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The mosquito species Aedes aegypti is the primary transmitter of viruses that cause
endemic diseases like dengue in Pakistan. It is also a cause of other vector-borne diseases
like yellow fever, Zika fever, and chikungunya, which significantly impact human health
worldwide. In the absence of efficient vaccines (except for yellow fever) or drugs, vector
control methods, such as the sterile insect technique (SIT), have been proposed as
additional tools for the management of these diseases. Mosquito SIT programs are based
on the release of sterile males and it is important female releases to be ideally zero or to be
kept at a minimum, since females are the ones that bite, blood-feed and transmit
pathogens. Recently, an Ae. aegypti genetic sexing strain (GSS), with and without a
recombination-suppressing inversion (Inv35), was developed using the eye color as a
selectable marker, with males having black eyes and females red eyes. In the present
study, we introgressed the sexing features and the Inv35 of the Ae. aegypti red-eye GSS
into the Pakistani genomic background aiming to their future use for SIT applications in the
country. Both introgressed strains, the Red-eye GSS-PAK and the Red-eye GSS/Inv35-
PAK, were evaluated in respect to their genetic stability and biological quality by assessing
parameters like recombination rate, fecundity, fertility, pupal and adult recovery, time of
development, pupal weight, survival, and flight ability in comparison with a wild Pakistani
population (PAK). The results suggest that the sexing features and the recombination
suppression properties of Inv35 were not affected after their introgression into the local
genomic background; however, some biological traits of the two newly constructed strains
were affected, positively or negatively, suggesting that a thorough quality control analysis
should be performed after the introgression of a GSS into a new genomic background prior
to its use in SIT field trials or applications. The importance of using GSS with local genomic
background for SIT applications against Aedes aegypti is also discussed.
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INTRODUCTION

Aedes aegypti mosquitoes are responsible for the transmission of
numerous viral infections among humans (Bhatt et al., 2013) in
particular considered as a major vector of viruses that are
responsible for diseases like dengue, chikungunya, Zika fever,
and yellow fever (Morrison et al., 2008; Souza-Neto et al., 2019). It
has spread over the world’s tropical and subtropical regions and
breeds in artificial containers within human environments to
have easy access to blood for feeding and almost no predators
(Brown et al., 2011).

Dengue, along with the other infections mentioned above, is
becoming a global public health concern due to its rapid
geographical spread in parallel (Guzman and Harris, 2015;
Kraemer et al., 2015). In Pakistan, dengue has also become more
common over recent decades and has been spreading at an
alarmingly high rate, with cases being reported from urban and
rural areas from different regions of the country (Khan et al., 2018).
Numerous factors like climatic changes, public unawareness,
inadequate surveillance, and insufficient funding have contributed
to frequent dengue outbreaks (Ahmad et al., 2017).

In addition to the reduction of dengue transmission, vector
control is also desirable to avoid nuisance and hypersensitivity/
allergies mediated by bites (Paris et al., 2011; Bowman et al.,
2016; Barrera et al., 2017). Presently, vector control mainly
depends on insecticides applied on mosquito larval habitats
and against adult mosquitoes indoors and during dengue
outbreaks. However, the selective pressure on populations
resulting in insecticide resistance has become an issue for
chemical control in several Ae. aegypti mosquito
populations worldwide. Furthermore, only a few new
insecticides have been commercialized for dengue vector
control (Vontas et al., 2012; Smith, 2016). In many
Pakistani field populations of dengue vectors, it is common
to find insecticide resistance at moderate to high levels, which
has been already reported as a leading future problem
regarding vector control (Khan et al., 2011; Arslan et al.,
2016). Particularly in urban areas, Ae. aegypti has been
reported to develop resistance against commonly used
insecticides (Jahan and Shahid, 2013).

