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Abstract

Emergency Departments (EDs) worldwide are confronted with rising patient volumes caus-

ing significant strains on both Emergency Medicine and entire healthcare systems. Conse-

quently, many EDs are in a situation where the number of patients in the ED is temporarily

beyond the capacity for which the ED is designed and resourced to manage―a phenome-

non called Emergency Department (ED) crowding. ED crowding can impair the quality of

care delivered to patients and lead to longer patient waiting times for ED doctor’s consult

(time to provider) and admission to the hospital ward. In Singapore, total ED attendance at

public hospitals has grown significantly, that is, roughly 5.57% per year between 2005 and

2016 and, therefore, emergency physicians have to cope with patient volumes above the

safe workload. The purpose of this study is to create a virtual ED that closely maps the pro-

cesses of a hospital-based ED in Singapore using system dynamics, that is, a computer

simulation method, in order to visualize, simulate, and improve patient flows within the ED.

Based on the simulation model (virtual ED), we analyze four policies: (i) co-location of pri-

mary care services within the ED, (ii) increase in the capacity of doctors, (iii) a more efficient

patient transfer to inpatient hospital wards, and (iv) a combination of policies (i) to (iii).

Among the tested policies, the co-location of primary care services has the largest impact

on patients’ average length of stay (ALOS) in the ED. This implies that decanting non-emer-

gency lower acuity patients from the ED to an adjacent primary care clinic significantly

relieves the burden on ED operations. Generally, in Singapore, there is a tendency to

strengthen primary care and to educate patients to see their general practitioners first in

case of non-life threatening, acute illness.

1. Introduction

Emergency Departments (EDs) worldwide have to deal with rising patient volumes causing

significant pressures on both Emergency Medicine (EM) and entire healthcare systems [1–3].
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Therefore, many EDs are in a situation where the number of patients occupying the ED is tem-

porarily beyond the capacity for which the ED is designed and resourced to manage―a phe-

nomenon called Emergency Department (ED) crowding [4–6]. Particularly, ED crowding can

lead to (i) reduced quality of care, (ii) longer patient waiting times for doctor’s consult (time to

provider), (iii) increased numbers of patients who leave without being seen, and (iv) more

ambulance diversion [5].

ED crowding has financial implications causing costs per patient to rise because the average

(inpatient) length of stay can be extended [7, 8]. Furthermore, it is assumed that inadequate

care due to ED crowding might increase the probability of being readmitted to the ED which

further contributes to rising health care costs [9]. Since patients increasingly use EDs as point

of entry into the health care system, ED crowding is not only an EM specific nuisance but

rather a public health problem [10]. Due to the relevance of ED crowding and the pressures it

causes on healthcare systems, a remarkable number of studies on the topic have been pub-

lished in the Operational Research (OR) literature recently [11–13].

Singapore is no exception to the international trend of rising ED attendance and crowding

[3, 14, 15]. In 2016, the total population of Singapore amounts to 5.61 million with an average

annual growth rate of 1.3%. In comparison, total ED attendance at public hospitals has grown

at a disproportionately higher rate, that is, roughly 5.57% per year between 2005 and 2016

[16]. Fig 1 illustrates the evolution of both total ED attendance at public hospitals and popula-

tion size in Singapore for the period from 2005 to 2016.

Fig 1. Evolution of population size and total ED attendance in Singapore from 2005 to 2016.

https://doi.org/10.1371/journal.pone.0244097.g001
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Furthermore, EDs in Singapore and worldwide must cope with highly variable patient

arrivals. Typically, patient arrival patterns are cyclic both during the course of a day and over

the course of a week [17]. This variable demand and the fact that patient arrivals are unpredict-

able and stochastic pose an additional burden on ED management teams. Fig 2 emphasizes the

variability of patient arrivals by displaying the arrival patterns over the course of a peak day

and a ‘quiet’ day in an ED in Singapore in one month. Although the number of emergency

physicians (EPs) has risen, that is, 13.4% annually between 2005 and 2014, their workload has

remained very high. In Singapore, on average, each EP sees between 6.4 and 8.5 patients per

hour depending on the mode of calculation while previous studies have suggested that the

optimal ED throughput lies between 2 and 2.8 patients per EP hour [14, 18]. Therefore, it can

be assumed that there is still an undersupply of ED personnel and significant investments into

training must be made. Considering rising patient numbers and the workload of ED staff, the

current state of emergency medical care in Singapore might not be sustainable and has conse-

quences for the well-being of both patients and ED professionals [3].

The purpose of this paper is to develop a virtual ED, i.e., a simulation model that compre-

hensively reflects all major patient flows and medical resources of a hospital-based ED in Sin-

gapore, that is fully transparent (documented) and accessible for researchers and subject

experts. Subsequently, the virtual ED is used to analyze the effectiveness of currently debated

policies to streamline ED operations in Singapore. Specifically, we investigate the impact of (i)

co-location of primary care services within the ED, (ii) increase in the capacity of doctors, (iii)

a more efficient patient transfer to inpatient hospital wards, and (iv) a combination of policies

(i) to (iii), on patients’ average length of stay (ALOS) in the ED. To that end, we use system

Fig 2. Patient arrivals over the course of a peak day and a ‘quiet’ day in a hospital-based ED in Singapore.

https://doi.org/10.1371/journal.pone.0244097.g002
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dynamics (SD), an advanced simulation modeling approach that is currently underutilized in

the modeling of ED operations. SD is a handy approach in this context because its main

modeling elements, the so-called ‘stocks’ and ‘flows’, make it particularly easy to model aggre-

gate patient flows and stock of patients in a health care setting. Consequently, SD is a useful

approach to assess patient flow optimizing policies in an ED.

There are only a handful of studies that analyze ED processes through an SD lens, indicat-

ing a gap in the literature (a more thorough discussion of previous modeling works follows in

the literature review section). [19] developed a model to simulate the effect of point-of-care

testing on ED crowding but the model has not been made publicly available. [20] focused on a

specific subgroup of ED patients, that is, patients that were later admitted to general internal

medicine in the hospital. Similarly, the model has not been made available. [21] modeled the

interplay between an ED and the associated hospital wards focusing on the trade-off between

emergency admissions and elective admissions. Unfortunately, the precise sub-model referring

to the processes within the ED has not been made transparent and so cannot be evaluated. [22]

created a model of hospital patient flows with the aim to define policies that reduce delays

within the ED. The model has not been made available. [23] and [24], two related studies, had

a broader perspective and modeled emergency care systems instead of detailing a single ED.

The respective models have not been made open-access. Finally [12], studied the acute bed

blockage problem in the Irish healthcare system but refrained from modeling patient flows

within the ED. The model is not available.

To the best of our knowledge, there is no study using SD to create a virtual ED as we under-

stand the term―a comprehensive representation of all major patient flows and corresponding

medical resources in an ED―which is thoroughly documented and open-access. Complete

model transparency and free access, however, are crucial if models shall be refined, validated,

and reused by others. For that reason, in this paper, we put great emphasis on listing and

explaining all model equations that are necessary to rebuild the simulation model. Further-

more, because many EDs are structured similarly having critical care (resuscitation care), iso-

lation care, and ambulatory care areas [25], the model we present here can quite easily be

translated into any hospital-based ED worldwide [26]. (Currently, we are adapting the model

to fit to the largest ED in Switzerland.)

2. Literature review

The public importance, the wait-for-treatment ethos and the clear structural layout of EDs

have contributed to them being one of the most commonly modeled systems in OR healthcare

[25]. A recent and comprehensive literature review on simulation modeling methods applied

to EDs identified in total 254 relevant publications, of which 209 used discrete event simula-

tion (DES), 25 agent-based simulation (ABS), 18 SD, and 2 other modeling approaches [25].

The dominance of DES in ED modeling seems justified considering the method’s strengths in

handling individual patient flows and random variation of variables [27, 28]. We do not deny

the suitability of DES in modeling ED processes and crowding. However, instead of focusing

on DES alone, we argue for a diversity of simulation methods to be applied to ED operations.

In our opinion, only such a multi-perspective approach can lead to new insights. In the follow-

ing, we limit ourselves to reviewing the seven SD studies briefly touched upon in the introduc-

tion. Among the 18 SD works, we selected those of high-quality, written in English, and

published in renowned international OR emergency medicine journals.

[19] developed an SD model to examine the effect of decreasing lab turnaround time on

emergency medical services diversion, ED patient throughput, and total ED length of stay

(LOS). Unfortunately, there is no information on model conceptualization. They concluded
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that compelling improvement in ED efficiency with decreasing lab turnaround time can be

attained. [20] constructed an SD model to study the impact of evenly distributing inpatient

discharges over the course of a week on the bed occupancy rate. The model is limited to only

include ED patients that are later admitted to general internal medicine (GIM) in the associ-

ated hospital. Model conceptualization entails three main components: (i) a patient category

component, (ii) a hospital location component, and (iii) a feedback mechanism component.

The interplay between the three components steers the movement of patients from hospital

admission to discharge. They found that discharging patients evenly across the week can sig-

nificantly reduce bed requirements and ED LOS.

[21] built an SD model to analyze the response of ED waiting times to reductions in bed

capacity. To that end, they conceptualized the system in terms of two areas: (i) the community,

and (ii) the hospital which is further subdivided into the ED, the management of elective

patients, and the wards. The simulation model was subsequently used to assess the impact of

changes in bed capacity and in ED demand on various key performance measures. The key

finding was that reductions in bed numbers do not increase waiting times for emergency

admissions because elective admissions fall sharply. So, the elective cancellation rate acts as a

so-called ‘safety valve’ compensating for any change in bed capacity. [22] developed a hospital-

wide SD model to improve understanding of the causes of delays and length of stay variations

experienced by patients in the ED. They tested the impact of altering nurse levels, delay reduc-

tions, and re-routing of patients on total ED length of stay, particularly for admitted patients.

Overall, however, the main purpose of this study was to evaluate the applicability of SD to

patient flow modeling. It was concluded that the quantitative approach to simulating ED

delays and patient flows using SD is reasonable and that the resulting model is appropriately

representative of the system under consideration.

[23] and [24] adopted an SD modeling approach to describe the components of an emer-

gency and urgent care system and to investigate ways in which patient flows and system capac-

ity could be improved. The developed model was then used to test the effect of changes in

emergency/elective admissions, ‘front door’ demand, patient discharge schemes, and bed

capacity. They found that strengthening community care has the greatest potential to relieve

pressure on the emergency and urgent care system.

Finally, [12] created an SD model that visualizes and simulates the dynamic flow of elderly

patients in the Irish healthcare system to better understand the system’s dynamic complexity,

i.e., the nonlinear interactions of system elements over time. The model focuses on general

patient pathways of emergency admissions through the entire Irish healthcare system. Special

emphasis is placed on post-acute care by including long-term care, care at home, convalescent

care, and rehabilitation care in the model. Based on the simulation model, they evaluated vari-

ous pre-acute, e.g., increasing general practitioners’ (GPs) access to community services, and

post-acute, e.g., increasing discharge rates from long-term care facilities, policy interventions.

They found that a mixed strategy of pre-acute and post-acute policy interventions is potentially

very effective in reducing pressures on acute care provision.

Based on this literature review, although not systematic, it can be said that the simulation

model presented herein is the first attempt to model all relevant patient flows running through

critical care, ambulatory care, and isolation care of a large interdisciplinary hospital-based ED

using SD. The novelty of this work does not lie in the particular case study selected here (ED of

the largest tertiary hospital in Singapore) but on the detailed and comprehensive representa-

tion of all major ED patient flows in an aggregated form. Furthermore, and equally important,

the model presented below is described in such a way that interested parties can rebuild, test,

and experiment with the model increasing the value of our work.
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3. Study setting

3.1. Methods

SD is a computer-facilitated approach to policy analysis and design with a focus on modeling

stocks (accumulations) and flows (rates) of systems. Typically, SD is applied to dynamic prob-

lems that are characterized by interdependence and mutual interaction of elements, informa-

tion feedback, and circular causality [29, 30]. Virtual worlds, i.e., simulation models, created

with SD can act as learning laboratories with the purpose of developing and testing strategies

before they are implemented in practice. This is highly relevant for organizations nowadays

considering the fact that many of them operate within increasingly dynamic environments

and, therefore, strategies have to be evaluated and adjusted constantly [31, 32].

