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Diverse indicators of postural control in Humans have been explored for decades,

mostly based on the trajectory of the center-of-pressure. Classical approaches focus on

variability, based on the notion that if a posture is too variable, the subject is not stable.

Going deeper, an improved understanding of underlying physiology has been gained

from studying variability in different frequency ranges, pointing to specific short-loops

(proprioception), and long-loops (visuo-vestibular) in neural control. More recently, fractal

analyses have proliferated and become useful additional metrics of postural control. They

allowed identifying two scaling phenomena, respectively in short and long timescales.

Here, we show that one of the most widely used methods for fractal analysis, Detrended

Fluctuation Analysis, could be enhanced to account for scalings on specific frequency

ranges. By computing and filtering a bank of synthetic fractal signals, we established

how scaling analysis can be focused on specific frequency components. We called the

obtained method Frequency-specific Fractal Analysis (FsFA) and used it to associate the

two scaling phenomena of postural control to proprioceptive-based control loop and

visuo-vestibular based control loop. After that, convincing arguments of method validity

came from an application on the study of unaltered vs. altered postural control in athletes.

Overall, the analysis suggests that at least two timescales contribute to postural control:

a velocity-based control in short timescales relying on proprioceptive sensors, and a

position-based control in longer timescales with visuo-vestibular sensors, which is a

brand-new vision of postural control. Frequency-specific scaling exponents are promising

markers of control strategies in Humans.

Keywords: postural control, center-of-pressure, fractal physiology, DFA, FsFA, 1/f scaling

INTRODUCTION

The regulation of human posture is operated via several feedback loops compensating internal and
external disturbances (Diener et al., 1984). Postural sway in the upright position is the oscillation
of the body maintaining its static balance in the orthostatic position. Study of the postural sway
has shown to be a valuable indicator to assess the quality and characteristics of the regulation of
posture. It was used among other applications for assessment of frailty in elderly people (Jiang
et al., 2013; Zhou et al., 2017), to predict falls in chronic stroke survivors (Punt et al., 2017), in
the identification of idiopathic scoliosis (Gruber et al., 2011), in differentiating postural strategies
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in athletes and non-athletes (Paillard et al., 2002; Lamoth and
van Heuvelen, 2012), to analyze the effects of a dual task (Kang
et al., 2009), or of fear of falling (Davis et al., 2009) on posture.
Most importantly, it has become an indicator of efficiency for
rehabilitation procedures (Priplata et al., 2002; Costa et al., 2005;
Chen and Jiang, 2014; Wayne et al., 2014).

Postural sway is generally studied through recordings of the
time course of the center-of-pressure (CoP) of a subject on a
static platform. CoP is the point of application of the resultant
of vertical forces acting on the surface of support, and is derived
from ground reactions. The stabilogram is the trajectory of this
point in the two-dimensional plane (CoP signal). Most analysis
are based on time-series of the projection of the stabilogram
along the antero-posterior (AP) and medio-lateral (ML) axis, as
a consequence of the human body’s symmetry (Błaszczyk and
Klonowski, 2001). From a practical perspective, projection allows
classical methods for the analysis of one-dimensional time-series
to be used.

Several indicators have been designed over the years to
quantify postural control and upright stability. Basic ones consist
in quantifying the variability in the CoP signal. Great variations
have often been associated with weak control (Horak et al., 1989)
since they are associated with bigger average distance to the
equilibrium and higher energy expenditure. Numerous metrics
used to characterize the CoP are regularly used in the literature
(Jiang et al., 2013; Paillard and Noé, 2015): sway length, standard-
deviation along the AP and ML direction, CoP mean velocity, 90
or 95% confidence elliptic area, to name a few.

Early in the 70s, the frequency content of the projections of
CoP signal has been a matter of interest. Particular cerebellar
lesions or proprioceptive hyperactivity were associated to
alterations in specific frequency in the power spectrum of
postural sway (Taguchi, 1977). Typical indicators derived from
frequency analysis are the absolute or relative power in the
identified frequency bands. It has been reported in pioneer works
that frequencies between 2 and 20Hz, so-called high frequencies
in CoP signal analyses, mostly account for somatosensory
feedback mechanisms (Dietz et al., 1980; Golomer et al., 1994).
The main sensors involved in short spinal loops associated to
these high frequencies are likely muscle spindles, Golgi tendon
organ, and cutaneous receptors (Aniss et al., 1990). Other
authors have considered the frequency-range associated with
somatosensory feedback to be between 1 and 5Hz (Fitzpatrick
et al., 1992, 1996). Analyses in patients with vestibular, spastic,
and cerebellar syndromes led to associate the range <0.5Hz
to visual and vestibular systems (Dupui et al., 1990). The
existence of an in-between segment, with no clear-cut defined
boundaries—between 0.5 and 1 or 2 Hz—is typically abnormal in
case of cerebellar dysfunction. Hence, frequency-based analyses,
especially within the range of high-frequencies (proprioception
associated with short neural loops) and low frequencies (visuo-
vestibular control associated with long neural loops) have
opened the door to the quantitative assessment of respective
contributions of specific neural loops to postural regulation. Even
though authors advise for slightly different ranges over which to
apply such analysis, the interest of frequency analysis of postural
control is now largely accepted. Comparing eyes opened and

eyes closed (Golomer et al., 1994; Davis et al., 2009) in the low
frequencies isolates the contribution from visuo-vestibular input,
while high frequency analysis of CoP signals in expert vs. novice
athletes gauged their reliance on proprioception (Golomer and
Dupui, 2000; Paillard et al., 2002). Yet, the interpretation of
spectral power in some frequency bands is not straightforward.
Although it has been the basis of most studies relying on
frequency analysis, it has been suggested that higher power does
not necessarily mean lower stability (Dault and Frank, 2004),
which could explain inconsistent findings in studies relying on
these indicators (Gregoric et al., 1981; van Emmerik and van
Wegen, 2002). One first explanation is that CoP movements
could be exploratory (Gibson, 1979; Riccio and Stoffregen, 1988),
in which case variability would be essential to get information
from the environment. Thus, drawing conclusions from one
component of the power spectrum is a potential source of
error. A more robust approach is to think in terms of strategies
of postural control. All in all, the confusion comes from the
fact that variability has often been improperly confused with
instability (Chagdes et al., 2009; Stergiou and Decker, 2011); both
notions are linked but discernable. A second concern may rely
on methodology. Algorithms based on Fourier transforms are
commonly used for spectral analyses of CoP signals even though
CoP demonstrates non-stationary features that prohibit use of
such techniques. Power density distribution may then be skewed
by unreliable Fourier-based analyses.

