following inhibition of
OXPHOS, which results in decreased ATP production (299),
and loss of mitochondrial membrane potential (DYm) and can
ultimately lead to increased ROS from various sites of the
electron transport chain (ETC), including complex III, which is
key to promoting Treg cell suppressive function (298).
Interestingly, Treg-specific knockout of complex III is
associated with reduced immunosuppressive capacity and
increased DNA methylation status, but it has no relevance to
FOXP3 expression (281).

Abnormal metabolism and accumulation of lipids in the
kidney play a crucial role in the pathogenesis of DN (300).
Abnormalities in lipid metabolism make Treg cells unable to
obtain sufficient energy to complete their functions (301). During
a state of high ATP consumption, there is a proportional
increase in intracellular AMP and HIF-1a (302) (Figure 5).
The proportional increase in AMP leads to AMPK
phosphorylation and activation by liver kinase B1 (Lkb1) (300),
which is crucial for Treg cell metabolism and function. Excessive
HIF-1a leads to decreased Treg differentiation, as HIF-1a can
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promote FOXP3 ubiquitination and subsequent proteasome
degradation (136, 146)

Activation of the mTOR pathway is upregulated in renal
diseases such as DN (303). The PDK1/Akt/mTORC1 signaling
pathway is activated in the glomerular mesangial cells of patients
with DN, which induces the high expression of S6K1 and 4EBP1
(304), causing excessive cell proliferation and hypertrophy (305).
mTORC1 activity plays an important role in Treg cell activation,
function, and increased metabolic demands. mTORC2 is also
involved in regulating hypertrophy of mesangial cells induced by
Frontiers in Immunology | www.frontiersin.org 16
high glucose, and inhibition of mTORC2 can reduce the
phosphorylation levels of PKC II and Akt, suppress mTORC1
activity, and prevent mesangial cell hypertrophy (306). Some data
suggest that mTORC2 inhibition promotes Treg cell activation
status, Th2-like differentiation, and immunosuppressive function
(142). In addition, the PI3K/AKT/mTORC1 signaling pathway is
involved in extracellular matrix (ECM) deposition and
tubulointerstitial fibrosis. On the one hand, mTORC1 stimulates
the proliferation offibroblasts and the synthesis of collagen; on the
other hand, mTORC1 increases the expression of TGF-b1, which
FIGURE 5 | The relationship between Treg cells and renal diseases and changes of cytokines.
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mediates the development of DN fibrosis (307, 308). Therefore,
blocking the mTOR pathway can significantly increase the
number of Treg cells, which promotes the improvement of
diabetic nephropathy.

Although these studies suggest a possible link between
Foxp3+ Treg cells and the progression of CKD disease,
however, due to the complex etiology of CKD, the proportion
of immune abnormalities is not known at present, and we only
describe CKD from the perspective of abnormal metabolism of
Treg cells. Further studies are still needed to understand the exact
role of Treg in more targeted treatment plans.
The Role of Treg Cell Metabolism in Lupus Nephritis
SLE is a prototypic systemic autoimmune disease, as well as a
multisystem heterogeneous disease (309). Immune abnormalities
interact with various other factors, leading to a decrease in T
lymphocytes and a decline in Treg cell function in SLE (310). LN
is an autoimmune disease secondary to SLE, characterized by cell
proliferation and immune complex deposition, accompanied by
significant clinical manifestations of renal damage (311). Studies
have demonstrated that the metabolic patterns of Th17 cells and
Treg cells affect the balance of both cell types (312) (Figure 5).
Th17 cells mainly rely on glycolysis to provide energy (313),
while Treg cells mainly rely on fatty acid oxidation pathways to
provide energy (314). Inhibition of glycolysis and fatty acid
oxidation can promote the development and differentiation of
Treg cells, and inhibit the differentiation of Th17 cells (315).
Deficient or scarce Treg cells have been found both in murine
models of SLE and in human SLE studies (316). Studies have
shown that peripheral blood Treg cells decline in number and
abnormal Treg cell phenotypes are present in SLE patients (317).
Sirolimus has been shown to be an effective retention steroid for
the treatment of renal and non-renal manifestations of
SLE (318).