We chose SD as our modeling approach for the following reasons. First, it seemed impor-

tant to us that ED operations are not only analyzed from one methodological viewpoint, that

is, discrete event modeling, but tackled by a diversity of simulation methods in order to gener-

ate new insights. Second, agreeing with [21], we think that considering aggregated variables

(e.g., aggregated flows of patients) which is the focus of SD encourages both a systemic view of

the interactions of patient flows and information, and a more strategic perspective of the man-

agement of the system. Third, due to its accessible graphical iconography, SD is particularly

useful to engage stakeholders both in the model building and in the model analysis phase [33].

In SD, the model structure can be explained and presented in simple mathematical terms

which facilitates communication with a non-technical audience. Additionally, SD models take

high-level policies as inputs making them accessible for interpretation and fostering dialogue

between hospital stakeholders and the modeling team. This was a key aspect to us because we

intended to involve EPs, nurses, and ED managers throughout the entire modeling process.

SD is still our method of choice when it comes to stakeholder involvement, despite recent

efforts in facilitated discrete-event simulation modeling [34].

3.2. ED under study

Singapore is a city state with a population of 5.61 million people [16]. The study institution is

the largest hospital in the country with 1’600 inpatient beds and provides tertiary care to a sig-

nificant share of the population. The hospital is part of the Singhealth Regional Health System

(RHS) which covers a population of more than 1.1 million people and handles more than 4

million patient visits yearly. The hospital-based ED cares for more than 140’000 patient visits

annually, with about 350 visits per day in 2019 [35, 36]. The ED is equipped with 25 specialist

EPs who work an average of 180 clinical shift hours per 28 days, along with roughly 40 non-

specialists who clock an average of 216 clinical shift hours in the same period [35].

3.3. Overall structure of the ED

Patients come to the ED by ambulance or other forms of transportation (walk-in) from the

community to seek care. Upon arrival, ED patients go through a brief registration before the

triage processes commence. Triage refers to the categorization of ED patients for treatment in

situations of scarce resources according to the patients’ medical conditions and established

sorting plan. In Singapore, the Patient Acuity Category Scale (PACS) which prioritizes patients

into four main priorities is used to triage patients at the ED [37]. The priorities are: (1) Priority

1 are patients in a state of cardiovascular or imminent collapse. They are the most serious,

time-critical patients who require immediate attention or resuscitation—examples of condi-

tions are heart attack, severe injuries, severe bleeding, shock and severe asthma attack; (2) Pri-

ority 2 patients are non-ambulant patients with acute medical conditions who appear to be in
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a stable state with no immediate danger of collapse—examples of conditions are major limb

fracture/dislocation, moderate injuries, severe abdominal pain and other severe medical ill-

nesses; (3) Priority 3 refers to ambulant patients with acute symptoms who are in a stable con-

dition. These patients could be treated by general practitioners, family physicians with acute

care resources—example of conditions are sprains, minor injuries, minor abdominal pain,

vomiting, fever, rashes and mild headaches; Finally, (4) Priority 4 are non-emergency patients

with old injuries or conditions that have been present for a long time—examples include

chronic joint pain, chronic skin rash, long-term nasal discharge, old scars, cataracts, removal

of tattoos and sore throats.

A trained nurse evaluates the patient’s condition, takes his or her medical history, initiates

diagnostic measurements, and determines the priority for treatment, i.e., P1, P2, P3 or P4.

Patients with fever, irrespective of treatment priority—P1, P2, P3, or P4—are sent to the isola-
tion area to be seen by a physician to reduce the risk of infecting other patients in the ED.

Non-ambulant or trolley-based patients in priority 1 and 2 are treated at the critical care area,

while ambulatory patients, irrespective of their treatment priority are sent for treatment at the

ambulatory care area.

Each treatment area—critical care, ambulatory care, and isolation care—has a dedicated

waiting area and allocated ED nurses and physicians. The average waiting time to consult an

ED physician depends on the number of ED patients waiting for consultation and the number

of ED physicians available. The higher the ED patient’s acuity or priority, the greater the aver-

age physician consultation time. For P1 and P2 patients receiving treatment in the critical care

area, after initial consultation, almost all patients are admitted to the observation ward for

observation. During observation, patients who require laboratory services undergo the investi-

gation there and wait for the results. If there are no beds in the observation ward, patients are

observed in the waiting area. For ambulatory patients, after initial consultation, laboratory ser-

vices are provided. Those who require observation are admitted into the observation ward,

while others wait for laboratory investigation results in the waiting area. Lastly for isolation

patients, after initial consultation, patients are observed before a decision to discharge is made.

For patients in the observation ward, a decision to send them home or admit them into the

hospital is made after a further review by ED physicians. To that end, laboratory results (if

available) are reviewed. Discharged ED patients proceed to the pharmacy for medication and

payment. For those who require hospital admission, arrangement is made with the appropriate

hospital ward for patient transfer. An overview of the principal processes in a hospital-based

ED in Singapore is shown in Fig 3.

3.4. Model structure

SD models consist of an interconnecting set of differential and algebraic equations developed

from a broad range of empirical data. SD models comprise of stocks, interconnected flows and

auxiliary variables. A general mathematical representation of stocks and flows are:

StockðtÞ ¼
R t
to
½inflowðtÞ � outflowðtÞ�dt þ StockðtoÞ ð1Þ

InflowðtÞ ¼ f ðStockðtÞ;NÞ ð2Þ

OutflowðtÞ ¼ f ðStockðtÞ;MÞ ð3Þ

where N and M are the system parameters. The flows are the derivatives or rates of change of

the associated stocks. Stocks create disequilibrium dynamics as they decouple flows. As a con-

sequence, typically, inflows and outflows differ and are governed by different decision rules.
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The overall model structure of an ED in Singapore is presented in Fig 4. For a list with all vari-

ables and their respective abbreviations see S2 Table.

3.4.1. Registration and triage. For ED patients, the journey begins when they arrive at

the ED to seek care (see Fig 5). New patient arrivals a(t) at any time (t) proceed for registration

and quickly transition from registration to triage. The equation for patients waiting for regis-

tration P(t) at time (t) is:

PðtÞ ¼
R t
t0
½aðtÞ � gðtÞ�dt þ Pðt0Þ ð4Þ

where P(t0) is patients waiting for registration at time (t0) and

aðtÞ ¼ exogenous data ð5Þ

gðtÞ ¼ ½aðtÞðt � RTÞ� ð6Þ

New patient arrivals a(t) is an exogenous input and is fed into the simulation model as his-

torical time-series data; g(t) is patients moving from registration to triage and is represented

herein as a pipeline delay function of new patient arrivals a(t) and average registration time

RT.

After registration at the ED, patients wait to be triaged. Patients are normally triaged into

four treatment priorities (j)—P1, P2, P3, and P4; and three care areas—critical care, ambula-

tory care, and isolation care. B(t), that is, patients waiting for triage, increases as patients move

from registration to triage g(t) and decreases as patient are triaged to critical care ccaj(t),

Fig 3. Overall structure of patient processing in a hospital-based ED in Singapore.

https://doi.org/10.1371/journal.pone.0244097.g003
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ambulatory care abj(t), and isolation care isj(t). The equation for patients waiting for triage B
(t) is:

BðtÞ ¼
R t
t0
½gðtÞ � ccajðtÞ � abjðtÞ � isjðtÞ�dt þ Bðt0Þ ð7Þ

where B(t0) is patients waiting for triage at time (t0) and

ccajðtÞ ¼ gðt � TTÞ � fccajðtÞ ð8Þ

abjðtÞ ¼ gðt � TTÞ � fabjðtÞ ð9Þ

isjðtÞ ¼ gðt � TTÞ � fisjðtÞ ð10Þ

Patients triaged to critical care ccaj(t), ambulatory care abj(t), and isolation care isj(t) are

modeled herein as pipeline delay functions of patients moving from registration to triage g(t)
and average triage time TT, adjusted by the fraction of patients sent to each care area; fccaj(t) is

the fraction of patients triaged to critical care, fabj(t) is the fraction of patients triaged to ambu-

latory care, and fisj(t) is the fraction of patients triaged to isolation care. All three fractions sum

up to one.

Fig 4. Overall model structure of an ED in Singapore.

https://doi.org/10.1371/journal.pone.0244097.g004
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3.4.2. Critical care pathways. Patients triaged to the critical care area wait in queue for

consultation. In total, there are four main patient pathways within the critical care area (see

Fig 6):

(i) Waiting for consultation! consultation! discharge

(ii) Waiting for consultation! consultation! laboratory investigation! discharge

(iii) Waiting for consultation! consultation! observation! discharge

(iv) Waiting for consultation! consultation! laboratory investigation! observation!

discharge

The number of patients waiting for consultation Cj(t) increases by patients triaged to critical

care ccaj(t) and new ambulance arrivals nabj(t), and decreases as patients start consultation

csj(t). Patient consultation csj(t) is initiated when an ED doctor becomes available and initiates

consultation ncj(t). The equation for patients waiting for consultation Cj(t) is:

CjðtÞ ¼
R t
t0
½ccajðtÞ þ nabjðtÞ � csjðtÞ�dt þ Cjðt0Þ ð11Þ

Fig 5. Registration and triage sub-model.

https://doi.org/10.1371/journal.pone.0244097.g005
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where Cj(t0) is patients waiting for consultation at time (t0) and

nabjðtÞ ¼ exogenous data ð12Þ

csjðtÞ ¼ ncjðtÞ � ppd ð13Þ

nabj(t) is the exogenous historical ambulance arrival data; ppd is the patient per doctor ratio in

the critical care area.

Initiation of consultation requires an ED doctor. The number of ED doctors consulting

PCC(t) increases as ED doctors initiate consultation ncj(t) and decreases as consultation is

completed ccj(t). ED doctors available to initiate consultation pa(t) is the difference between

the number of ED doctors allocated to critical care NP(t) and ED doctors consulting PCC(t).
An average consultation time is assumed for each patient by treatment priority. P1 patients are

assumed to require longer consultation time followed by P2, P3, and P4 patients. However,

only P1 and P2 patients are triaged to the critical care area. The equation for the ED doctors

Fig 6. Critical care area sub-model.

https://doi.org/10.1371/journal.pone.0244097.g006
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consulting PCC(t) is:

PCCðtÞ ¼
R t
t0
½ncjðtÞ � ccjðtÞ�dt þ PCCðt0Þ ð14Þ

where PCC(t0) is ED doctors consulting at the critical care area at time (t0) and

ncp1 tð Þ ¼ MIN pa tð Þ;
Cp1ðtÞ
AT

� �

ð15Þ

ncp2 tð Þ ¼ MIN
paðtÞ
AT
� ncP1 tð Þ;

Cp2ðtÞ � dpp
AT

� �

ð16Þ

ccjðtÞ ¼ ncjðtÞðt � CTÞ ð17Þ

paðtÞ ¼ MAXð0;NPðtÞ �
P
PCCjðtÞÞ ð18Þ

Cp1(t) and Cp2(t) are P1 and P2 patients waiting for consultation in the critical care area; AT is

adjustment time—a model artifact to ensure unit consistency. The value of AT is 1. CT is con-

sultation time; dpp is the doctor per patient ratio in the critical care area.

A co-flow structure was used to model patients in consultation. As an ED doctor initiates

consultation ncj(t), a patient moves from the stock of patients waiting for consultation Cj(t) to

the stock of patients in consultation EPj(t). Hence, completion of consultation ccj(t) decreases

the number of patients in consultation EPj(t)via to observation coj(t), to laboratory and investi-

gation clj(t) or to home chj(t). The equation for patients in consultation EPj(t) is:

EPjðtÞ ¼
R t
t0
½csjðtÞ � cojðtÞ � cljðtÞ � chjðtÞ�dt þ EPjðt0Þ ð19Þ

where EPj(t0) is ED patients in consultation at time (t0) and

cop1ðtÞ ¼ MINðavbðtÞ; cpop1ðtÞÞ ð20Þ

cop2ðtÞ ¼ MINðavbðtÞ � cpop1ðtÞ; cpop2ðtÞÞ ð21Þ

cpojðtÞ ¼ ðccjðtÞ � ppdÞ � fb ð22Þ

cljðtÞ ¼ ðccjðtÞ � ppdÞ � cojðtÞ � chjðtÞ ð23Þ

chjðtÞ ¼ ððccjðtÞ � ppdÞ � cojðtÞÞ � fh ð24Þ

avb(t) is available beds in the observation ward; cpop1(t) and cpop2(t) are P1 and P2 patients

requiring referral to the observation ward, coj(t) is the patients from consultation to observa-

tion, fb is the fraction of patients who require observation, fh is the fraction of patients dis-

charged home after consultation.