There is increasing evidence that physiological systems aiming
at maintaining a steady situation, e.g., the postural control
system, generate complex fluctuations (Wayne et al., 2013).
Consequently, in order to tackle the limitations associated with
linear analysis of CoP, non-linear metrics have recently been
used successfully. Advantageously, they consider the temporal
organization of sway, and are more direct indicators of stability.
They bring a holistic view to the analysis of a dynamic control
system, and take into account its necessary variations. Among
metrics of complexity, the Lyapunov exponent has been used as
an indicator of standing stability and a marker of chaos (Collins
and De Luca, 1994; Roerdink et al., 2006; Donker et al., 2007;
Ladislao and Fioretti, 2007; Lamoth et al., 2009; Lamoth and van
Heuvelen, 2012), sample entropy as a measure of randomness
(Lamoth et al., 2009; Lamoth and van Heuvelen, 2012), multi-
scale entropy has associated sway complexity to stability (Costa
et al., 2007; Kang et al., 2009; Manor et al., 2010; Gruber et al.,
2011; Wei et al., 2012; Wayne et al., 2014; Zhou et al., 2017), and
fractal analyses, mainly detrended fluctuation analysis (DFA),
have proven high reliability in measuring scaling in the CoP
signal (Collins and De Luca, 1993; Roerdink et al., 2006; Lamoth
et al., 2009; Delignières et al., 2011; Kuznetsov et al., 2013; Zhou
et al., 2013).

Detrended Fluctuation Analysis (DFA) is a fractal analysis
which identifies scaling phenomena in a signal by associating
to a scale n a fluctuation F(n) to finally identify the linear
relation between log(n) and log(F(n)) (see Methods). The
method can identify short and long-term correlations, as well as
anticorrelations. Briefly, it quantifies the persistence of a signal.
DFA is also particularly interesting since it can identify a certain
category of signals called 1/f noise, which is omnipresent in
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complex systems and human physiology (Diniz et al., 2011;
Wayne et al., 2013; Wijnants, 2014). 1/f noise literally means
that power density is inversely proportional to frequency. The
omnipresence of 1/f noise led to several debates upon its
origin in physiological control system. Some authors view this
phenomenon as a proper characteristic of physiology and look for
a unified origin, idea which can be summarized by the words “1/f
scaling is too pervasive to be idiosyncratic” (Kello et al., 2007).
Other authors look for specific origins in each physiological
subsystem. Despite the ongoing debate on the origin of 1/f noise,
authors of both school of thought seem to agree that 1/f noise is
the sign of a system which is both robust and adaptable since it
is a compromise between rigidity and flexibility. The presence of
1/f noise in the output signal of a physiological system is closely
linked to an organized and coordinated control (Marmelat et al.,
2012). Thus, unsurprisingly, the presence of 1/f noise has been
detected in healthy physiological systems (Goldberger et al., 2002;
Hausdorff, 2007; Wayne et al., 2013).

It has been noted that physiological systems can exhibit
one, but sometimes even several scalings. Signal integration
(summation) or differentiation may be necessary to be able to
associate this scaling to 1/f noise (see Method and Figure 2), and
will be done later in this article for two reasons: first because as
explained earlier 1/f noise has been associated with a complex
system with interesting properties, and second because the signal
analysis using DFA reaches better reliability in such signals than
in more persistent ones (Delignieres et al., 2006).

By seeing postural control as the automatic control of the
center of mass, the CoP signal displays the control variable,
since it is proportional to the ankle torque (Baratto et al.,
2002). Analysis of the CoP signal persistence then gives useful
information on the control strategy operated to maintain upright
posture. Fractal analyses have been applied to CoP signals in the
past, leading to different conclusions. Collins et al. (Collins and
De Luca, 1993) focused their attention on the position signal and
depicted two concurrent phenomena: persistence in the short
timescales (< ∼1 s) and antipersistence in longer timescales
(> ∼1 s), which they interpreted respectively as an open-loop
and a closed-loop control (Priplata et al., 2002). It is worth noting
that they inferred position-based control of posture, with the
closed-loop component triggering at larger timescales because
of a threshold. They deduced that the open-loop did not rely
on sensory feedbacks, while the closed-loop did (Collins and
De Luca, 1994; Priplata et al., 2002). The idea was recently
exploited to assess frailty, a situation where both loops were
altered (Toosizadeh et al., 2015). Others noted that 1/f noise
was observable in long timescales too (Zatsiorsky and Duarte,
2000; Duarte and Zatsiorsky, 2001), and decomposed postural
sway in a short scale trembling (movements around a reference
point), and a larger scale rambling (random walk-like movement
of said reference point). In 2011, Delignières et al. (2011) pointed
a methodological mistake in Collins’ work (Collins and De Luca,
1993) indicating that they were actually working on CoP velocity,
not on CoP position. Delignières and coworkers differentiated
postural trajectories and showed that CoP velocity behaved on the
short scale like 1/f noise. This led them to another interpretation:
postural control would actually be velocity-based on the short

timescales, and the observed crossover between short and long
timescales (giving the 1/f noise in the large scales of position)
would be due to a boundary effect on velocity leading to strong
antipersistence in velocity in the large timescales.