As conventional control methods are not effective enough,
environmentally friendly and species-specific approaches such as
the sterile insect technique (SIT) are needed to control mosquito
vector populations (Bouyer and Lefrançois, 2014; Carvalho et al.,
2014; Lees et al., 2015; Bourtzis et al., 2016). SIT is an insect pest
control method which is based on the release of sterile males to
suppress, prevent the (re)introduction, contain or even locally
eradicate insect pest populations. SIT has been in use for decades
as an effective tool to suppress or even eliminate numerous insect
pests such as the New World screwworm, tsetse fly,
Mediterranean fruit fly etc. (Baumhover, 1966; Ciss et al.,
2019; Gutierrez et al., 2019; Dyck et al., 2021b).

SIT is a species-specific and environmentally friendly
method to control populations of insect pests and disease
vectors (Dyck et al., 2021a). In SIT, radiation sterilizes male
mosquitoes, which are released in the open environment to mate
with wild females, thus resulting in reduced fertile crosses and

subsequent population suppression (Dyck et al., 2021a). A
successful SIT mosquito release program’s primary obstacle is
eliminating or separating the females because, in this case, only
females bite and transmit the etiological agent. Therefore,
removing females prior to sterile males’ release is a strict
prerequisite (Gilles et al., 2014; Papathanos et al., 2018;
Lutrat et al., 2019).

Sex separation strategies currently available are time- and
labor-consuming, and highly prone to errors. Efficient and
robust sex separation methods are not yet fully available in
mass-rearing facilities (Gilles et al., 2014; Papathanos et al.,
2018; Zacarés et al., 2018; Lutrat et al., 2019; Zheng et al., 2019;
Crawford et al., 2020). In addition, genetic and molecular-based
approaches can be exploited for the development of more
convenient, reliable, efficient and cost-effective methods for
mosquito sex separation at a mass-rearing scale (Gilles et al.,
2014; Papathanos et al., 2018; Lutrat et al., 2019). For example,
genetic sexing strains (GSS) with phenotypic markers to
distinguish male from female mosquitoes may prove useful.
An excellent example of GSS developed and reared in mass
rearing facilities worldwide for SIT purposes are the VIENNA 7
and VIENNA 8 GSS of the Mediterranean fruit fly Ceratitis
capitata, which are based on a color and a thermal lethality
mutation linked to the sex (Augustinos et al., 2017; Franz et al.,
2021).

Recently, such a GSS for Ae. aegypti was developed through
classical genetics by exploiting the red-eye mutation (re) as a
phenotypical marker, resulting in females with red eyes and
males with black eyes through all the developmental stages
(Koskinioti et al., 2021). However, this strain still had
recombinants, which would compromise the genetic stability
and the GSS efficiency. A radiation-induced chromosomal
inversion (Inv35) was then introduced as a recombination
suppressor to enhance its genetic stability (Augustinos et al.,
2020). Through laboratory-scale quality control tests, it was
evident that the strain exhibited sufficient biological quality to
be considered as a candidate for Ae. aegypti SIT programs
(Koskinioti et al., 2021). In a subsequent study it was shown
that the recombination frequency in the GSS strains, with and
without the inversion, is not affected if the red-eye mutation and
the Inv35 are introduced to six different genomic backgrounds,
Brazil, Indonesia, Mexico, Sri Lanka, Singapore, and Thailand
(Augustinos et al., 2022).

However, it is known that the background genotype
contributes significantly to the biological quality and the
performance of insect strains aimed for releases especially in
terms of mating success (Quintero-Fong et al., 2016; Carvalho
et al., 2020; Leftwich et al., 2021). Laboratory reared insects
differ from wild ones due to combined effects of bottlenecking,
high inbreeding, selection for artificial rearing, and genetic
variation. In the present study, we introgressed the red-eye
mutation and the chromosomal inversion Inv35 into the
local (Pakistani) genomic background and the two new GSS
developed, Red-eye GSS-PAK and the Red-eye GSS/Inv35-PAK
were evaluated in respect to their genetic stability, biological
quality, and their potential to be used for SIT applications
against Ae. aegypti populations in Pakistan.
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MATERIALS AND METHODS