After consultation, patients are either referred to the observation ward coj(t), to laboratory

and investigation clj(t) or discharged home chj(t) depending on their care needs The number

of patients waiting for laboratory and investigation PLIj(t), i.e., patients who have to go

through the laboratory investigation process and wait for their results, increases as patients are

referred to laboratory and investigation clj(t) and decreases as patients are either discharged

after laboratory and investigation ldj(t), transferred to the observation ward loj(t), or observed

at the waiting area due to lack of beds in the observation ward lwj(t). Patients under
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observation in the waiting area POWj(t) are discharged dwj(t) as their conditions improve or

admitted to the hospital cad(t). The equations for patients waiting for laboratory and investiga-

tion PLIj(t) and patients under observation in the waiting area POWj(t) are:

PLIJðtÞ ¼
R t
t0
½cljðtÞ � lojðtÞ � ldjðtÞ � lwjðtÞ�dt þ PLIjðt0Þ ð25Þ

POWjðtÞ ¼
R t
t0
½lwjðtÞ � dwjðtÞ � cadjðtÞ�dt þ POWjðt0Þ ð26Þ

where PLIj(t0) is patients waiting for laboratory and investigation at time (t0), POWj(t0) is

patients under observation in the waiting area at time (t0), and

lop1ðtÞ ¼ MINðavbðtÞ �
P
cojðtÞ; alp1ðtÞ � fobp1Þ ð27Þ

lop2ðtÞ ¼ MINðavbðtÞ �
P
cojðtÞ � lop1ðtÞ; alp2ðtÞ � fobp2Þ ð28Þ

ldjðtÞ ¼ aljðtÞ � ð1 � fobjÞ ð29Þ

lwp1ðtÞ ¼ MAXð0; ðalp1ðtÞ � fobp1 � lop1ðtÞÞÞ ð30Þ

lwp2ðtÞ ¼ MAXð0; ðalp2ðtÞ � fobp2 � lop2ðtÞÞÞ ð31Þ

aljðtÞ ¼ cljðt � LITÞ ð32Þ

dwjðtÞ ¼ POWjðtÞ=wt ð33Þ

cadjðtÞ ¼ POWjðtÞ � fdd ð34Þ

alj(t) is patients who have completed laboratory and investigation; fobj is the fraction of

patients who need to go to the observation ward after laboratory and investigation; LIT is the

average waiting time for laboratory and investigation, fdd is the fraction of patients waiting in

the waiting area admitted; and wt is the average observation time.

3.4.3. Ambulatory care pathways. Patients triaged to ambulatory care, like other care

pathways, wait in queue for consultation. In total, there are two main pathways for patients tri-

aged to the ambulatory care area (see Fig 7):

(i) Waiting for consultation! consultation! laboratory investigation! discharge

(ii) Waiting for consultation! consultation! laboratory investigation! observation!

discharge

The number of patients waiting for consultation CABj(t) increases by patients triaged to

ambulatory care abj(t) and decreases as consultation starts csABj(t). Patient consultation is ini-

tiated when an ED doctor becomes available and starts consultation ncABj(t). The number of

ED doctors consulting PCAB(t) increases as an ED doctor initiates consultation ncABj(t) and

decreases as consultation is completed ccABj(t). Available ED doctors to initiate consultation

paAB(t) is the difference between ED physicians allocated to ambulatory care NPAB(t) and the

number of ED physician consulting PCABj(t). The equations for ED patients waiting for
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consultation CABj(t) and ED physicians consulting PCAB(t) are:

CABjðtÞ ¼
R t
t0
½abjðtÞ � csABjðtÞ�dt þ CABjðt0Þ ð35Þ

PCABðtÞ ¼
R t
t0
½ncABjðtÞ � ccABjðtÞ�dt þ PCABðt0Þ ð36Þ

where CABj(t0) is the number of patients in ambulatory care waiting for consultation at time

(t0), PCAB(t0) is the number of ED physicians consulting at time (t0), and

csABjðtÞ ¼ ncABjðtÞ � ppd ð37Þ

Fig 7. Ambulatory care area sub-model.

https://doi.org/10.1371/journal.pone.0244097.g007
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ncABp1 tð Þ ¼ MIN paAB tð Þ;
CABp1ðtÞ

AT

� �

ð38Þ

ncABp2 tð Þ ¼ MIN
paABðtÞ
AT

� ncABP1 tð Þ;
CABp2ðtÞ � dpp

AT

� �

ð39Þ

ncABp3 tð Þ ¼ MIN
paABðtÞ
AT

� ncABP1 tð Þ � ncABP2 tð Þ;
CABp3ðtÞ � dpp

AT

� �

ð40Þ

ncABp4 tð Þ ¼ MIN
paABðtÞ
AT

� ncABP1 tð Þ � ncABP2 tð Þ � ncABP3 tð Þ;
CABp4ðtÞ � dpp

AT

� �

ð41Þ

ccABjðtÞ ¼ ncABjðtÞðt � CTÞ ð42Þ

paABðtÞ ¼ MAXð0;NPABðtÞ �
P
PCABjðtÞÞ ð43Þ

ppd is the patient per doctor ratio in the ambulatory care area; dpp is the doctor per patient

ratio; CT is consultation time, and AT is adjustment time.

Similar to the critical care area, a co-flow structure was developed to track patients in con-

sultation in ambulatory care. As an ED physician initiates consultation ncABj(t), a patient

moves from the stock of patients waiting for consultation CABj(t) to the stock of patients in

consultation EPABj(t). Consequently, completion of consultation ccABj(t) decreases the stock

of patients in consultation EPABj(t) via to laboratory and investigation clABj(t). The equation

illustrating this dynamic is:

EPABjðtÞ ¼
R t
t0
½csABjðtÞ � clABjðtÞ�dt þ EPABjðt0Þ ð44Þ

where EPABj(t0) is ED patients in consultation at the ambulatory care area at time (t0) and

clABjðtÞ ¼ ðccABjðtÞ � ppdÞ ð45Þ

After consultation, patients proceed to laboratory and investigation. Patients waiting for

laboratory and investigation PHIABj(t)–a procedure which includes various tests and exami-

nations as well as waiting for test results to be discussed with the ED physician–increases as

patients are referred to laboratory and investigation clABj(t) and decreases as patients are

referred to the observation ward aoj(t), discharged home ldABj(t) or transferred to be observed

in the waiting area due to limited beds in the observation ward lwABj(t). Patients under obser-

vation in the waiting area POWABj(t) due to capacity constraints in the observation ward

decreases via discharge dwAB(t) or hospital admission aABj(t). The equations for patients in

laboratory and investigation PHIABj(t) and patients under observation in the waiting area

POWABj(t) are:

PHIABjðtÞ ¼
R t
t0
½clABjðtÞ � aojðtÞ � lwABjðtÞ � ldABjðtÞ�dt þ PHIABjðt0Þ ð46Þ

POWABjðtÞ ¼
R t
t0
½lwABjðtÞ � dwABjðtÞ � aABjðtÞ�dt þ POWABjðt0Þ ð47Þ

where PHIABj(t0) is the initial number of patients in the ambulatory care area waiting for labo-

ratory and investigation at time (t0), POWABj(t0) is the number of patients under observation
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at time (t0), and

lwABp1ðtÞ ¼ MAXð0; ðalap1ðtÞ � fobap1 � aop1ðtÞÞÞ ð48Þ

lwABp2ðtÞ ¼ MAXð0; ðalap2ðtÞ � fobap2 � aop2ðtÞÞÞ ð49Þ

lwABp3ðtÞ ¼ MAXð0; ðalap3ðtÞ � fobap3 � aop3ðtÞÞÞ ð50Þ

lwABp4ðtÞ ¼ MAXð0; ðalap4ðtÞ � fobap4 � aop4ðtÞÞÞ ð51Þ

ldABjðtÞ ¼ alajðtÞ � ð1 � fobajÞ ð52Þ

dwABjðtÞ ¼ POWABjðtÞ=wt ð53Þ

aABjðtÞ ¼ POWABjðtÞ � famb ð54Þ

alaj(t) is the number of patients who have finished laboratory and investigation, and fobaj is

the fraction of patients who have completed laboratory and investigation and are admitted to

the observation ward, while famb is the fraction of patients observed in the waiting area and

are admitted to the hospital.

3.4.4. Observation ward and discharge. The observation ward receives patients from

critical care and ambulatory care areas—patients triaged to isolation care have a separate

observation ward (see Fig 8). The number of patients in the observation ward OWj(t) increases

as critical care patients are referred to it immediately after consultation coj(t) or after labora-

tory and investigation loj(t), as well as referral of ambulatory patients after laboratory and

investigation aoj(t), and decreases as patients are admitted into the hospital ahj(t) or dis-

charged home via pharmacy and payment doj(t). Admission into the observation ward

depends on the available beds avb(t). Available beds avb(t) is the difference between observa-

tion bed capacity bc(t) and the number of patients in the observation ward OWj(t). After

observation, discharged patients go through pharmacy and payment PHABj(t) for payment

and collection of prescribed medication. The number of patients in pharmacy and payment

PHABj(t) increases as patients are discharged from the observation ward doj(t), as patients are

released from laboratory and investigations both in critical care ldj(t) and ambulatory care

ldABj(t), as well as patients are discharged from observation in waiting areas, both in critical

care dwj(t) and ambulatory care dwABj(t), as well as patients discharged after consultation

from critical care chj(t) and decreases as patients leave for home habj(t). The equations for

observation ward admission and discharge are:

OWjðtÞ ¼
R t
t0
½cojðtÞ þ lojðtÞ þ aojðtÞ � ahjðtÞ � dojðtÞ�dt þ OWJðt0Þ ð55Þ

PHABjðtÞ ¼
R t
t0
½ldABjðtÞ þ dwABjðtÞ þ dojðtÞ þ ldjðtÞ þ dwjðtÞ þ chjðtÞ � habjðtÞ�dt

þ PHABjðt0Þ ð56Þ

where OWj(t0) is the initial number of patients in the observation ward at time (t0), PHABj(t0)
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is the initial number of patients in the stock pharmacy and payment at time (t0), and

aop1ðtÞ ¼ MINðavbðtÞ �
P
cojðtÞ �

P
lojðtÞ; alap1ðtÞ � fobap1Þ ð57Þ

aop2ðtÞ ¼ MINðavbðtÞ �
P
cojðtÞ �

P
lojðtÞ � aop1ðtÞ; alap2ðtÞ � fobap2Þ ð58Þ

Fig 8. Observation ward and discharge area sub-model.

https://doi.org/10.1371/journal.pone.0244097.g008
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aop3ðtÞ ¼ MINðavbðtÞ �
P
cojðtÞ �

P
lojðtÞ � aop1ðtÞ � aop2ðtÞ; alap3ðtÞ � fobap3Þ ð59Þ

aop4ðtÞ ¼ MINðavbðtÞ �
P
cojðtÞ �

P
lojðtÞ � aop1ðtÞ � aop2ðtÞ � aop3ðtÞ; alap4ðtÞ

� fobap4Þ ð60Þ

ahjðtÞ ¼ aobwjðtÞ � dojðtÞ ð61Þ

aobwjðtÞ ¼ OWt=ot ð62Þ

dojðtÞ ¼ aobwjðtÞ � df ð63Þ

avbðtÞ ¼ ððbcðtÞ � ppbÞ �
P
owjðtÞÞ=ttba ð64Þ

where avb(t) is the total available beds in the observation ward; alaj(t) is the number of patients

who have finished laboratory and investigation; fobaj is the fraction of patients who have com-

pleted laboratory and investigation and are admitted to the observation ward; df is the fraction

of discharged patients from the observation ward; ot is the average observation time for

patients in the observation ward; ppb is the patients per bed ratio; ttba is the time to make a

bed available for patients to use.