It follows from the above that DFA has proven to be useful
for assessing the dynamics of postural control and infer new
control theories. Yet, it has until now only been used marginally
to distinguish control strategies at specific timescales. DFA has
mostly been limited to differentiate two timescale components
(Collins and De Luca, 1993; Zatsiorsky and Duarte, 2000;
Duarte and Zatsiorsky, 2001; Delignières et al., 2011) with little
information about the crossover, and corresponding range of
scales. Frequency-based analyses, on the other hand, made the
link between CoP signal features and neural loops contribution.
Thus, there seems to lack a bridge between frequency analysis
and fractal 1/f noise analysis. The aim of the present study was
to make a first step in this direction, using a methodology we call
Frequency-specific Fractal Analysis (FsFA).

The innovative method (FsFA) we propose here is based on
DFA. Therefore, as a first step, we briefly describe DFA developed
by Peng and collaborators (Peng et al., 1993, 1994).

DETRENDED FLUCTUATION ANALYSIS
(DFA) AND ITS PITFALLS

Detrended Fluctuation Analysis (DFA) was first introduced as
an indicator of the presence of a scaling phenomenon (Peng
et al., 1993, 1995). The main output of the method is the scaling
exponent α. It quantifies the scaling in a signal and is related to
the Hurst coefficient H (Hurst, 1956). It is now mainly used to
detect long-range correlation. DFA has been preferred over other
direct computation of the Hurst exponent or frequency analysis
because it allows the detection of long-range correlations
embedded in seemingly non-stationary time-series, while
avoiding spurious detection of apparent long-range correlations
that are an artifact of non-stationarity (Peng et al., 1995).

DFA algorithm contains several steps (see Figure 1), detailed
here for an initial signal x of size N:

1. The signal x is integrated:

y
(

k
)

=

k
∑

i=1

(x (i) − x) (1)

2. The integrated time-series y is then divided into non-
overlapping boxes of length n and in each box a straight line is
fit to the data using least square approximation (representing
the trend in each box). The signal constructed with these lines
is called yn.

3. The root-mean-square fluctuation of the integrated and
detrended time-series obtained is calculated by:

F (n) =

√

√

√

√

1

N

N
∑

k=1

[

y
(

k
)

− yn
(

k
)]2

(2)
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FIGURE 1 | (A.1) Artificial fractal signal with α = 0.8 (Generated using Davies and Harte method Davies and Harte, 1987. (A.2) Example of a detrending for a fixed

value of n = 181 of the artificial signal after integration. (A.3) Fluctuation function and value of α obtained by the slope of the curve. (B.1) Typical position signal

obtained for the displacement of COP along the AP axis. (B.2) Example of a detrending for a fixed value of n = 181 of the typical signal after integration. (B.3)

Fluctuation function: at least two different scalings are observed here. Note that both DFA show F(n) vs. n in a log-log plot.

• Steps 2 and 3 are repeated for a range of n, usually for n= 4
to n= N/4.

4. Typically, F(n) will increase with n as a power law:

F (n) ∼ nα
⇒ log (F (n)) ∼ α × log(n) (3)

Such a relationship is the marker of a scaling phenomenon. We
get the scaling exponent α by the slope of the line of log(F(n))
vs. log(n) (or the line of F(n) vs. n in a log-log plot, which is
strictly equivalent). Note that throughout this article, log defines
the base 10 logarithm (even though natural logarithm holds for
most equations).

Depending on the phenomenon observed, different ranges of
box sizes can be selected, which specify a scaling region to be
analyzed. It has been remarked that if all the values of n∈ N in
a certain range are selected, a high concentration of data points
will be regrouped in the large box sizes (due to the log plot),
giving this zone excessive weight for the linear fit. To cope with
that problem, we selected box sizes on a pseudo exponential
scale, in a way similar to evenly-spaced DFA (Almurad and
Delignières, 2016), meaning that the box sizes n were selected to
be approximately evenly spaced on the logarithmic plot.

Interpretation of DFA takes root in the fractional Gaussian
Noise (fGn)/fractional Brownian Motion (fBm) framework
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FIGURE 2 | Illustration of the fGn/fBm continuum, with corresponding Hurst exponent H, scaling exponent α and β index. This illustration was largely inspired by

Marmelat (Marmelat et al., 2012).

(Mandelbrot and van Ness, 1968), which itself is an extension
of Gaussian Noise (uncorrelated white noise), and Brownian
Motion (the cumulated sum of white noise, red noise, also called
“randomwalk”). fGn are stationary processes with constantmean
and variance, whereas fBm are non-stationary with stationary
increments. Differentiating a fBm creates a fGn, and summing
a fGn produces a fBm. The related processes are characterized by
the same Hurst coefficient. While gaussian noise is uncorrelated
and brown noise is strongly positively correlated: the continuum
permitted by fGn and fBm covers all kind of correlations (see
Figure 2 for an illustration). In the continuum, the definition
of H holds an ambiguity at the frontier of fGn and fBm, which
would be described as both H = 0 and 1: this is a particular type
of signals called pink noise or 1/f noise, which appears in many
physiological signals. In the frequency domain, the continuum is
characterized by a scaling law where power is proportional to f−ß.
This law is revealed by the log-log representation of the power
spectrum fitted to a linear relation of slope –ß. When ß equals 1,
the signal property is f−1 so-called 1/f noise (Figure 2). 1/f noise
more largely describes signals with α close to 1, and the term
“fractal” is now often used to describe 1/f noise (Mandelbrot,
1975).

The relation between above estimators, scaling exponent α,
Hurst exponent H, and “spectral” slope ß, in the limit of infinite
time-series is as follows:

{

for a fGn : α = H =
β+1
2

for a fBm : α = 1+H =
β+1
2

(4)

DFA has been shown to be theoretically equivalent to β when
analyzing signals of infinite length without noise. It has been
shown to give similar results in long signals (Heneghan and
McDarby, 2000), but DFA has been preferred for shorter signals
closer to 1/f noise (Delignieres et al., 2006). Therefore, we focused
on DFA here. However, we should keep in mind the strong
link between DFA and a simple frequency analysis, especially

in the context of the present paper, where we attempt to make
a bridge between frequency and scaling approaches of CoP
signals to gain an improved understanding of postural control
strategies.