Cellular metabolism regulates the differentiation and function
of T cells, thus participating in the initiation and progression of
SLE inflammation. These characteristics are as follows:

(1) Mitochondrial hyperpolarization: T cells are chronically
mobilized, and their mitochondria are hyperpolarized in
SLE patients and lupus-prone mice (319, 320); thus, the
high mitochondrial transmembrane potential will be
expressed in Treg cells from SLE patients (138). The
hyperpolarization of mitochondria affects the process of
reducing oxygen to water by electron and proton transfer
during oxidative phosphorylation, leading to increased
oxygen consumption and ROS generation, thereby reducing
energy synthesis (320, 321). ROS can oxidize proteins and
cause DNA mutations, causing cell damage and cell aging,
and excessive ROS will attack the protease complex on the
oxidative respiratory chain, leading to mitochondrial
dysfunction, reducing ATP production, inhibiting
mTORC1, and promoting the differentiation of T cells into
Treg cells (319, 320, 322), which is a vital cause of Treg cell
functional deterioration. Furthermore, in lupus-susceptible
Frontiers in Immunology | www.frontiersin.org 17
mice, blocking of Rab geranylgeranyl transferase with Rab
geranylgeranyl transferase inhibitor (3-PEHPC) could reverse
dynamin-related protein 1 (Drp1) consumption,
mitochondrial accumulation, and nephritis, confirming that
HRES-1/Rab4 regulation of mitochondrial homeostasis is the
pathogenesis and potential therapeutic target of SLE (323).

(2) Hyperactivated carbohydrate metabolism: Excessive activation
of glucose metabolism leads to the accumulation of energy in T
cells (324). Increased ATP content weakens AMP-AMPK
signal transduction and then activates mTORC1 in SLE
patients (325). The enhancement of mTORC1 activity could
inhibit Treg cell activation and function (326).

(3) Enhanced lipid synthesis: Acetyl-CoA is produced by the b
oxidation of fatty acids while cholesterol is generated via the
catalysis of hydroxy methylglutaryl coenzyme A (HMG-CoA)
reductase (327). The key enzyme ACC (acetyl-CoA
carboxylase) that inhibits the FAS and cholesterol synthesis
can also inhibit the expression of Th17 and promote the
differentiation of Treg cells (131), thereby reducing the
autoimmune response of SLE patients. Studies have shown
that the synthesis of lipid rafts (including glycosphingolipids
and cholesterol) in SLE patients is increased, and CD4+ T
cells from active SLE patients have more lipid raft synthesis
than CD4+ T cells from healthy individuals (328), which
influences the proliferation and function of Treg cells. In
particular, cholesterol biosynthesis was demonstrated
mechanistically to be important in promoting Treg cell
activation, proliferation, and function (329).

(4) Amino acid dysfunction: Catabolism of the amino acid
tryptophan generates metabolic intermediates such as
kynurenine that can bind the aryl hydrocarbon receptor on
T cells and promote pTreg cell induction (182). The binding
of CTLA4 on Treg cells to the costimulatory molecules CD80
and CD86 on antigen-presenting cells (APCs) induces amino
acid-consuming enzyme (such as IDO and arginase 1)
expression in Treg cells (330). The activities of these
enzymes reduce the availability of amino acids (for
example, tryptophan, arginine, histidine, and threonine) to
surrounding T cells, inhibiting mTOR signaling via the lipid
phosphatase PTEN and blocking the proliferation of Teff
cells, thus promoting Treg cell induction (183).

(5) Highly activated mTOR pathway: High activation of the
mTOR pathway may increase protein synthesis, leading to
protein accumulation in Treg cells (331), enhancing cell
metabolism, promoting the autophagy system of Treg cells,
and leading to dysfunction and reduced differentiation of
Treg cells (332, 333). A study demonstrated that mTORC2
plays a proinflammatory role in blocking Treg generation in
SLE. mTORC2 can activate the Akt signaling pathway and
promote glucose metabolism, while Treg cells are mainly
powered by FAO (334). Therefore, the activation of
mTORC2 will inhibit the development and differentiation
of Treg cells, and mTORC2 blockade is important to lineage
stabilization and functional maturation of Treg cells except
for Treg cell differentiation. Additionally, Treg cells effects
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appear to be significantly modulated in humans compared to
mice, which may be explained by the fact that blocking
mTOR with rapamycin can complete nephritis blocking in
several lupus-susceptible strains without affecting Treg cells
in mice.

Dietary habits and nutritional factors can regulate Th17/Treg
cell balance by affecting T cell metabolism. A balanced diet may
help prevent and manage SLE. A low cholesterol diet could
improve Th17/Treg cell balance by activating liver x receptor a
and b (LXRs), which are nuclear receptors modulating
cholesterol metabolism (335). High glucose intake can induce
Th17 cells by upregulating mitochondrial ROS in T cells, thus
enhancing self-immunity (336). Long-chain fatty acids enhance
Th17 cell differentiation, whereas short-chain fatty acids derived
from a fiber-rich diet expand Treg cells and reduce IL-17
production (315).
The Role of Treg Cell Metabolism in Other
Kidney Diseases
In addition to the three kidney diseases mentioned above, there
are also several related to Treg cell metabolisms, such as IgA
nephropathy, glomerulonephritis, nephrotoxic serum nephritis,
and renal cell carcinoma.