3.4.5. Isolation care pathways. Patients triaged to isolation care, like other care pathways,

wait in queue for consultation. In total, there are two main pathways for patients triaged to iso-

lation care (see Fig 9):

(i) Waiting for consultation! consultation! discharge

(ii) Waiting for consultation! consultation! observation! discharge

The number of patients waiting for consultation CISj(t) increases by patients triaged to iso-

lation care isj(t) and decreases as consultation starts csISj(t). Patient consultation is initiated

when an ED physician becomes available and initiates consultation ncISj(t). The number of

ED physicians consulting PCIS(t) at the isolation care area increases as an ED physician starts

consultation ncISj(t) and decreases as consultation is completed ccISj(t). Available ED physi-

cians to initiate consultation paIS(t) is the difference between ED physicians allocated to isola-

tion care NPIS(t) and ED physicians currently consulting with patients PCISj(t). The equations

for patients waiting for consultation CISj(t) and ED doctors consulting in the isolated care area

PCIS(t) are:

CISjðtÞ ¼
R t
t0
½isjðtÞ � csISjðtÞ�dt þ CISjðt0Þ ð65Þ

PCISðtÞ ¼
R t
t0
½ncISjðtÞ � ccISjðtÞ�dt þ PCISðt0Þ ð66Þ

where CISj(t0) is patients in the isolation care area waiting for consultation at time (t0), PCIS

PLOS ONE Modeling emergency department crowding

PLOS ONE | https://doi.org/10.1371/journal.pone.0244097 January 12, 2021 18 / 33

https://doi.org/10.1371/journal.pone.0244097


(t0) is the number of ED physicians consulting at time (t0), and

csISjðtÞ ¼ ncISjðtÞ � ppd ð67Þ

ncISp1 tð Þ ¼ MIN paIS tð Þ;
CISp1ðtÞ
AT

� �

ð68Þ

ncISp2 tð Þ ¼ MIN
paISðtÞ
AT

� ncISP1 tð Þ;
CISp2ðtÞ � dpp

AT

� �

ð69Þ

ncISp3 tð Þ ¼ MIN
paISðtÞ
AT

� ncISP1 tð Þ � ncISP2 tð Þ;
CISp3ðtÞ � dpp

AT

� �

ð70Þ

ncISp4 tð Þ ¼ MIN
paISðtÞ
AT

� ncISP1 tð Þ � ncISP2 tð Þ � ncISP3 tð Þ;
CISp4ðtÞ � dpp

AT

� �

ð71Þ

ccISjðtÞ ¼ ncisðtÞðt � CTÞ ð72Þ

paISðtÞ ¼ MAXð0;NPISðtÞ �
P
PCISjðtÞÞ ð73Þ

where ppd is the patient per doctor ratio in the isolation care area; dpp is the doctor per patient

ratio; AT is adjustment time; and CISP1, CISp2, CISP3, and CISP4 are the stocks of patients wait-

ing for consultation.

Fig 9. Isolation area sub-model.

https://doi.org/10.1371/journal.pone.0244097.g009
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Similar to other care areas, a co-flow structure was developed to model patients in consulta-

tion in the isolation care area. As an ED physician initiates consultation ncISj(t) a patient

moves from the stock of patients waiting for consultation csISj(t) to the stock of patients in

consultation EPISj(t). Hence, completion of consultation ccISj(t) decreases the stock of patients

in consultation via to observation coISj(t) and for discharge cpISj(t). After consultation,

patients referred to the observation ward coISj(t) are observed in the observation ward

OWISj(t). After a period of observation time otis, patients in the observation ward are either

discharged ophj(t) or admitted into the hospital ahisj(t). Likewise, patients discharged from the

isolation care area, i.e., via observation ward ophj(t) and or after consultation cpISj(t), proceed

to the pharmacy and payment PHISj(t) for prescribed medicine and payment and then leave

hisj(t). The equations illustrating the stock of patients in consultation EPISj(t), the stock of

patients in observation OWISj(t), and the stock of patients in pharmacy and payment PHISj(t)
are:

EPISjðtÞ ¼
R t
t0
½csISjðtÞ � coISjðtÞ � cpISjðtÞ�dt þ EPISjðt0Þ ð74Þ

OWISjðtÞ ¼
R t
t0
½coISjðtÞ � ophjðtÞ � ahisjðtÞ�dt þ OWISjðt0Þ ð75Þ

PHISjðtÞ ¼
R t
t0
½ophjðtÞ þ cpISjðtÞ � hisjðtÞ�dt þ PHISjðt0Þ ð76Þ

where EPISj(t0) is the initial number of patients in consultation at the isolation care area at

time (t0), OWISj(t0) is the number of patients under observation at time (t0), PHISj(t0) is the

number of patients in pharmacy and payment at time (t0), and

coISjðtÞ ¼ ðccISjðtÞ � ppdÞ � fis ð77Þ

cpISjðtÞ ¼ ðccISjðtÞ � ppdÞ � ð1 � fisÞ ð78Þ

ahisjðtÞ ¼ owdjðtÞ � fah ð79Þ

ophjðtÞ ¼ owdjðtÞ � ahisjðtÞ ð80Þ

owdjðtÞ ¼ owisjðtÞ=otis ð81Þ

hisjðtÞ ¼ phisðtÞ=ppt ð82Þ

where fis is the fraction of patients who need to go to the observation ward; owdj(t) is the num-

ber of patients who were observed and proceed to discharge or hospital admission; fah is the

fraction of patients who were observed and are admitted to the hospital; otis is the average

time patients were observed; ppt is the average time at the pharmacy and payment.

3.5. Data sources

We parameterized a simulation model that runs for 24 hours. To that end, we had access to

ED data for the period of June–August 2017. The key parameter values essential for estimating

ALOS are average registration time, average triage time, consult time (for critical care, ambula-

tory care and isolation care), average waiting time for observation ward, lab and investigation
waiting time, pharmacy and payment waiting time, time to make bed available, and average
time to admit patients. The distribution of the key parameter values is assumed to follow a
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triangular distribution [38]. The estimated values used for the lower limit a, upper limit b, and

mode c are as follows: For registration and triage, the values are—average registration time
[Min = 3; Median = 5; Max = 7], and average triage time [Min = 4; Median = 5; Max = 7]. For

critical care the input values are—consult time [Min = 10; Median = 15; Max = 20], average
observation waiting time [Min = 30; Median = 60; Max = 90], and laboratory and investigation
[Min = 35; Median = 45; Max = 60]. For ambulatory care, the input values are—consult time
[Min = 10; Median = 15.5; Max = 20], and average observation waiting time [Min = 30;

Median = 60; Max = 90]. For isolation care, the values are—consult time [Min = 20; Median =

30; Max = 45], average observation waiting time [Min = 30; Median = 60; Max = 90], and phar-
macy and payment waiting time [Min = 10; Median = 15; Max = 30]. For observation ward

and discharge, the input values are—time to make beds available [Min = 10; Median = 15;

Max = 25], and average time to admit patients [Min = 100; Median = 120; Max = 150].

Referring to patient arrivals, we picked the highest daily patient arrival pattern in the

3-months period from June to August 2017 because we intentionally wanted to stress-test the

system. Operational problems in the ED become only visible when the workload is high, and

the system is stretched to its limits.

To supplement the data requirements, an observational study on other process timings that

were not captured in the patient records was conducted over a 2 weeks period in November

2017 to estimate some of the model parameters. Finally, for all parameters that could not be

observed nor estimated from the data, we had to rely on expert judgment. More information

about model inputs, their values, units, and sources can be found in S1 Table. The simulation

model is provided in the supplementary file for review.

3.6. Model validation

To ensure that the ED model developed herein is fit for purpose and robust and that the results

could be used to inform ED policies, structure and behavior validation tests were conducted

[39–41]. Structure validation tests focused on engaging ED doctors with significant experience

in the operations of the ED in Singapore to verify the model structure and its assumptions

regarding causal relationships, feedbacks, time delays, and patient flows. This validation pro-

cess was conducted in four different meetings—where the model structure was thoroughly

reviewed—to ensure that the model structure is as close to reality as possible. Hence, we

believe that the current model structure is firmly grounded in current operations of a hospital-

based ED in Singapore.

On behavior validation tests, the simulation results were compared to available data of

selected outcomes (average length of stay across all venues—CCA, ambulatory, and isolation).

In addition, a mean absolute percentage error (MAPE) and a Theil statistic [42, 43] analysis

were conducted to check the behavioral validity of the model. The MAPE—which is a measure

of prediction accuracy—for the selected outcomes were; 9.78% for ALOS in the critical care

area, 12.5% for ALOS in the ambulatory care area, and 8.85% for ALOS in the isolation care

area. Given that MAPE of 30% is considered to be good, our results—which have a maximum

MAPE of 12.5%—indicate that the simulated model compares well with available data consid-

ering that available ALOS data used was an average across venues over an hour. For the Theil

statistic, the error due to bias (UM) for CCA, ambulatory, and isolation care areas were 11%,

4.5%, and 17.7% respectively; while that for unequal variance (US) for CCA, ambulatory, and

isolation care areas was 2.4%, 7.1%, and 9.4% respectively; and the error for covariation com-

ponent (UC) for CCA, ambulatory, and isolation care areas were 87.1%, 88.4%, and 72.9%

respectively. Thus, critical care, ambulatory care, and isolation care areas have most of the

error within the covariation component (UC) as compared to bias (UM) and unequal variance
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(US). For Theil statistics, if majority of the errors comes from covariation components, it indi-

cates that the simulated variables track the underlying trend well, but diverge when comparing

point-by-point, indicating that majority of the errors are unsystematic with respect to the pur-

pose of the model.

4. Policy experiments

Policy experimentation was conducted to explore the range of potential future directions on

how to manage ED crowding as discussed with the ED physicians, as well as address the identi-

fied bottlenecks—significant waiting times for consultation, laboratory investigation and

observation ward for admission—in the ED care processes. To that end, we tested the impact

of four policies on the average length of stay (ALOS) of ED patients by venue of care, care

pathway, and time period of the day. Policies were compared to the base case, where the status

quo is simulated. We use ALOS as a proxy for ED crowding [44–46]. The tested policies are:

1. Business-as-usual (BAU): The business-as-usual (BAU) or base-case experiment assumes

no change to key model inputs that may be affected by current or future policies. Under

this policy experiment, patients reporting at the ED for care are triaged to CCA, ambulatory

care, or isolation care. The current allocation of ED doctors across the venues remains

unchanged and waiting time for patients in the observation ward is assumed to remain con-

stant. This hypothetical scenario is unlikely in the current context as new policies are

expected to change some of these key variables. However, it is included to serve as a refer-

ence point for evaluating alternative policies.

2. Co-location (policy 1): This policy experiment varies the fraction of P4 and P3 patients

decanted from the ED to a GP clinic co-located in the ED from 10% to 30% to assess the

impact on ALOS. The rationale of this policy is to relieve ED Operations by redirecting

non-emergency patients to primary care services. In Singapore and other industrialized

countries, there is a tendency to co-locate primary care services within EDs. These primary

care services are clearly separated from ED operations where more severely ill patients are

treated. In such a way, the flow of patients with only minor and non-emergency symptoms

are cared for in a separate venue with own resources. This reduces the heterogeneity in acu-

ity of patients in the other venues of the ED. Overall, this policy aims to increase efficiency

and effectiveness of ED operations by diverting non-emergency patients to GP care.

3. Capacity of doctors (policy 2): This policy experiment stepwise increases the capacity of

ED doctors by 10%, 20%, and 30%, across all venues of care, to evaluate its impact on wait-

ing time and ALOS. This policy experiment aims to achieve the target ALOS of 4 hours for

patients allocated to critical care and ambulatory care and 4.5 hours for patients triaged to

isolation care. Singapore loosely follows the ‘4-hour rule’ from the UK where 98% of all ED

patients must be seen and discharged or admitted within 4 hours of their arrival. In Singa-

pore and other wealthy countries such as Switzerland, managers of EDs typically tried to

meet waiting time targets by hiring more physicians and nurses. So, this policy simply

reflects the attempt to balance the increased demand for emergency medical services by

increasing the supply of these services. However, there is a clear financial limit to such a

policy. As more and more health systems are forced to reduce spending and become more

efficient, a policy of matching increased demand with increased supply might not be a via-

ble one in the long-term.