As explained above, the main output of DFA is the scaling
exponent α. However, the coefficient itself is often insufficient to
draw definitive conclusions, because a unique slope of log(F(n))
vs. log(n) can always be fitted with fairly good approximation,
no matter the real shape of the curve. It has often led authors
to jump to the conclusion that a signal is 1/f noise, when the
truth was actually more complicated. Efforts have been made
to warn about this pitfall and to provide tools to avoid flawed
conclusions. As an introductive example, the “relative roughness”
introduced by Marmelat et al. (2012), takes as exclusion criterion
a ratio of local on global variation, which can exclude signals
that are too smooth to be considered as fractal. However, unlike
mathematical models, 1/f noise in real life signals is necessarily
bounded upon a frequency range, delimited at least by physical
limits. We think that a careful examination of the log(F(n))
vs. log(n) plot of DFA, enhanced with considerations on the
nature of the signal of interest, can lead to an even better
interpretation. Indeed, as α is a scaling exponent, the frequency
ranges over which a certain type of scaling is observed is of
utmost importance (Figure 1). For example, the determination
of the scaling exponent α by the DFA method depends on the
sampling frequency of the signal. Would the sampling frequency
be an order of magnitude higher than the highest frequency in
the analyzed phenomenon (say a 2 kHz sampling of the CoP
velocity), DFA would give unreliable results, only dependent on
the measure instrument in the smallest boxes. Relative roughness
would simply exclude the signal as a potential fractal, fulfilling
its role as an exclusion criterion, even though it could contain
valuable information if analyzed at the correct scales. This means
that a bad-conditioned problem can undermine DFA. In our
example we would have to calculate α from box sizes large enough
to make physiological sense. We recommend this reflection
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to be made before any DFA, as it would be made for any
interpretation of a power spectral density analysis. It is likely the
reason why Kuznetsov et al. (2013) notice a particular slope on
a narrow range of small boxes in its Adaptative Fractal Analysis
(AFA, a derivative of DFA) on their analysis of postural control
at 100Hz.

More importantly, several fractal behaviors can occur at
different timescales, leading to the appearance of different slopes
in DFA (Figure 1), each with its own significance. When the case
presents itself, the usual reaction is to remark a crossover point in
the plot, then split the analysis a posteriori in two ranges on either
side of the crossover, and report a short-range and a long-range
scaling exponent. Depending on results consistency, the ranges
of analysis can be fixed with sufficient empirical background.
This has been the case for example in the fractal analysis of
heart rate variability, where common practice is to compute two
scaling exponents, for short and long-term correlations (Peng
et al., 1993; Iyengar et al., 1996). Again, we are convinced
that there is a need to explicitly clarify the relation between
frequency and DFA box-size to shed light on the underlying
physiology.

Here we propose a methodology for CoP analysis allowing
us to apply DFA with the concern of associating objectively
scaling ranges with frequency ranges, since they seem to have
physiological meaning.

STUDY 1: DEVELOPMENT OF A
FREQUENCY-SPECIFIC FRACTAL
ANALYSIS

Material and Methods
All computations in this article were done in Matlab (Matlab
R2016b, Mathworks), using available functions. The following
lines aim at providing the foundations of a method we call
FsFA (Frequency-Specific Fractal Analysis) by making plain the
relation between a box-size in DFA and a frequency. The full
algorithm we purposely developed for the present study, called
FsFA, is available on mathworks.com.

The existence of a correspondence between DFA box-size
and signal frequency offers two advantages: for signals which
fractal component(s) are not a priori known, it serves as a
tool to better interpret the graph of log(F(n)) vs. log(n) prior
to the computation of the scaling exponent α. For signals
which fractal components are known, it can help to define
one or several α calculated over specific ranges of DFA box-
sizes.

Some authors have implicitly associated box-size and signal
frequency components in the past when analyzing human
standing (Duarte and Zatsiorsky, 2001) or heart rate variability
(Schmitt and Ivanov, 2007). They assume that some typical
frequency components (f) are represented in boxes of given size
(n) in the DFA analysis based on the implicit assumption that
n =

1

(
f
fs
)
where fs is the sampling frequency. Although this can

seem logical, to the best we know there exists neither theoretical
nor empirical background to support this relationship.

Here we purposely developed a specific simulation-based
analysis in an attempt to clarify the relationship between DFA
box-size and frequency component in several steps:

1. We generated artificial fGn signals using Davies and Harte
method (Davies and Harte, 1987; Bardet and Bertrand, 2007),
of length 2048, ranging for α = 0.1 to α = 0.9 with steps of 0.1.
Ten signals were generated for each value of α. Let us call these
signals Xi(α) for i= 1 to 10.

2. These signals were then filtered, first with a bank of zero-lag
first-order low-pass Butterworth filters of cutoff frequencies fc.
Symmetrically, they were filtered with a bank of zero-lag first-
order high-pass Butterworth filters of cutoff frequencies fc. Let

us call the obtained signals Xlow
i

(

α, fc
)

and X
high
i

(

α, fc
)

. Here
sampling frequency is considered fs =1, which is equivalent to
saying that the studied frequencies correspond to frequencies
normalized by the sampling frequency fs. The values of fc were
chosen so that 1

fc
ranged from 4 to 200 with steps of 1: we

chose this range because if n =
1

(
f
fs
)
, in agreement with other

authors, the corresponding box sizes in DFAwould range from
the classically admitted minimum 4 to ∼N/10 which allows
us to avoid spurious effects in boxes close to N/4. Filtering of
signals with α >1 with Butterworth filters is not allowed since
such signals are non-stationary, which is whywe restrained our
analysis to signals with α <1 (fractional Gaussian noises).