IgA Nephropathy
IgA nephropathy (IgAN) is an autoimmune disease, and its
immune pathogenesis is a multilevel process (337). In patients
with lgAN, the level of abnormally glycosylated circulating IgA
increases, which induces the formation of autoantibodies of IgA
and IgG and then forms a circulating immune complex of
autoantibodies of IgA and lgG (338). These immune
complexes contribute to mesangial cell proliferation and
excessive production of extracellular matrix, cytokines, and
chemokines, eventually leading to glomerular sclerosis (11, 19,
339–341).

In IgAN patients, serum soluble fms-like tyrosine kinase 1
(sFlt-1) levels are remarkably enhanced, and subsequently, sFlt-1
raises the mitochondrial membrane potential, facilitating
mitochondrial-mediated apoptosis (342). A study has shown
that patients with less histological injury and proteinuria have
higher urinary mtDNA copy numbers, which suggests that
mitochondrial damage occurs in the early stage of IgAN
(209, 343).

A study showed that patients with IgAN have a higher
prevalence of dyslipidemia (319). Excessive ox-LDL content
will weaken the immunosuppressive function of Treg cells, and
ox-LDL can induce apoptosis of Treg cells by activating P38/
MAPK (344), mitochondria (345), and lysosome signaling
pathways (Figure 5). In addition, ox-LDL can induce cells to
produce endogenous ROS (340), which increases the production
of lipid peroxides in Treg cells. The damage of oxidized lipids to
cells leads to abnormal cell lipid metabolism and impaired
exportability, thus inducing apoptosis of Treg cells (341, 346).

Some studies have shown that in rats with IgAN, p-mTOR
and phosphorylation of p70 S6 kinase (P-S6K1) are upregulated,
Frontiers in Immunology | www.frontiersin.org 18
which indicates that the mTOR pathway is highly activated and
participates in the development of IgAN (343, 347–350).
Glomerulonephritis
GN encompasses a wide variety of kidney diseases (351). Many
GNs due to immunologically mediated glomerular damage result
in renal dysfunction and proteinuria (352). Treg cells are
essential for the autoimmune pathogenesis of GN in the
kidney (353), as such, the activation of STAT3 in Treg cells
induces the expression of CC chemokine receptor 6 (CCR6) on
the cell surface (354) and promotes the transport of Treg cells to
the inflammatory area of Th17 cells that also highly express
CCR6 through the tight colocalization of CCR6 (355), thereby
suppressing the immune response of pathogenic Th17 cells
during the GN process. Treg cells can also use CC chemokine
receptor 7 (CCR7) expressed on their own surface to migrate to
the site of CCR7+ T cell activation and inhibit the activation of T
cells (356). Treg cells with defective IL-10Ra expression can
significantly reduce the production of IL-10 during GN, while
Treg cells can significantly downregulate Th17 cells through IL-
10 receptor signal transduction (357) (Figure 5). IL-10Ra is a key
component that controls the immune function of Th17 cells in
the GN process, and a large number of IL-10Ra-deficient T cells
differentiate into Th17 cells, which aggravates the condition of
GN (349). In addition, IL-6 stimulates Treg cells to produce cells,
which have both pro-inflammatory and anti-inflammatory
effects (329). ITreg cells can secrete the anti-inflammatory
factors IL-10 and IL-35, as well as the pro-inflammatory factor
IL-17 (350), and by inhibiting Th2 cells with anti-inflammatory
effects, they mediate pro-inflammatory effects in GN (356). Treg
cells also inhibit Th1 cells. Nosko et al. showed that Treg cells in
which the transcription factor T-bet is activated enhance the
ability of Treg cells to downregulate Th1 cell responses by
inducing the expression of CXC chemokine receptor type 3
(CXCR3) (358). Studies have also reported that Treg cells
inhibit GN driven by the Th1 immune response through the
PD-1/programmed cell death-ligand 1 (PD-L1) pathway, and
mediate renal protection (359) (Figure 5).