4. Observation ward and laboratory (policy 3): This policy explores the impact of a 10%-30%

reduction in waiting time at the observation ward, as well as waiting time for laboratory

PLOS ONE Modeling emergency department crowding

PLOS ONE | https://doi.org/10.1371/journal.pone.0244097 January 12, 2021 22 / 33

https://doi.org/10.1371/journal.pone.0244097


and investigation on ALOS across all venues of care. This policy experiment aims to achieve

the target ALOS of 4 hours for patients allocated to critical care and ambulatory care and

4.5 hours for patients triaged to isolation care. The rationale of this policy is to analyze the

consequences of an improved patient outflow from the ED. One of the most severe bottle-

necks of a hospital-based ED is the outflow of patients who cannot be discharged but need

to be admitted to the hospital. Because of limited hospital capacities these patients typically

accumulate in the ED and gradually fill up the observation ward. Consequently, these

‘boarded’ patients block ED resources and create significant inefficiencies in the system.

This policy analyzes the implications of an improved transfer of ED patients to hospital

wards by reducing the waiting time at the observation ward (i.e., the boarding time). Fur-

thermore, this policy tests the consequences of an increased turnover for laboratory and

investigation (e.g., more efficient blood testing).

5. Combined interventions (policy 4): This policy experiment implements all the previous

interventions—i.e., co-location, capacity of doctors, and observation ward and laboratory—

simultaneously to assess it impact on ALOS across all venues of care.

5. Results

S1–S4 Figs show the ALOS by venue of care―critical care, ambulatory care, and isolation care

—care pathway and time of the day, for all the policy experiments. To present the result in a

meaningful way (as shown in Tables 1–4), we divided the day into three time periods—herein

referred to as phases. Phase 1 (ph1) is from 00:00 am to 08:00 am, phase 2 (ph2) is from 08:00

am to 04:00 pm, and phase 3 (ph3) is from 04:00 pm to 00:00 am. The results are presented as

follows:

5.1. Business-as-usual (BAU)

As shown in Tables 1–4, in the BAU case, a critical care patient that goes through critical care

pathway 1 for emergency care is projected to experience an ALOS of 25 minutes from 00:00
am to 08:00 am; 39 minutes from 08:00 am to 04:00 pm; and 27 minutes from 04:00 pm to
00:00 am. The estimated ALOS for critical care pathway 2 patients is 72 minutes from 00:00
am to 08:00 am; 85 minutes from 08:00 am to 04:00 pm; and 73 minutes from 04:00 pm to

Table 1. ALOS ED patients face depending on care venue, patient pathway, arrival time for co-location policy where 10% - 30% of P4 and P3 patients are decanted

from the ED to a GP clinic co-located in the ED.

Policy 1 Critical care pathways (minutes)

Pathway 1 Pathway 2 Pathway 3 Pathway 4

Ph1 Ph2 Ph3 Ph1 Ph2 Ph3 Ph1 Ph2 Ph3 Ph1 Ph2 Ph3

BAU 25 39 27 72 85 73 149 162 150 195 209 197

10% 25 39 27 72 85 73 149 162 150 195 209 197

20% 25 39 27 72 85 73 149 162 150 195 209 197

30% 25 39 27 72 85 73 149 162 150 195 209 197

Ambulatory care pathways (minutes) Isolation care pathways (minutes)

Pathway 1 Pathway 2 Pathway 1 Pathway 2

Ph1 Ph2 Ph3 Ph1 Ph2 Ph3 Ph1 Ph2 Ph3 Ph1 Ph2 Ph3

BAU 72 166 85 196 290 208 42 42 42 101 101 102

10% 72 125 81 196 249 205 42 42 42 101 101 102

20% 72 106 78 196 230 201 42 42 42 101 101 102

30% 72 96 75 196 219 199 42 42 42 101 101 102

https://doi.org/10.1371/journal.pone.0244097.t001
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00:00 am. The ALOS for critical care pathway 3 patients is 149 minutes from 00:00 am to
08:00 am, 162 minutes from 08:00 am to 04:00 pm and 150 minutes from 04:00 pm to 00:00
am. Lastly, the ALOS for critical care pathway 4 patients is 195 minutes from 00:00 am to
08:00 am, 209 minutes from 08:00 am to 04:00 pm and 197 minutes from 04:00 pm to 00:00
am.

For patients seeking emergency care at the ambulatory care venue, and who go through

ambulatory care pathway 1 are estimated to experience an ALOS of 72 minutes from 00:00 am
to 08:00 am; 166 minutes from 08:00 am to 04:00 pm; and 85 minutes from 04:00 pm to 00:00
am. For ambulatory pathway 2 patients, under the base-case, a projected ALOS of 196 minutes

from 00:00 am to 08:00 am; 290 minutes from 08:00 am to 04:00 pm; and 208 minutes from

04:00 pm to 00:00 am is expected.

Lastly, patients at the isolation care area following the isolation care pathway 1 are projected

to experience an ALOS of 42 minutes at all phases. For isolation care pathway 2 patients,

ALOS is projected to be 101 minutes from 00:00 am to 04:00 pm and 102 minutes from 04:00
pm to 00:00 am.

5.2. Co-location (policy 1)

As indicated in Table 1, under policy 1, where 10% to 30% of P4 and P3 patients from each

venue of care are decanted from the ED to a GP clinic co-located in the ED to provide needed

care, the ALOS for critical care patients going through critical care pathways 1 to 4 are pro-

jected to be the same as BAU. However, for patients going through ambulatory care pathway 1

and 2, ALOS was projected to reduce under policy 1. In the scenario where 10% of P4 and P3

patients were decanted, ALOS for ambulatory care pathway 1 is projected to decrease by

24.6% from 08:00 am to 04:00 pm, and by 4.7% from 04:00 pm to 00:00 am, compared to the

BAU. The ALOS of patients in ambulatory care pathway 1 arriving in the time period between

00:00 am and 08:00 am remains unchanged for the 10%, 20%, and 30% scenario; for ambula-

tory care pathway 2 ALOS is projected to decrease by 14.1% from 08:00 am to 04:00 pm, while

that for 04:00 pm to 00:00 am is 1.44%, compared to the BAU. The ALOS of patients in ambu-

latory care pathway 2 presenting themselves between 00:00 am and 08:00 am remains

unchanged for the 10%, 20%, and 30% scenario. In the scenario where 20% of P4 and P3

patients were removed from the ED, ALOS for ambulatory care pathway 1 is projected to fall

by 36.1% from 08:00 am to 04:00 pm, while that for 04:00 pm to 00:00 am is 8.2%, compared to

the BAU; for ambulatory care pathway 2 ALOS is forecasted to diminish by 20.7% from 08:00
am to 04:00 pm, while that for 04:00 pm to 00:00 am is 3.4%, compared to the BAU. Finally, in

the scenario where 30% of P4 and P3 patients are redirected to an inhouse GP clinic, ALOS for

ambulatory care pathway 1 is projected to fall by 42.2% from 08:00 am to 04:00 pm and by

11.8% from 04:00 pm to 00:00 am, compared to the BAU; for ambulatory care pathway 2

ALOS is forecasted to reduce by 24.5% from 08:00 am to 04:00 pm and by 4.3% from 04:00 pm
to 00:00 am, compared to the base case. Lastly, policy 1 does not show an impact on isolation

care pathways in our experimental set-up. On average, only 6% of all presenting patients are

triaged to isolation care (i.e., fever patients) and so patient flow is smooth through this care

venue. This means that fever patients typically do not need to wait until they see a doctor. Con-

sequently, reducing the inflow of patients into isolation care (which is the effect of policy 1)

does not change the ALOS of patients going through this venue of care. ALOS is driven by the

waiting time for lab and investigation and if necessary, by the waiting time for a bed in the hos-

pital. Both waiting times are not influenced by policy 1.
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5.3. Capacity of doctors (policy 2)

As shown in Table 2, under this policy where the number of ED doctors is gradually increased

by 10%, 20% and 30%, a critical care patient going through critical care pathways 1 to 4 is pro-

jected to experience ALOS similar to that of the BAU from 00:00 am to 08:00 am and 04:00 pm
to 00:00 am. However, during the time period of 08:00 am to 04:00 pm, with a scenario where

the doctors allocated to each venue is increased by 10%, ALOS is projected to decrease by

20.5%, 8.2%, 4.3% and 3.8% respectively for care pathways 1 to 4. In the scenarios where a

30% increase of doctor’s allocation was experimented, ALOS is projected to decrease by

28.2%, 12.9%, 6.7% and 5.2% respectively for care pathways 1 to 4.

Similarly, under the ambulatory care pathways 1 and 2, ALOS is projected to be similar to

that of the BAU from 00:00 am to 08:00 am. However, ALOS is projected to decrease under

the 10% increase in doctor’s capacity scenario by 34.3%, and 20% for ambulatory care path-

ways 1 and 2 respectively from 08:00 am to 04:00 pm; while that for 04:00 pm to 00:00 am was

7.05% and 2.4%. Under the 30% increase in doctor’s capacity scenario, ALOS is expected to

reduce by 49.3% from 08:00 am to 04:00 pm and 12.9% from 04:00 pm to 00:00 am for ambula-

tory care pathway 1; and 28.2% from 08:00 am to 04:00 pm and 5.2% from 04:00 pm to 00:00
am for ambulatory care pathway 2. Lastly, ALOS for patients going through isolation care

pathways are expected to experience ALOS like that of the BAU. The drivers of ALOS for

patients in isolation care are the waiting times for lab and investigation and admission to the

hospital. Both waiting times are not changed (reduced) by increasing the capacity of doctors in

the ED.

5.4. Observation ward and laboratory (policy 3)

As shown in Table 3, under the observation ward and laboratory policy, a critical care patient

going through critical care pathways 1 is projected to experience ALOS comparable to that of

the BAU across all time phases. But, for critical care pathway 2, 3 and 4, ALOS is projected to

decrease as observation ward and laboratory and investigation waiting times are reduced.

Under the scenario where observation ward and laboratory waiting times were reduced by

10%, compared to the BAU, ALOS is expected to decrease by 6.9%, 4.7% and 5.4% for critical

care pathway 2 across the three-time phases; 8%, 7.4% and 8% for critical care pathway 3

Table 2. ALOS ED patients face depending on care venue, patient pathway, arrival time for policy where the numbers of doctors are increased from 10% - 30%

across all venues of care.

Policy 2 Critical care pathways (minutes)

Pathway 1 Pathway 2 Pathway 3 Pathway 4

Ph1 Ph2 Ph3 Ph1 Ph2 Ph3 Ph1 Ph2 Ph3 Ph1 Ph2 Ph3

BAU 25 39 27 72 85 73 149 162 150 195 209 197

10% 26 31 26 72 78 73 149 155 149 195 201 196

20% 26 29 26 72 75 72 149 152 149 195 199 196

30% 25 28 26 72 74 72 149 151 149 195 198 195

Ambulatory care pathways (minutes) Isolation care pathways (minutes)

Pathway 1 Pathway 2 Pathway 1 Pathway 2

Ph1 Ph2 Ph3 Ph1 Ph2 Ph3 Ph1 Ph2 Ph3 Ph1 Ph2 Ph3

BAU 72 166 85 196 290 208 42 42 42 101 101 102

10% 72 109 79 196 232 203 42 42 42 101 101 102

20% 72 92 76 196 216 199 42 42 42 101 101 102

30% 72 84 74 196 208 197 42 42 42 101 101 102

https://doi.org/10.1371/journal.pone.0244097.t002
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across the three-time phases; while that for critical care pathway 4 was 8.7%, 8.1% and 8.6%

respectively across the three phases. Under the scenario where observation ward and labora-

tory waiting times were reduced by 30%, ALOS for critical care pathway 2 is projected to

reduce by 19.4% from 00:00 am to 08:00 am, 16.4% from 08:00 am to 04:00 pm and 19.1%

from 04:00 pm to 00:00 am; while that for critical care pathway 3 was 24.8% from 00:00 am to
08:00 am, 22.8% from 08:00 am to 04:00 pm and 24.6% from 04:00 pm to 00:00 am. Likewise,

the ALOS for critical care pathway 4 is projected to reduce by 26.15% from 00:00 am to 08:00
am, 24.4% from 08:00 am to 04:00 pm and 25.8% from 04:00 pm to 00:00 am.