3. Such a filtering generated a cutoff in the DFA plot of log(n)
vs. log(F(n)) (Figure 3). We automatically identified the box
sizes where the cutoff happened in filtered signal for each

fc, nlowi
(

α, fc
)

and n
high
i

(

α, fc
)

, respectively for the low-
passed and high-passed signal. The cutoffs were identified
as the intersection of the high frequency and low frequency
asymptotes, using the following assumptions:

a. Unaffected frequencies (low frequencies for a low-pass
filter, and high-frequency for a high-pass filter) present a
scaling identical to the original signal, so the asymptote on
this part has a slope of α.

b. High-frequencies filtered by a low-pass signal present a
slope of 0.

c. Low-frequencies filtered by a high-pass filter present a
slope of α+1. Indeed, first-order filtering of a fractal signal

increases the value of β by 2, so αfilt =
βfilt+1

2 =
β+3
2 =

α + 1.

• The “cutoff boxes” were then defined as themean of the high
pass cutoff box size and low pass cutoff box size:

nα
i

(

fc
)

=
nlowi

(

α, fc
)

+ n
high
i

(

α, fc
)

2
(5)

• These cutoff boxes were considered to be the box sizes
corresponding to the cutoff frequency. This gives a
relationship between fc and the cutoff box for each α,
obtained for our 10 simulated signals Xi= 1..10(α) for each
α value (step 1).
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FIGURE 3 | Example of the estimation of the cutoff box of nlow
i

(α, fc) and n
high
i

(α, fc), done in the low-passed signal X low
i

(α, fc) (thick black dotted line), and high

passed signal X
high
i

(α, fc) (thick black full line). In this example, we chose X low
i=1 (α = 0.8, fc = 0.056). The crossover was considered to be at the intersection of the

asymptotes in each signal (thin dashed straight lines). Note that the asymptote of X low
i

(α, fc) for high values of n and the asymptote of X
high
i

(α, fc) for low values of

n (thin dashed blue straight lines) are perfectly superimposed since they correspond to the unaltered frequency ranges of the original signal Xi(α) (not plotted here for

clarity), which has a unique scaling, hence a unique slope.

4. We hypothesized that nα
i

(

fc
)

was a linear function of 1
fc
with

no offset, since nα
i

(

fc
)

should be proportional to 1
fc .

We then

identified by least square approximation aα
i such as:

nα
i

(

fc
)

=
1

fc
× aα

i . (6)

Results
A typical outcome of the simulation procedure is illustrated
in Figure 3. It appears clearly that the filtering of synthetic
fGn signals generated a crossover in the log(F(n)) vs. log(n)
relationship established with DFA. Each crossover was assessed
by computing the intersection of both asymptotes of each signal.
In the example of Figure 3, the high pass filter generated a
crossover at n = 13.9 while the low pass filter on the same signal
generated a crossover at n= 20.7. The average value between n=
13.9 and n= 20.7, i.e., n= 17.0 was considered to be the box size
corresponding to the cutoff frequency used in low pass and high
pass filtering (fc = 0.056Hz). The repetition of this procedure
for fc = 0.005 to 0.25Hz combined with α = 0.1 to 0.9 and 10
simulated signals per α value, provided 10 linear approximations
for each α, which slopes are reported in Figure 4. The linear
approximations were computed for 8 < Tc < 43 (0.0233 < fc <

0.125) since this range presented proper affine shape. Variations

FIGURE 4 | Estimation of the slope aα . Values are mean ± SD from n = 10

simulated signals for each value of α.

outside this zone may be due to bad identification of the cutoff
by our algorithm, or by finite size and sampling frequency limits
of the filters we used. We will then assume that the relation holds
for any n and fs despite the approximation being made locally.
Considering reasonably weak variations both within and between
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TABLE 1 | Frequency ranges for using DFA on specific control loops of posture.

Proprioception-associated

range

Visuo-vestibular

associated range

Frequency 20–2Hz 0.5–0Hz.

Associated box size 2–20 80–∞

Limits for DFA 4–20 80–N/4

As DFA is generally limited to box sizes from 4 to a quarter of the total length of the signal

(here 512), the last row displays the real chosen range of boxes.

slope values as illustrated in Figure 4, we conclude that the direct
relation that was assumed in the literature was correct:

n(fc) =
fs
fc

(7)

Therefore, we have now all the necessary elements to analyze
scaling phenomena on frequency ranges of interest, by
computing DFA on box sizes comprised in said ranges: we call
this general method Frequency-Specific Fractal Analysis (FsFA).
When applied to CoP signal analysis, it follows that we can
estimate box size ranges within which scaling exponents can be
computed, in association with typical frequency bands wherein
proprioceptive and visuo-vestibular loops are thought to operate
(Table 1).

It is worth noting that box sizes definition in FsFA, while
bounded by the frequency-range of interest, were selected to be
a geometric sequence, so that their log is an arithmetic sequence.
This choice was made to follow recommendations of evenly-
spaced DFA (Almurad and Delignières, 2016). The sequence was
defined as follows:

• n(1) is defined by the minimal frequency chosen
• n(2) = n(1)+ 1
• for i > 2, n (i) = n(i− 1)× n(2)

n(1)

STUDY 2: FsFA APPLICATION TO
DISTURBED POSTURE

Material and Methods
Prior determination of the relationship between signal frequency
components and DFA box size based on synthetic signals made
it possible next to apply the freshly elaborated method FsFA
to CoP recordings during standing in disturbed conditions.
For that, eight female rugby players (age 20.3 ± 1.1 years,
mass 63.2 ± 6.5 kg, height 164.3 ± 6.4 cm) gave their informed
consent to participate in the study. They were asked to maintain
successively quiet stance on a platform with: (i) eyes opened
(reference); (ii) eyes closed (visual inputs disturbed); and (iii) eyes
opened after intense exercise (somatosensory inputs disturbed).
This experiment was designed to analyze the impact of altering
individually two sensory feedback loops. The study supports the
principles of the Declaration of Helsinki and was approved by
the institutional review board of the faculty. The platform used
(Winposturo, Medicapteurs, Balma, France) is equipped with
three strain gauges to compute the position of the center-of-
pressure. The CoP signal was recorded at sampling frequency

40Hz for 51.2 s, which gave a total of 2.048 data points. While
standing, participants held their arms alongside their body
and focused on a cross on a wall 3m ahead. Their feet were
oriented 15◦ from the sagittal midline with heels 4 cm apart.
Prior familiarization to the test was allowed. Fatigue arose
after an intermittent all-out exercise made of jumps, hopping,
stepping and short sprints. The main expected effect is a reduced
contribution of muscle spindles to the proprioceptive input flow
(Brockett et al., 1997; Thedon et al., 2011).