The kidney is rich in mitochondria, which meet its high energy
demand through the oxidative phosphorylation process (360).
Several studies have demonstrated that in glomerulonephritis
nephropathy rats, the number of mitochondria in tubular
epithelial cells is reduced and cristae structure is destroyed.
Albumin and free fatty acid stimulation of cultured human
tubular cells in vitro increased mitochondrial ROS, which led to
mitochondrial damage (361, 362). Generating enough acetyl-CoA
to feed into the Krebs cycle and then generating sufficient ATP
through the mitochondria is an important process in Treg cells
(363). Although the mechanism was not uncovered, the induction
of Foxp3 in iTreg cells correlated with increased expression of
mitochondria-associated genes (364) Mitochondrial dysfunction
can cause abnormal metabolism of Treg cells, and the protective
effect of Treg cells on the kidney is limited.

In addition to oxidative stress, GN can also undergo the
deposition of lipid-associated molecules, including oxidized
cholesterol, apolipoprotein (Apo), and ox-LDL. Oxidative and
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helix-related molecules accumulate on the glomerular basement
membrane (GBM) along with other molecules (320, 365). ox-
LDL can induce apoptosis of Treg cells by activating P38/MAPK
(366). AMPK activity together with protein phosphatase 2A
(PP2A) restrains the mammalian target of rapamycin complex
1 (mTORC1) signaling, thus promoting Foxp3 expression and
the proliferation of Treg cells (333, 367).

In patients with little immune deposition glomerulonephritis,
a large amount of the glomerulus and even more cells in the
tubulointerstitial area express mTOR (368). Upon Treg cell
activation, the increase in mTOR signaling upregulates
interferon regulatory Factor 4 (IRF4) (367), which further
promotes genes for cellular growth, glycolysis, OXPHOS, and
fatty acid metabolism, among others (369). These data suggest
that promoting mTORC1 activity can promote the activation
and function of Treg cells and support glycolysis and the
OXPHOS metabolic pathway (369).

Nephrotoxic Serum Nephritis
Nephrotoxic serum nephritis (NTSN) nephritis is a type of focal
segmental glomerulosclerosis (FSGS) that occurs in many kinds
of renal disease and ultimately leads to kidney inflammation and
fibrosis (370). The histological features of nephrotoxic serum
nephritis are the accumulation of macrophages, cholesterol, and
cholesteryl esters, as well as the deposition of extracellular matrix
in sclerotic glomeruli. The disease is characterized by rapid
inflammation and infiltration of leukocytes in the kidneys
(371). In a mouse model with NTSN, Treg cells are
endogenous immunosuppressive cells that protect kidney
tissues from inflammation-mediated damage (372).

Increased mitochondrial ROS generation and mitochondrial
oxidative damage are present in the glomeruli of patients with
nephrotoxic serum nephritis, inhibiting the protective effect of
Treg cells on the kidney (373) so that the expression of CCR7 on
Treg cells is downregulated and affects the recruitment of Treg
cells to the lymph nodes of NTSN (374). ROS can change the
expression of transient receptor potential cation channel,
subfamily C, member 6 (TRPC6) protein, or TRPC6 channel
activity in kidney cells, thereby regulating Ca2+ signal
transduction and mediating podocyte apoptosis (375)
(Figure 5). Research has shown that the knockout of TRPC6
plays a protective role in NTSN (376). The accumulation of ROS
in mitochondria induces mitochondrial dysfunction and
apoptosis, eventually causing glomerular disease (377), which
includes nephrotoxic serum nephritis. In addition, experiments
have shown that the NTSN of CCR7 knockout mice is more
serious, and abundant inflammatory cell infiltration was
observed (378).

Renal Cell Carcinoma
Renal cell carcinoma (RCC) is one of the most common tumors
and arises from the renal parenchyma urinary tubular epithelial
system (379). There are many pathological types of renal cell
carcinoma, of which clear cell renal cell carcinoma (ccRCC) is
the most common (380). Renal cancer cells have a vigorous
metabolism competing with immune cells for nutrients, thereby
changing the metabolic mode of immune cells, and subsequently
Frontiers in Immunology | www.frontiersin.org 19
affecting their function and differentiation (381). Furthermore,
substances produced by renal cancer cells, such as lactic acid and
ROS, can cause damage to immune cells and reduce their
antitumor effect (382).

Deletion of the von Hippel-Lindau (VHL) tumor suppressor
gene in renal cancer cells leads to the accumulation of HIF-1a
and an increase in Clut2 expression, which promotes aerobic
glycolysis in renal cancer cells and leads to metabolic
reprogramming of renal cancer cells (383). This aerobic
glycolysis mode of cancer cells is called the “Warburg effect”
(382). Hypoxia-mediated expression of HIF-1a selectively
upregulates the expression of inhibitory ligands, such as PD-
L1, and promotes T cell immunosuppression (384). Such
hypoxia-mediated changes a lso promote Treg cel l
differentiation and homeostasis (385). The propagation of
kidney cancer cells is highly dependent on glycolysis (386),
which affects the function of Th17 cells that also rely on
glycolysis but does not affect the survival of Treg cells that
depend on fatty acid oxidation.