Considering the ambulatory care pathways, under the 10% reduction in observation ward

and laboratory waiting times ALOS is projected to decrease 6.9%, 3% and 5.8% respectively

across the time phases for care pathway 1; while that for care pathway 2 is projected to decrease

by 8.6%, 5.8% and 8.1% respectively across the time phases. Under the 30% reduction in wait-

ing times, ALOS is projected to decrease by 19.4%, 8.4% and 16.4% respectively for care path-

way 1, while projections for care pathway 2 are reductions of 26%, 18.6% and 24.5%

respectively.

For isolation care pathways, while isolation care pathway 1 is projected to remain

unchanged relative to the BAU, isolation care pathway 2, under the 10% reduction in observa-

tion ward and laboratory waiting times is projected to decrease ALOS by 5.9% across all time

phases. However, under the 30% reduction in observation ward and laboratory waiting times,

ALOS is projected to decrease by 16.8%, 17.8% and 17.6% respectively across the time phases.

5.5. Combined interventions (policy 4)

As indicated in Table 4, under the combined interventions where policies 1 to 3 are imple-

mented simultaneously, under the 10% assumptions—where 10% of P4 and P3 patients are

decanted to a GP clinic in the ED, 10% increase in doctors allocated to each care venue and

10% reduction in observation ward and laboratory waiting times—a critical care patient that

goes through critical care pathway 1 for emergency care is projected to experience 20.5%

reduction in ALOS from 08:00 am to 04:00 pm; while that for 04:00 pm to 00:00 am is 3.7%.

Interestingly, ALOS rises by 4% for patients arriving between 00:00 am and 08:00 am. For criti-

cal care pathway 2 a reduction in ALOS of 6.9%, 14.1%, and 6.8% are projected across the

three-time phases. Patients going through the critical care pathway 3 are projected to

Table 3. ALOS ED patients face depending on care venue, patient pathway, arrival time for observation ward and laboratory policy where waiting times at the

observation ward, and laboratory are reduced by 10% - 30%.

Policy 3 Critical care pathways (minutes)

Pathway 1 Pathway 2 Pathway 3 Pathway 4

Ph1 Ph2 Ph3 Ph1 Ph2 Ph3 Ph1 Ph2 Ph3 Ph1 Ph2 Ph3

BAU 25 39 27 72 85 73 149 162 150 195 209 197

10% 25 39 27 67 81 69 137 150 138 178 192 180

20% 25 39 27 63 76 64 124 137 126 161 175 163

30% 25 39 27 58 71 59 112 125 113 144 158 146

Ambulatory care pathways (minutes) Isolation care pathways (minutes)

Pathway 1 Pathway 2 Pathway 1 Pathway 2

Ph1 Ph2 Ph3 Ph1 Ph2 Ph3 Ph1 Ph2 Ph3 Ph1 Ph2 Ph3

BAU 72 166 85 196 290 208 42 42 42 101 101 102

10% 67 161 80 179 273 191 42 42 42 95 95 96

20% 63 157 76 162 256 174 42 42 42 89 89 90

30% 58 152 71 145 239 157 42 42 42 84 83 84

https://doi.org/10.1371/journal.pone.0244097.t003
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experience 8%, 12.3% and 8.6% reduction in ALOS across the time phases. Lastly, patients

going through critical care pathway 4 are projected to experience 8.7%, 11.9% and 9.1% reduc-

tion in ALOS across the time phases. Under the 30% assumptions, patients going through the

critical care pathways 1 to 4 are projected to experience greater reductions in ALOS as indi-

cated in Table 4. For critical care pathway 1 a reduction in ALOS of 28.2% is projected from

08:00 am to 04:00 pm and of 3.7% for 04:00 pm to 00:00 am. The ALOS of patients arriving

between 00:00 am and 08:00 am remains unchanged compared to the BAU. For critical care

pathway 2 a reduction of 19.4%, 29.4%, and 20.5% is projected across the three-time phases;

while that for critical care pathway 3 are 24.8%, 29.6% and 25.3% respectively across the time

phases. Lastly, patients going through critical care pathway 4 are projected to experience

26.1%, 29.6% and 26.9% reduction in ALOS across time phases under policy 4.

For patients going through the ambulatory care venue, ambulatory care pathway 1 patients,

under the 10% assumptions, are projected to experience a reduction in ALOS by 6.9% from

00:00 am to 08:00 am, 43.9% from 08:00 am to 04:00 pm, and 15.2% from 04:00 pm to 00:00
am; while the reduction in ALOS for ambulatory care pathway 2 patients is 8.6% from 00:00
am to 08:00 am, 29.6% from 08:00 am to 04:00 pm and 12% from 04:00 pm to 00:00 am. As is

the case with all the policies, under the 30% assumptions, ALOS is projected to reduce much

more compared to the 10% assumptions as indicated in Table 4.

Finally, for patients going through the isolation care venue, ALOS for isolation care path-

way 1 patients is projected to remain unchanged relative to the BAU across all time phases.

For isolation care pathway 2, under the 10% assumptions, ALOS is projected to decline by

5.9%, 5.9% and 5.8% respectively across time phases, whereas under the 30% assumptions,

ALOS is projected to decline by 16.8%, 17.8% and 17.6% respectively across time phases.

6. Discussion

6.1. General remarks

ED crowding is a multifaceted issue and so far, many solutions have failed because they

ignored or underestimated the dynamic complexity of the problem [5]. After thoroughly

reviewing the literature on ED crowding [47], recommends to ‘research systems-wide solu-

tions on the basis of existing evidence and operations theory, with the aim of mitigating the

risk/problem of crowding.’ For this reason, in the present study, we analyzed ED crowding

Table 4. ALOS ED patients face depending on care venue, patient pathway, arrival time for combined interventions policy where all the interventions—i.e., co-loca-

tion, capacity of doctors, and observation ward and laboratory—are implemented simultaneously.

Policy 4 Critical care pathways (minutes)

Pathway 1 Pathway 2 Pathway 3 Pathway 4

Ph1 Ph2 Ph3 Ph1 Ph2 Ph3 Ph1 Ph2 Ph3 Ph1 Ph2 Ph3

BAU 25 39 27 72 85 73 149 162 150 195 209 197

10% 26 31 26 67 73 68 137 142 137 178 184 179

20% 26 29 26 63 66 63 124 128 124 161 165 162

30% 25 28 26 58 60 58 112 114 112 144 147 144

Ambulatory care pathways (minutes) Isolation care pathways (minutes)

Pathway 1 Pathway 2 Pathway 1 Pathway 2

Ph1 Ph2 Ph3 Ph1 Ph2 Ph3 Ph1 Ph2 Ph3 Ph1 Ph2 Ph3

BAU 72 166 85 196 290 208 42 42 42 101 101 102

10% 67 93 72 179 204 183 42 42 42 95 95 96

20% 63 72 64 162 171 163 42 42 42 90 89 90

30% 58 63 58 145 149 145 42 42 42 84 83 84

https://doi.org/10.1371/journal.pone.0244097.t004
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from a systems thinking perspective to explicitly account for the problem’s dynamic complex-

ity caused by a web of interrelated influencing factors [48]. More specifically, we used SD to

map and simulate the interrelations among variables affecting and affected by ED crowding.

The resulting simulation model helps to better understand the dynamic nature of this phe-

nomenon and it can serve as an effective decision support system because of its capability to

test policy proposals in silico. This has the pivotal advantage that ED mangers can experiment

with policy proposals and study their consequences in a risk-free environment.

Given the current arrival pattern of patients and the configuration of the hospital-based ED

in Singapore, a patient seeking emergency care, with the exception of a few periods of the day,

is highly probable to receive care within the target time of 4 hours if triaged to the critical care

or ambulatory care units or within 4.5 hours if triaged to the isolation care unit. As expected,

the longer the care pathway of the patient (which includes consultation, laboratory, and obser-

vation), irrespective of the care venue, the larger the ALOS. Patients triaged to the critical care

unit have the shortest ALOS compared to ambulatory and isolation care patients. Policies that

focus on decanting P4 and P3 patients to a GP clinic co-located within the ED are more likely

to reduce the ALOS of ambulatory patients, since all the P4 and P3 patients are triaged to the

ambulatory care unit. Likewise, a policy that increases the efficiency of patient transfer from

the observatory ward in the ED to the hospital ward, as well as decreasing the waiting time of

laboratory investigation is more likely to reduce the ALOS of patients whose care pathway

includes the observation ward and laboratory investigations.

The observed results can be explained by the interaction between the implemented policies

(i.e., co-location policy, optimal allocation of doctor’s policy, and observation ward and labora-

tory policy) and available ED capacity. For example, as patients are decanted to GP clinics on

arrival at the ED, the share of patients triaged for emergency care decreases; therefore, waiting

time for consultation will decrease resulting in a drop in ALOS. The decline in consultation

waiting time is due to the fall in the number of patients waiting for consultation. Thus, avail-

able resources (ED doctors) are able to care for fewer patients demanding ED services. In addi-

tion, raising the number of ED doctors (via the optimal allocation policy) increases the

resources (ED doctors) available to provide care, hence a reduction in ALOS as consultation

waiting time declines. Lastly, an efficient transfer of patients from the observation ward to the

acute hospital wards, as well as reduction of waiting time for laboratory and investigation is

expected to decrease the ALOS of patients whose pathway includes the observation ward and

laboratory and investigation. These policies were implemented based on the identification of

ED bottlenecks—waiting time for consultation, laboratory and investigation waiting time and

observation ward waiting time. These were identified as bottlenecks due to the significant time

patients spend in these venues, thus increasing the ALOS of ED patients.

6.2. Main findings of this study

Ambulatory care patients with priority 3 and 4 make up the lion’s share of all attending

patients in our ED under study. On average, 55% of all patients are triaged to the ambulatory

care area. Consequently, even a small reduction in the number of incoming patients into the

ambulatory care area has a significant impact on waiting times and ALOS. This key finding

has policy implications. Overall, the finding suggests that a comprehensive ED system that

anticipates inappropriate self-referral of patients and makes provisions for such patients—by

transferring such patients to a GP clinic in the ED—is more likely to triage only appropriate

ED patients for emergency care, thus reducing the pressure on available ED resources. The les-

son from this finding is that, there is a significant proportion of ED patients who inappropri-

ately self-refer to the ED. Policymakers should anticipate that behavior and either provide GP
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care co-located at the ED or incentive non-emergency patients—by reducing the out-of-

pocket-cost—to seek GP care first before coming to the ED.

In Singapore, a pilot intervention called GP first, which incentivizes patients with less seri-

ous conditions to see their GP first before going to the ED was shown to reduce the number of

non-emergency patients seeking care at the ED. In addition, EDs should be incentivized (by

sharing savings from non-emergency patients triaged to co-located GPs) to triage patients

accurately—to prevent up-coding where patients are assigned to higher severity than the actual

condition to justify their use of ED services—and to ensure that patients are right-sited for

care, that is, patients receive care at the appropriate venue with the lowest cost. The implication

of this finding is that if EDs are inappropriately incentivized referring to the triage function,

e.g., punished for providing ED care to non-emergency patients (P4), the EDs are likely to up-

code non-emergency patients preventing the opportunity to improve care efficiency and

reduce cost. Lastly, it is important to emphasis that, a sustainable approach to reduce ED

crowding will require a well-functioning enhanced primary care system that improves health

outcomes of the population and significantly lessens ED care demand among non-emergency

patients. This is vital for countries with an aging population where demand for healthcare ser-

vices is expected to increase. If the primary care system is not strengthened to provide appro-

priate care for the elderly population with multiple chronic diseases, inappropriate demand for

ED care is expected to increase with its consequences of ED crowding.