We propose that both frequency and scaling analyses that
have been conducted in the literature focus on the same
frequency-range and are two complementary analyses of the
same neural systems operating in postural control. Indeed,
Collins and collaborators positioned the crossover in DFA of
posture around f= 1Hz (Collins and De Luca, 1993). Delignières
and collaborators had similar results, since we see in one of their
graphs a crossover around log(n)= 1.8 for data sampled at 40Hz
(Delignières et al., 2011), which we will see using Equation (6)
can be translated to f= 0.63Hz. This way, we chose to assess both
spectral power and frequency-specific scaling exponents, on the
range of frequency 0 to 0.5Hz to examine visuovestibular-based
control, and 2 to 20Hz to examine proprioception-based control.
We have mentioned that no consensus has yet been found as
exactly what frequency-ranges are “best” to analyze: we chose
those because they let an equal space (on a log plot) between
Collin’s 1Hz crossover and the first frequencies analyzed around
(0.5 and 2Hz), which can account for a transient zone between
both scalings.

We analyzed fluctuations of both CoP position and CoP
velocity (derived from position) on AP axis. Power spectral
density was computed using Discrete Fourier Transform. Scaling
analysis was performed with DFA as described above. Thanks to
FsFA, we got two scaling exponents α from two specific ranges
of box size that corresponded to selected signal frequencies
(Table 1).

Results
First, the absence of a unique slope in log(F(n)) vs. log(n)—
classically reported in the literature—was visually confirmed
here in both CoP position and CoP velocity signals (Figure 5).
We computed scaling analyses within two ranges guided by
frequency boundaries (Table 1): (i) short timescales, defined by
4 < n < 20 and associated with high frequencies (2–20Hz),
the range wherein proprioceptive control has been shown to
dominantly operate; and (ii) long timescales, defined as n > 80
and associated with low frequencies (0–0.5Hz) wherein visuo-
vestibular control has been shown to dominantly operate.

Short Timescales—High Frequencies
In the reference state (eyes open, unfatigued), over short
timescales, individual scaling exponents points to the presence
of a scaling close to 1/f noise in CoP velocity (α = 1.30 ± 0.16)
but not in CoP position (α = 1.93 ± 0.04). Therefore, only α for
CoP velocity was considered for the subsequent analysis in short
timescales (i.e., high frequencies), where postural control at rest
is compared to control after fatiguing exercise.

Intense exercise led to an increase in spectral power of CoP
in the high frequencies (0.051 ± 0.037 to 0.117 ± 0.040 mm2,
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FIGURE 5 | Calculations of scaling exponents α on a typical CoP displacement along the AP axis (A) and of the same signal, derived (B).

P < 0.01). A significant decrease in the scaling exponent α

was observed (1.30 ± 0.16 to 1.06 ± 0.23, P < 0.001). Scaling
exponent of all subjects are reported in Figure 6.

In the reference state, there was no significant correlation
between spectral power and scaling exponent related to scales
associated with proprioception. This absence of correlation
between individual spectral power and scaling exponents was
confirmed in the fatigued state. This result suggests that these two
metrics are likely sensitive to distinct control properties.

Long Timescales—Low Frequencies
In the reference state, over long timescales, individual scaling
exponents point to the presence of a scaling close to 1/f noise in
CoP position (α = 1.27± 0.15) but not in CoP velocity (α = 0.39
± 0.10). This is the opposite scenario of what is described above
for short timescales. Taking fractal properties in CoP position
and not CoP velocity, only α for CoP position was considered
for the subsequent analysis in long timescales, where eyes closed
was compared to eyes open during quiet standing.

The disturbance of visual inputs due to the eyes closing did
not modify spectral power of CoP position significantly in the
associated frequency band (14.4 ± 10.2 vs. 9.3 ± 5.5, ns) over
these scales, but changed the scaling exponent (α = 1.27 ± 0.15
vs. 1.03 ± 0.14, P < 0.01). Scaling exponent of all subjects are
reported in Figure 6.

In the reference state, there was a poor but significant
correlation between spectral power and scaling exponents in this
frequency range (p= 0.037). No significant correlation was found
between spectral power and scaling exponent in the eyes closed
situation. This result suggests that these two metrics are likely
mostly sensitive to distinct control properties.

DISCUSSION

In the present study, we hypothesized that scaling analysis
of CoP dynamics may benefit from taking into account

physiological backgrounds classically associated with the
frequency components of the CoP signal, to uncover postural
control strategies. To this end, we developed Frequency-specific
Fractal Analysis (FsFA).

First, based on simulated signals, we established for the
first time a relationship between DFA box size and frequency
components in a signal; by doing so, we laid the foundations of
FsFA. We then applied the method to the analysis of the CoP
in order to demonstrate how it could be useful in the systematic
assessment of frequency-specific scalings.

Coherence With Previous Works
In agreement with previous studies, FsFA of CoP fluctuations
during quiet standing showed a crossover phenomenon and
two scaling regions (Figure 5), which is definitely a hallmark
of postural control (Collins and De Luca, 1994; Zatsiorsky and
Duarte, 2000; Duarte and Zatsiorsky, 2001; Priplata et al., 2002;
Delignières et al., 2011). Classically, both scaling exponent are
computed based on pure mathematical considerations, without
physiological background: only visual inspection of the DFA
log(F(n)) vs. log(n) plot guides the computation of scaling
exponents. To the best we know, neither clear boundaries nor
recommended localization of the crossover are defined in the
literature. Here, we suggest that using what we called Frequency-
specific Fractal Analysis (FsFA), the two scaling exponents might
be better assessed by computing two distinct linear fits of
log(F(n)) vs. log(n), guided by frequency bands of interest. Based
on the bandwidth 2–20Hz wherein spectral power is dominantly
influenced by proprioceptive short neural loops, the short-range
scaling exponent was computed within the DFA box size range 4
< n< 20 (Equation 7). On the other hand, the long-range scaling
exponent was assessed over the range 80 < n < N/4, guided by
frequencies <0.5Hz classically associated with visuo-vestibular
neural loops (see Table 1).