The proliferation of renal cancer cells consumes a lot of
glutamine and competes with the surrounding macrophages
for glutamine in the extracellular matrix (387). This is related
to the promotion of the expression of ASCT2 and SLCIA5 by
MYC (388) in renal cancer cells, leading to a large amount of
glutamine being transported into the cell, which in turn activates
the PI3K-Akt-mTOR signaling pathway and promotes the
metabolism of glutamine and the synthesis of protein (389).
The metabolic waste products of amide will promote the
differentiation of Treg cells (382). In addition, lactate can
induce the secretion of IL-23 by macrophages infiltrated by
tumor cells (169). IL-23 activates the JAK/STAT pathway of
Treg cells, increases the phosphorylation of STAT3, activating
the proliferation of Treg cells, promotes the expression of IL-10
and TGF-b, thus inhibiting the killing effect of TCL on renal
cancer cells (390, 391) (Figure 5).

IDO is overexpressed in a variety of cancers (392–394). IDO
activity reduces local tryptophan availability in the proximity of
Treg cells (395). A low concentration of tryptophan activates a
stress response pathway in Treg cells through the protein kinase
general control nonderepressing-2, which inhibits mTORC2 and
prevents it from phosphorylating Akt, plus contributes to the
maintenance of Treg suppressive function (395–397).

A large amount of lipid accumulation is found in renal cell
carcinoma. HIF-1a in renal cell carcinoma inhibits the activity of
CPT1 on the outer mitochondrial membrane and prevents the b-
oxidation of fatty acids (398), which is important for the
differentiation of Treg cells, and its blockade could prevent the
accumulation of this immunosuppressive population (199).
AMPK in renal cancer cells, a sensor of nutrient deprivation
and metabolic stress, is inactivated in the AMPK-GATA3-
ECHS1 signaling pathway (399), inhibiting the expression of
the transcription factor GATA3 and leading to a decrease in the
synthesis of ECHS1. AMPK activation can promote the
formation of Treg cells while reducing Th1 and Th17 cells
(199), thus, leading to unwanted immune modulation in the
context of RCC. In addition, the inactivation of AMPK reduces
the activation of adipose triacylglyceride lipase (ATGL) and
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inhibits the decomposition of triglycerides into fatty acids,
thereby inhibiting the catabolism of fatty acids; at the same
time, the inactivation of AMPK weakens the inhibitory effect on
acetyl-CoA carboxylase (ACC) and promotes the synthesis of
fatty acids. Berod et al. showed that inhibition of ACC1 restrains
the differentiation of Th17 cells and promotes the differentiation
of anti-inflammatory Foxp3+ Treg cells (400, 401).
CONCLUSION

The immune system searches for pathogens and other danger
signals in vivo at all times. In recent years, the field linking
immunity and metabolism has expanded rapidly (402). In renal
diseases, T cells are involved in different abnormal metabolic
pathways, such as increased oxidative stress, mitochondrial
dysfunction, enhanced glycolysis, abnormal lipid synthesis,
glutaminolysis, and highly activated mTOR, which all influence
Treg cell proliferation and differentiation.

Inhibition of different metabolic pathways via drugs can
modify Th17 cells to Treg cells. For example, inhibition of
glycolysis (209, 403–405), lipid synthesis (328, 406, 407), and
mTOR signaling (211, 408, 409) can control inflammation and
alleviate disease activity in lupus mice and SLE patients
(Table 1). Short-chain fatty acids, which are derived from a
fiber-rich diet, can downregulate IL-17 production and amplify
Treg cells (410–412). Treg cell metabolism therapy has great
potential in many forms of renal diseases. Promoting the
proliferation or function of Treg cells by mediating various
metabolic pathways are also possible treatments in the future
for multifarious diseases that affect the kidney.
Frontiers in Immunology | www.frontiersin.org 20
It is important to note that many studies involving the
immune metabolism of Treg cells have been based on model
animal studies (mostly mice) or in vitro human cells.
Pharmacological or genetic manipulation of metabolic
processes in mouse models of human autoimmune diseases
offers new opportunities to treat human diseases, but it is not
clear how Treg cell immune metabolism is altered in many
people with kidney disease. Therefore, we can make inferences
based on published articles, but cannot be sure that these
experimental results are consistent in animal and human
kidney disease. This is a knowledge gap in Treg cell immune
metabolism. Treg metabolism may become a target for future
treatment of various kidney diseases.
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