Given that the main bottlenecks in most EDs are significant waiting times for consultation,

laboratory investigation, and for hospital admission (mostly through the observation ward), it

is important to ensure that proactive and innovative interventions are explored to reduce wait-

ing times in these locations of ED care. Interventions that focus on the optimal allocation of

ED doctors (typically increasing their numbers) should be explored to reduce consultation

waiting time. In addition, efficient operating systems that ensure speedy transfer of patients

from the observation ward in the ED to hospital wards should be implemented. For instance,

interventions that focus on (i) categorization of wards to medical specialty; (ii) instituting a no

reject policy; and (iii) performing ward level audits have been shown to improve waiting time

for hospital admission [49].

6.3. Limitations of this study

The model presented here has some limitations. First, the use of an SD modeling approach for

modeling ED patient flows introduces patient mixing that makes it difficult to track each

patient individually; however, there are other modeling forms—such as agent-based modeling

(ABM)—that focus on simulating the actions and interactions of autonomous agents that

address this limitation. Patient mixing and the assumption that patients triaged into the same

category have similar characteristics is an oversimplification that may affect the results. Sec-

ond, transfer of patients to other hospitals—which was not relevant in our case—was not

included in the model; whereas the likely impact of nurses and other allied health workers on

waiting time was not included. Third, modeling results are reported as single values (ALOS)

without an indication of the statistical uncertainty for the different venues of care and time

phases. This could be improved by deriving confidence intervals for the modeling results

through Monte Carlo simulation. Despite these limitations, the model presented herein

remains useful for policymakers to test and evaluate innovative policies. For instance, the

model could be used as an exploratory tool to search for high-leverage policies and to evaluate

the likely impact of alternative policies on specific outcomes of interest. In addition, the model

could help policymakers to design and communicate policy insights to stakeholders to build

consensus and inform policy implementation.
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7. Conclusions

This paper provides a detailed simulation model structure of patients’ flows in a hospital-based

ED in Singapore allowing for the exploration and evaluation of policies. The insights generated

from the policy experiments suggest that to reduce ED crowding an enhanced primary care

system is required. A strengthened primary care system has the potential to improve health

outcomes of the population and, as a consequence, to reduce the demand for non-emergency

care at the ED.

In view of this result, policymakers should design a cost-effective way to enhance primary

care, co-locate GP clinics in all EDs to decant non-emergency patients seeking care at the ED,

as well as incentivize all EDs to accurately triage patients and to send patients to the appropri-

ate venues for care.

Supporting information

S1 Table. Summary table of input parameters.

(DOCX)

S2 Table. Variable list with full names and abbreviations.

(DOCX)

S1 Fig. Average length of stay (ALOS) for ED patients depending on care venue, patient

pathway, arrival time for co-location policy where 10%-30% of P4 and P3 patients are

decanted from the ED to a GP clinic co-located at the ED.

(DOCX)

S2 Fig. Average length of stay (ALOS) for ED patients depending on care venue, patient

pathway, arrival time for optimal allocation of doctor’s policy where the current ED doc-

tors allocated are increased from 10%-30%.

(DOCX)

S3 Fig. Average length of stay (ALSO) for ED patients depending on care venue, patient

pathway, arrival time for observation ward and laboratory waiting time policy where wait-

ing times at the observation ward, and laboratory are reduced by 10%-30%.

(DOCX)

S4 Fig. Average length of stay (ALOS) for ED patients depending on care venue, patient

pathway, arrival time for combined interventions policy where all the interventions—i.e.

co-location, optimal allocation of doctors, and observation ward and laboratory—are

implemented simultaneously.

(DOCX)

Author Contributions

Conceptualization: John Pastor Ansah, Salman Ahmad, Yuzeng Shen, Marcus Eng Hock

Ong, David Bruce Matchar, Lukas Schoenenberger.

Data curation: John Pastor Ansah, Salman Ahmad, Lin Hui Lee, Yuzeng Shen, Marcus Eng

Hock Ong, Lukas Schoenenberger.

Formal analysis: John Pastor Ansah, Salman Ahmad, Lin Hui Lee, Yuzeng Shen, Lukas

Schoenenberger.

Investigation: John Pastor Ansah, Yuzeng Shen, Marcus Eng Hock Ong, Lukas

Schoenenberger.

PLOS ONE Modeling emergency department crowding

PLOS ONE | https://doi.org/10.1371/journal.pone.0244097 January 12, 2021 30 / 33

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0244097.s001
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0244097.s002
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0244097.s003
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0244097.s004
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0244097.s005
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0244097.s006
https://doi.org/10.1371/journal.pone.0244097


Methodology: John Pastor Ansah, Salman Ahmad, Lin Hui Lee, Yuzeng Shen, Marcus Eng

Hock Ong, David Bruce Matchar, Lukas Schoenenberger.

Project administration: Yuzeng Shen, Marcus Eng Hock Ong, David Bruce Matchar, Lukas

Schoenenberger.

Resources: Yuzeng Shen.

Software: John Pastor Ansah, Lin Hui Lee.

Supervision: John Pastor Ansah, Marcus Eng Hock Ong, Lukas Schoenenberger.

Validation: Marcus Eng Hock Ong, Lukas Schoenenberger.

Visualization: John Pastor Ansah, Salman Ahmad, Lukas Schoenenberger.

Writing – original draft: John Pastor Ansah, Salman Ahmad, Lin Hui Lee, David Bruce

Matchar, Lukas Schoenenberger.

Writing – review & editing: John Pastor Ansah, Salman Ahmad, Yuzeng Shen, Marcus Eng

Hock Ong, David Bruce Matchar, Lukas Schoenenberger.

References
1. Di Somma S, Paladino L, Vaughan L, Lalle I, Magrini L, Magnanti M. Overcrowding in emergency

department: an international issue. Intern Emerg Med. 2015; 10:171–5. https://doi.org/10.1007/

s11739-014-1154-8 PMID: 25446540.

2. Hsia RY, Asch SM, Weiss RE, Zingmond D, Liang L-J, Han W, et al. Hospital determinants of emer-

gency department left without being seen rates. Ann Emerg Med. 2011; 58:24–32.e3. https://doi.org/

10.1016/j.annemergmed.2011.01.009 PMID: 21334761.

3. Schoenenberger LK, Bayer S, Ansah JP, Matchar DB, Mohanavalli RL, Lam SS, et al. Emergency

department crowding in Singapore: Insights from a systems thinking approach. SAGE Open Med.

2016; 4:2050312116671953. https://doi.org/10.1177/2050312116671953 PMID: 27757231.

4. Asplin BR, Magid DJ, Rhodes KV, Solberg LI, Lurie N, Camargo CA. A conceptual model of emergency

department crowding. Ann Emerg Med. 2003; 42:173–80. https://doi.org/10.1067/mem.2003.302

PMID: 12883504.

5. Hoot NR, Aronsky D. Systematic Review of Emergency Department Crowding: Causes, Effects, and

Solutions. Ann Emerg Med. 2008; 52:126. https://doi.org/10.1016/j.annemergmed.2008.03.014 PMID:

18433933

6. Higginson I, Boyle A, Ahmad S, Macnamara A, Wilson R, Williamson D. Tackling Emergency Depart-

ment Crowding. Service Design and Delivery. London; 2015.

7. Krochmal P, Riley TA. Increased health care costs associated with ED overcrowding. Am J Emerg Med.

1994; 12:265–6. https://doi.org/10.1016/0735-6757(94)90135-x PMID: 8179727

8. Sun BC, Hsia RY, Weiss RE, Zingmond D, Liang L-J, Han W, et al. Effect of emergency department

crowding on outcomes of admitted patients. Ann Emerg Med. 2013; 61:605–611.e6. https://doi.org/10.

1016/j.annemergmed.2012.10.026 PMID: 23218508.

9. Bernstein SL, Aronsky D, Duseja R, Epstein S, Handel D, Hwang U, et al. The effect of emergency

department crowding on clinically oriented outcomes. Acad Emerg Med. 2009; 16:1–10. https://doi.org/

10.1111/j.1553-2712.2008.00295.x PMID: 19007346.

10. Trzeciak S, Rivers EP. Emergency department overcrowding in the United States: an emerging threat

to patient safety and public health. Emerg Med J. 2003; 20:402–5. https://doi.org/10.1136/emj.20.5.

402 PMID: 12954674.

11. Abo-Hamad W, Arisha A. Simulation-based framework to improve patient experience in an emergency

department. European Journal of Operational Research. 2013; 224:154–66. https://doi.org/10.1016/j.

ejor.2012.07.028

12. Rashwan W, Abo-Hamad W, Arisha A. A system dynamics view of the acute bed blockage problem in

the Irish healthcare system. European Journal of Operational Research. 2015; 247:276–93. https://doi.

org/10.1016/j.ejor.2015.05.043

PLOS ONE Modeling emergency department crowding

PLOS ONE | https://doi.org/10.1371/journal.pone.0244097 January 12, 2021 31 / 33

https://doi.org/10.1007/s11739-014-1154-8
https://doi.org/10.1007/s11739-014-1154-8
http://www.ncbi.nlm.nih.gov/pubmed/25446540
https://doi.org/10.1016/j.annemergmed.2011.01.009
https://doi.org/10.1016/j.annemergmed.2011.01.009
http://www.ncbi.nlm.nih.gov/pubmed/21334761
https://doi.org/10.1177/2050312116671953
http://www.ncbi.nlm.nih.gov/pubmed/27757231
https://doi.org/10.1067/mem.2003.302
http://www.ncbi.nlm.nih.gov/pubmed/12883504
https://doi.org/10.1016/j.annemergmed.2008.03.014
http://www.ncbi.nlm.nih.gov/pubmed/18433933
https://doi.org/10.1016/0735-6757%2894%2990135-x
http://www.ncbi.nlm.nih.gov/pubmed/8179727
https://doi.org/10.1016/j.annemergmed.2012.10.026
https://doi.org/10.1016/j.annemergmed.2012.10.026
http://www.ncbi.nlm.nih.gov/pubmed/23218508
https://doi.org/10.1111/j.1553-2712.2008.00295.x
https://doi.org/10.1111/j.1553-2712.2008.00295.x
http://www.ncbi.nlm.nih.gov/pubmed/19007346
https://doi.org/10.1136/emj.20.5.402
https://doi.org/10.1136/emj.20.5.402
http://www.ncbi.nlm.nih.gov/pubmed/12954674
https://doi.org/10.1016/j.ejor.2012.07.028
https://doi.org/10.1016/j.ejor.2012.07.028
https://doi.org/10.1016/j.ejor.2015.05.043
https://doi.org/10.1016/j.ejor.2015.05.043
https://doi.org/10.1371/journal.pone.0244097


13. Ramirez-Nafarrate A, Baykal Hafizoglu A, Gel ES, Fowler JW. Optimal control policies for ambulance

diversion. European Journal of Operational Research. 2014; 236:298–312. https://doi.org/10.1016/j.

ejor.2013.11.018

14. State of Emergency Medical Care in Singapore Workgroup. State of Emergency Medical Care in Singa-

pore. Addressing Challenges and Charting Directions. Singapore: College of Emergency Physicians,

Academy of Medicine, Singapore and Society for Emergency Medicine in Singapore; 2015.

15. Yang KK, Lam SSW, Low JMW, Ong MEH. Managing emergency department crowding through

improved triaging and resource allocation. Operations Research for Health Care. 2016; 10:13–22.

https://doi.org/10.1016/j.orhc.2016.05.001

16. Yearbook of Statistics Singapore 2017. Singapore; 2017.

17. Ong MEH, Ho KK, Tan TP, Koh SK, Almuthar Z, Overton J, et al. Using demand analysis and system

status management for predicting ED attendances and rostering. Am J Emerg Med. 2009; 27:16–22.

https://doi.org/10.1016/j.ajem.2008.01.032 PMID: 19041529.

18. Counselman FL, Marco CA, Patrick VC, McKenzie DA, Monck L, Blum FC, et al. A study of the work-

force in emergency medicine: 2007. Am J Emerg Med. 2009; 27:691–700. https://doi.org/10.1016/j.

ajem.2009.05.014 PMID: 19751626.

19. Storrow AB, Zhou C, Gaddis G, Han JH, Miller K, Klubert D, et al. Decreasing lab turnaround time

improves emergency department throughput and decreases emergency medical services diversion: a

simulation model. Acad Emerg Med. 2008; 15:1130–5. https://doi.org/10.1111/j.1553-2712.2008.