The frequential view, which brought us to analyze scaling
below 0.5Hz on one side, and above 2Hz on the other side,
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FIGURE 6 | Individual changes in short term scaling exponent on CoP velocity and long-term scaling exponent on CoP position, respectively with fatigue and eye

closing, for all subjects.

is coherent with the scalings previously observed by authors.
Indeed, Collins and collaborators positioned the crossover in
DFA of posture around f = 1Hz (Collins and De Luca, 1993),
and Delignières et al. pointed to a crossover around log(n) =
1.8 for data sampled at 40Hz (Delignières et al., 2011), which
can be translated to f = 0.63Hz thanks to present simulations
(Equation 7). The added value of the present study clearly does
not lie in the existence of two scalings in postural control,
which has already been observed before, but in the evidence that
both scalings vary as a function of sensory input disturbances
(Figure 6).

Scaling Phenomena in Postural Control
Guided by the localized presence of 1/f noise-like behavior, CoP
velocity was studied in short timescales and CoP position in
long timescales. As mentioned in Introduction, this choice was
driven by two arguments: first, 1/f noise has been associated
with a complex system with interesting properties, and second
because DFA reaches better reliability in such signals. As we
based our analysis on classically admitted frequency bands of
postural control, we expected short-term CoP scaling properties
to be linked to proprioceptive inputs and long-term CoP scaling
properties to be linked to visuo-vestibular sensing.

Assuming that scaling exponents determined by FsFA are
pertinent indicators of postural control strategies, then those
indicators should be sensitive to sensory disturbance. By
alternatively fatiguing leg muscles and suppressing visual inputs,
subtle changes in postural strategy were unraveled here in
athletes by FsFA. Velocity scaling (short timescales) as well
as position scaling (long timescales) shifted from a persistent
signal (α∼1.3) to a less persistent signal (α∼1) after specific
disturbance (respectively, fatigue and eyes closed). In our
conditions, these shifts in scaling demonstrated poor (if any)
reliance on shifts in frequency markers, pointing to distinct
physiological backgrounds. This way, for both velocity and
position CoP signals, the drop in scaling exponent observed here
seems to be a strategy independent from the classically observed
increase in power in each frequency band.

In the present study, when perturbing each input, it seems
that the strategy chosen was to adopt a tighter control, with
less tolerance to big variations, thus favoring higher-frequency
control, closer to the equilibrium, rather than low-frequency
control allowing for slow variations outside equilibrium. A
similar strategy was observed by Dingwell and Cusumano (2010)
for stride speed fluctuations when walking on a treadmill: a
diminution of persistence (i.e., drop in scaling exponent) was
shown when speed was constrained by a treadmill, which they
associated with “cautious gait”, an overcompensating strategy.
As well, Terrier and Dériaz (2012) inferred a tighter control
from a drop in scaling exponent of inter-stride intervals,
when an auditory cueing served as constraint. Though the
change they revealed were more radical since the observed
variables (inter-stride interval or gait speed) changed from
a persistent signal (α > 0.5) to an antipersistent one (α
< 0.5), a similar interpretation can be made here with a
“cautious postural control”, with a subtler change in scaling
exponent.

As both changes in strategy operate within a typical frequency
range defined in postural control with only poor change in total
power, the phenomenon, which gives us useful insight for the
understanding of postural control strategies, escapes detection
by classical Fourier analysis. The valuable information in this
scenario arises only from Frequency-specific Fractal Analysis
(FsFA) of postural control.

Origin of Scalings
The pervasiveness of fractals in anatomical structures as well
as in physiological time series has led number of authors
to explore potential sources of such signals. In the case of
postural control, we support the idea that those signals are
coming from a specific distribution of intrinsic timescales within
and between neural loops (Pellet et al., 1970-2013; West and
Shlesinger, 1989; Sabatier et al., 2015). Indeed, a fractal signal,
by definition, does not have one characteristic timescale and
can only be described by a repartition of timescales: this is
equivalent to saying that there is a distribution of frequencies, as

Frontiers in Physiology | www.frontiersin.org 10 March 2018 | Volume 9 | Article 293

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/physiology#articles


Gilfriche et al. FsFA for Postural Control Strategies

seen previously with power spectral density. Possessing a great
number of timescales is necessary but not sufficient to generate
fractal signals (white noise also contains all frequencies). The
specific organization of these timescales in postural control may
come from an auto-organization of involved neural networks,
originating from the numerous internal degrees of freedom
and interactions within and between network’s components.
Such behaviors have been described in many other fields
(West and Grigolini, 2011) and often called self-organized
criticality (Bak et al., 1987; Jensen, 1998). Similarly, many authors
have linked complexity (quantified either by proximity to 1/f
noise or entropy) to a property well-known in biology called
degeneracy, the capacity of the system to perform the same
function with elements that are structurally different (Tononi
et al., 1999; Edelman and Gally, 2001; Whitacre and Bender,
2010; Delignières and Marmelat, 2013). Both views share strong
similarities, and both make sense from an evolutionary point
of view (Whitacre and Bender, 2010). In particular, fractal-
like systems have shown several advantages in automatics for
dynamical control theory (Sabatier et al., 2015), which can
be transferred to postural control. In our case the system
seems to have two such organized subsystems as shown
above.

These numerous timescales can be operated by the human
body because it possesses different intrinsic timescales due to
its complex organization (Wayne et al., 2013). In the case of
postural control, each subsystem we defined (proprioceptive and
visuo-vestibular) relies on various timescales. For example,
proprioceptive inputs feed short loops involving spinal
motoneurons. In the spine, each afferent neuron has a specific
length which depends notably on the distance between the
sensor and the synapse, and each efferent motoneuron has
a specific length which can depend on the distance between
the synapse and the actuator. The place of the sensor, the
number of synapses, and the position of the actuator are only
a few among the many factors that impact the delay in signal
transmission. When multiplied by the number of afferent and
efferent structures involved in postural control, a distribution
of timescale is created, which may be the source of the fractal
signature in the CoP signal.

In short, the two scalings emerge each from a distribution
of complex neural control loops, organized in two distinct
subsystems, which operate over specific timescales. Local scaling
exponents are putative markers of the respective contribution to
overall control strategy by the two distinct subsystems.

In each scaling, the change in scaling exponent with
sensory perturbation would then be due to a reorganization
of the frequency distribution implied in control. We can then
hypothesize that when a subsystem is perturbed (via fatigue or
deprivation of sensory input in our case), the many internal
loops from sensors to actuators which are distributed on various
timescales undergo modifications that change their distribution.
This redistribution shows both a decreased power in lowest
frequencies and increased power in highest frequencies in the
concerned frequency band, which would generate the change in
power spectral density slope, hence the drop of scaling exponent,
as observed here.

Interpretations and Confrontation With
Other Theories
Our results agree with observations made by previous authors
and provide additional supports to some conclusions.

Previous works provided theories on the meaning of the
two scalings. In the rambling-trembling framework, in light
of tangential forces analysis on a force platform, short term
scaling was associated with “trembling” and long-term scaling to
“rambling” (Zatsiorsky and Duarte, 2000; Duarte and Zatsiorsky,
2001). We hypothesized that short term scaling—trembling—
could be associated with short neural loops with proprioceptive
inputs, while long term scaling—rambling—could be associated
with long neural loops with visuo-vestibular inputs. The changes
in scaling exponent due to sensory disturbance, reported here in
study 2, support that view.

In the works of Delignières et al. (2011), the scalings’ crossover
was seen as a consequence of a bounded velocity. Witnessing that
velocity seems bounded in CoP signals, they inferred that CoP
control is mostly based on correcting impulses when a maximal
velocity is reached, and that the average absolute maximal
CoP velocity (AAMV) is an interesting marker of postural
control. We think the approach in Delignières et al. (2011)
and the one in the present work are not necessarily exclusive.
Rather, they may provide complementary markers from which
an improved understanding of postural control strategy could be
gained. Indeed, as CoP velocity exhibits a crossover from short
term persistent to long term antipersistence, its PSD naturally
possesses a maximal value at this crossover around f0 (classically
around 1Hz), as illustrated in Figure 7. This maximum value Pf0

corresponds to AAMV so that Pf 0 =
AAMV2

2 (though AAMV
may be a more accurate estimator of the real value). From this,
if we simplify the PSD content by two linear zones, and consider
the frequency-range of 0.5 to 2Hz to represent only a transient
zone in the continuity of the two scalings explored above, we have
an even simpler definition of the PSD content. Indeed, Figure 7
shows that the whole frequency content of the CoP velocity signal
could then be described by four parameters:

• Pf0 (or AAMV)
• β1, the opposite of the slope of the low-frequency

antipersistent range, with

β1 = 2× α1 − 3

• α1 being here the frequency-specific fractal exponent
associated with visuo-vestibular loops (low-frequencies)
in CoP position. This result is obtained by the fact
that β1 is computed from the CoP velocity while α1 is
computed from CoP position, its integral, so more precisely:
β1 = (2× α1 − 1)− 2.

• β2, the opposite of the slope of the high-frequency persistent
range, with

β2 = 2× α2 − 1

• α2 being here the frequency-specific fractal exponent
associated with proprioceptive loops (high-frequencies) in
CoP velocity.
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FIGURE 7 | Typical PSD of COP velocity on the AP axis (A), and its schematic

representation (B) revealing four key parameters: Pf0, β1, β2, f0.

• f0, the crossover frequency, which might be variable from
one individual to another but is likely between 0.5 and 2Hz
according to the literature.

This way, without presupposing any causality between AAMV
and the existence of a crossover between short-term and long-
term scalings, we can simultaneously make all parameters appear
in one model. It should also be noted that these four parameters
contain all the information on the total power in fixed frequencies
as classically done in the literature. This new theory would be an
interesting framework to analyze CoP signals in future works.

Limits and Perspectives
FsFA could certainly benefit from future improvements. The
relation between a specific frequency and the box-size in DFA
analysis, which is the cornerstone of FsFA, still lacks a theoretical
proof which could give it better reliability. Other researchers may
find it interesting to explore mathematical proof of the equation.

Potential extensions of FsFA can be imagined using other
fractal analysis methods. For example, Adaptative Fractal
Analysis (AFA) is a fractal analysis method very similar to

DFA which, if it still not has been used as often as DFA,
presents several advantages over it (Gao et al., 2012; Riley et al.,
2012; Kuznetsov et al., 2013). AFA could benefit from a similar
frequency interpretation. We can also imagine a frequency-
specific multifractal analysis, which could for instance be a
direct extension of FsFA by using multi-fractal DFA (Kantelhardt
et al., 2002; Matic et al., 2015), or an indirect extension using
multifractal crossovers (Nagy et al., 2017). Future research may
focus on developing and testing the efficiently of such tools.

By choosing to follow frequency bands accepted for spectral
analysis, we are using a framework which has been constructed
essentially for spectral analysis. To build a complete theory
of postural control, with variable fractional differentiator-based
control loops, identified via frequency-specific scaling, future
research may try to better define proper frequency bands adapted
to this analysis. To this end, a potential lead would be to
individually degrade specific parts of a subsystem, fatiguing thigh
muscles for instance, and control how the scalings locally vary.
This kind of study would allow for improved understanding
of the behavior of the complex subsystems in postural
control.

CONCLUSION

Frequency-specific Fractal Analysis has opened the way to
systematic frequency-specific scaling markers which can be
useful in many fields. We have shown here in an exploratory
study that postural control strategies can be better understood
and quantified using frequency-specific scaling exponents.
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