00181.x PMID: 18638034.

20. Wong HJ, Wu RC, Caesar M, Abrams H, Morra D. Smoothing inpatient discharges decreases emer-

gency department congestion: a system dynamics simulation model. Emerg Med J. 2010; 27:593–8.

https://doi.org/10.1136/emj.2009.078543 PMID: 20466834.

21. Lane DC, Monefeldt C, Rosenhead JV. Looking in the wrong place for healthcare improvements: A sys-

tem dynamics study of an accident and emergency department. Journal of the Operational Research

Society. 2000; 51:518–31. https://doi.org/10.1057/palgrave.jors.2600892

22. Vanderby S, Carter MW. An evaluation of the applicability of system dynamics to patient flow modelling.

Journal of the Operational Research Society. 2010; 61:1572–81. https://doi.org/10.1057/jors.2009.150

23. Lattimer V, Brailsford S, Turnbull J, Tarnaras P, Smith H, George S, et al. Reviewing emergency care

systems I: insights from system dynamics modelling. Emerg Med J. 2004; 21:685–91. https://doi.org/

10.1136/emj.2002.003673 PMID: 15496694.

24. Brailsford SC, Lattimer VA, Tarnaras P, Turnbull JC. Emergency and on-demand health care: modelling

a large complex system. Journal of the Operational Research Society. 2004; 55:34–42. https://doi.org/

10.1057/palgrave.jors.2601667

25. Salmon A, Rachuba S, Briscoe S, Pitt M. A structured literature review of simulation modelling applied

to Emergency Departments: Current patterns and emerging trends. Operations Research for Health

Care. 2018; 19:1–13. https://doi.org/10.1016/j.orhc.2018.01.001

26. Lane DC, Smart C. Reinterpreting ‘generic structure’: Evolution, application and limitations of a concept.

Syst Dyn Rev. 1996; 12:87–120. https://doi.org/10.1002/(SICI)1099-1727(199622)12:2<87::AID-

SDR98>3.0.CO;2-S

27. Mohiuddin S, Busby J, Savović J, Richards A, Northstone K, Hollingworth W, et al. Patient flow within

UK emergency departments: a systematic review of the use of computer simulation modelling methods.

BMJ Open. 2017; 7:e015007. https://doi.org/10.1136/bmjopen-2016-015007 PMID: 28487459.

28. Brailsford SC, Hilton N. A Comparison of Discrete Event Simulation and System Dynamics for Modelling

Healthcare Systems. In: Riley J, editor. Planning for the Future. Health Service Quality and Emergency

Accessibility. Operational Research Applied to Health Services (ORAHS). 2001.

29. Richardson GP. System Dynamics. In: Gass S, Harris C, editors. Encyclopedia of Operations Research

and Information Science. Kluwer Academic Publishers; 1999/2011.

30. Ansah JP, Matchar DB, Koh V, Schoenenberger L. Mapping the Dynamic Complexity of Chronic Dis-

ease Care in Singapore: Using Group Model Building in Knowledge Elicitation. Syst Res. 2018;

35:759–75. https://doi.org/10.1002/sres.2517

31. Torres JP, Kunc M, O’Brien F. Supporting strategy using system dynamics. European Journal of Opera-

tional Research. 2017; 260:1081–94. https://doi.org/10.1016/j.ejor.2017.01.018

32. Morecroft JDW. System dynamics and microworlds for policymakers. European Journal of Operational

Research. 1988; 35:301–20. https://doi.org/10.1016/0377-2217(88)90221-4

33. Vennix Jac A. M. Group Model Building: Facilitating Team Learning Using System Dynamics. Chiches-

ter: John Wiley; 1996.

PLOS ONE Modeling emergency department crowding

PLOS ONE | https://doi.org/10.1371/journal.pone.0244097 January 12, 2021 32 / 33

https://doi.org/10.1016/j.ejor.2013.11.018
https://doi.org/10.1016/j.ejor.2013.11.018
https://doi.org/10.1016/j.orhc.2016.05.001
https://doi.org/10.1016/j.ajem.2008.01.032
http://www.ncbi.nlm.nih.gov/pubmed/19041529
https://doi.org/10.1016/j.ajem.2009.05.014
https://doi.org/10.1016/j.ajem.2009.05.014
http://www.ncbi.nlm.nih.gov/pubmed/19751626
https://doi.org/10.1111/j.1553-2712.2008.00181.x
https://doi.org/10.1111/j.1553-2712.2008.00181.x
http://www.ncbi.nlm.nih.gov/pubmed/18638034
https://doi.org/10.1136/emj.2009.078543
http://www.ncbi.nlm.nih.gov/pubmed/20466834
https://doi.org/10.1057/palgrave.jors.2600892
https://doi.org/10.1057/jors.2009.150
https://doi.org/10.1136/emj.2002.003673
https://doi.org/10.1136/emj.2002.003673
http://www.ncbi.nlm.nih.gov/pubmed/15496694
https://doi.org/10.1057/palgrave.jors.2601667
https://doi.org/10.1057/palgrave.jors.2601667
https://doi.org/10.1016/j.orhc.2018.01.001
https://doi.org/10.1002/%28SICI%291099-1727%28199622%2912%3A2%26lt%3B87%3A%3AAID-SDR98%26gt%3B3.0.CO%3B2-S
https://doi.org/10.1002/%28SICI%291099-1727%28199622%2912%3A2%26lt%3B87%3A%3AAID-SDR98%26gt%3B3.0.CO%3B2-S
https://doi.org/10.1136/bmjopen-2016-015007
http://www.ncbi.nlm.nih.gov/pubmed/28487459
https://doi.org/10.1002/sres.2517
https://doi.org/10.1016/j.ejor.2017.01.018
https://doi.org/10.1016/0377-2217%2888%2990221-4
https://doi.org/10.1371/journal.pone.0244097


34. Tako AA, Kotiadis K. PartiSim: A multi-methodology framework to support facilitated simulation model-

ling in healthcare. European Journal of Operational Research. 2015; 244:555–64. https://doi.org/10.

1016/j.ejor.2015.01.046

35. Chua WLT, Quah LJJ, Shen Y, Zakaria D, Wan PW, Tan K, et al. Emergency department ’outbreak ros-

tering’ to meet challenges of COVID-19. Emerg Med J. 2020; 37:407–10. https://doi.org/10.1136/

emermed-2020-209614 PMID: 32467156.

36. Shen Y, Tay YC, Teo EWK, Liu N, Lam SW, Ong MEH. Association between the elderly frequent

attender to the emergency department and 30-day mortality: A retrospective study over 10 years. World

J Emerg Med. 2018; 9:20–5. https://doi.org/10.5847/wjem.j.1920-8642.2018.01.003 PMID: 29290891.

37. Ong MEH, Ooi SBS, Manning PG. A review of 2,517 childhood injuries seen in a Singapore emergency

department in 1999—mechanisms and injury prevention suggestions. Singapore Med J. 2003; 44:12–

9. PMID: 12762558

38. Kuo Y-H, Rado O, Lupia B, Leung JMY, Graham CA. Improving the efficiency of a hospital emergency

department: a simulation study with indirectly imputed service-time distributions. Flex Serv Manuf J.

2016; 28:120–47. https://doi.org/10.1007/s10696-014-9198-7

39. Barlas Y. Multiple tests for validation of system dynamics type of simulation models. European Journal

of Operational Research. 1989; 42:59–87. https://doi.org/10.1016/0377-2217(89)90059-3

40. Barlas Y. Formal aspects of model validity and validation in system dynamics. Syst Dyn Rev. 1996;

12:183–210. https://doi.org/10.1002/(SICI)1099-1727(199623)12:3<183::AID-SDR103>3.0.CO;2–4

41. Ansah JP, Korne D de, Bayer S, Pan C, Jayabaskar T, Matchar DB, et al. Future requirements for and

supply of ophthalmologists for an aging population in Singapore. Hum Resour Health. 2015; 13:86.

https://doi.org/10.1186/s12960-015-0085-4 PMID: 26578002.

42. Sterman J. Business dynamics. Systems thinking and modeling for a complex world. Maidenhead,

Berkshire: McGraw Hill Education; 2000.

43. Di Nola MF, Escapa M, Ansah JP. Modelling solid waste management solutions: The case of Campa-

nia, Italy. Waste Manag. 2018; 78:717–29. https://doi.org/10.1016/j.wasman.2018.06.006 PMID:

32559964.

44. Hwang U, McCarthy ML, Aronsky D, Asplin B, Crane PW, Craven CK, et al. Measures of crowding in

the emergency department: a systematic review. Acad Emerg Med. 2011; 18:527–38. https://doi.org/

10.1111/j.1553-2712.2011.01054.x PMID: 21569171.

45. Beniuk K, Boyle AA, Clarkson PJ. Emergency department crowding: prioritising quantified crowding

measures using a Delphi study. Emerg Med J. 2012; 29:868–71. https://doi.org/10.1136/emermed-

2011-200646 PMID: 22199142.

46. Vanbrabant L, Braekers K, Ramaekers K, van Nieuwenhuyse I. Simulation of emergency department

operations: A comprehensive review of KPIs and operational improvements. Computers & Industrial

Engineering. 2019; 131:356–81. https://doi.org/10.1016/j.cie.2019.03.025

47. Higginson I. Emergency department crowding. Emerg Med J. 2012; 29:437–43. https://doi.org/10.

1136/emermed-2011-200532 PMID: 22223713.

48. Derlet RW, Richards JR. Overcrowding in the nation’s emergency departments: Complex causes and

disturbing effects. Ann Emerg Med. 2000; 35:63–8. https://doi.org/10.1016/s0196-0644(00)70105-3

PMID: 10613941

49. Shen Y, Lee LH. Improving the wait time to admission by reducing bed rejections. BMJ Open Qual.

2019; 8:e000710. https://doi.org/10.1136/bmjoq-2019-000710 PMID: 31414061.

PLOS ONE Modeling emergency department crowding

PLOS ONE | https://doi.org/10.1371/journal.pone.0244097 January 12, 2021 33 / 33

https://doi.org/10.1016/j.ejor.2015.01.046
https://doi.org/10.1016/j.ejor.2015.01.046
https://doi.org/10.1136/emermed-2020-209614
https://doi.org/10.1136/emermed-2020-209614
http://www.ncbi.nlm.nih.gov/pubmed/32467156
https://doi.org/10.5847/wjem.j.1920-8642.2018.01.003
http://www.ncbi.nlm.nih.gov/pubmed/29290891
http://www.ncbi.nlm.nih.gov/pubmed/12762558
https://doi.org/10.1007/s10696-014-9198-7
https://doi.org/10.1016/0377-2217%2889%2990059-3
https://doi.org/10.1002/%28SICI%291099-1727%28199623%2912%3A3%26lt%3B183%3A%3AAID-SDR103%26gt%3B3.0.CO%3B2%26%23x2013%3B4
https://doi.org/10.1186/s12960-015-0085-4
http://www.ncbi.nlm.nih.gov/pubmed/26578002
https://doi.org/10.1016/j.wasman.2018.06.006
http://www.ncbi.nlm.nih.gov/pubmed/32559964
https://doi.org/10.1111/j.1553-2712.2011.01054.x
https://doi.org/10.1111/j.1553-2712.2011.01054.x
http://www.ncbi.nlm.nih.gov/pubmed/21569171
https://doi.org/10.1136/emermed-2011-200646
https://doi.org/10.1136/emermed-2011-200646
http://www.ncbi.nlm.nih.gov/pubmed/22199142
https://doi.org/10.1016/j.cie.2019.03.025
https://doi.org/10.1136/emermed-2011-200532
https://doi.org/10.1136/emermed-2011-200532
http://www.ncbi.nlm.nih.gov/pubmed/22223713
https://doi.org/10.1016/s0196-0644%2800%2970105-3
http://www.ncbi.nlm.nih.gov/pubmed/10613941
https://doi.org/10.1136/bmjoq-2019-000710
http://www.ncbi.nlm.nih.gov/pubmed/31414061
https://doi.org/10.1371/journal.pone.0244097