Aedes aegypti Strains and Rearing
Conditions
The Rexville red eye mutant strain used in the present study is a
long-domesticated laboratory strain (kindly provided by Dr.
Margareth Capurro at the Department of Parasitology,
University of Sao Paulo, Brazil) and had previously been used
in other studies including the construction of the Ae. aegypti red-
eye GSS (Costa-da-Silva et al., 2017; Augustinos et al., 2020,
2022). The color of both compound and simple eye of this strain
remains red throughout development. The chromosomal
inversion (Inv35) was induced through irradiation, and it is
known to suppress recombination between the red eye and M
loci (Augustinos et al., 2020; Koskinioti et al., 2021). PAK is a
recently domesticated strain from mosquitoes collected from
Northern areas of Pakistan’s KP Province and was used as a
source of the local genomic background. The introgression of the
red eye mutation and Inv35 was performed as described
previously (Augustinos et al., 2022), consisted of a series of
backcrosses and was expected to result into two new GSS,
Red-eye GSS-PAK and the Red-eye GSS/Inv35-PAK with
~98.8 and ~98% PAK genetic background, respectively. The
two new GSS were evaluated for their genetic stability until
the seventh generation while their biological quality was
assessed at the third generation in the present study.

All strains were kept under standard rearing conditions (FAO-
IAEA, 2017). More specifically, mosquitoes were maintained in
the insectary of the Insect Pest Control Laboratory of the Joint
FAO/IAEA Centre of Nuclear Techniques in Food and
Agriculture, Seibersdorf, Austria, at 27 ± 1°C, 80% RH, and a
photoperiod of 12/12 h day/night, including 1 h of twilight.
Females of all strains were blood-fed for 20 min, two times per
day for two consecutive days per week, using collagen casing with
porcine blood. In addition, 10% sugar solution was provided
continuously in 30 × 30 × 30 cm adult plastic cages (BugDorm-1,
MegaView Science Co., Taiwan). Eggs were collected by keeping
moistened white filter paper in urine cups half-filled with water at
least 72 h after blood feeding.

Genetic Stability
In each generation, after sorting pupae in glass pupal sorter, a
minimum of 1,000 male and female pupae were screened under a
common stereomicroscope. Both expected and recombinant
genotypes were counted separately in male and female pupae
by observing the genital lobe and the eye color. Data was recorded
in the appropriate spreadsheet for each generation. For strains
maintained under filtering, males with red eyes and females with
black eyes (recombinants) were counted and removed from the
colonies (Koskinioti et al., 2021). For non-filtered colonies, and
following counting recombinants, all insects were transferred in
the same cage to set up the next generation.

Biological Quality
Red-eye GSS-PAK and Red-eye GSS/Inv35-PAK, both at the
third generation, were compared with a recently domesticated

PAK strain in respect to the following biological quality
parameters:

Fecundity
For each strain, 50 newly emerged males and an equal number of
females were released together in a plastic rearing cage
(BugDorm-1 rearing cage 30 × 30 × 30 cm) and mated for
3–4 days. Pre-mated females were blood-fed twice per day for
20 min for two consecutive days to ensure full engorgement.
Three replicates of 10 fully fed females per small cage (BugDorm-
4S1515 with 15 × 15 × 15 cm) were performed for each strain.
Eggs were collected for the first two gonotrophic cycles. Dead
females (if any) were replaced by other gravid females of the same
age. Eggs were counted under a common stereomicroscope before
drying. The total number of eggs was divided by 10 to estimate the
average number of eggs per female per replicate.

Fertility
Eggs from the fecundity test of each replicate from both
gonotrophic cycles were hatched by placing egg papers in
airtight glass jars (500 ml), prepared in advance to have water
with low dissolved oxygen content (boiled water), and 2–4 drops
of larval diet were added to stimulate egg hatching. Jars prepared
in the morning were kept in an incubator for hatching at 27°C
until the next day (around 24 h). First instar larvae (L1) were
counted by aspirating with a 200 μl tip on the plastic pipette. The
percentage of hatching was recorded of all three strains.

Recovery Rates and Development Time
Pupal recovery and adult recovery were recorded by counting the
total number of pupae and adults respectively, deriving from the
total number of eggs. Development time was recorded by
counting the number of pupae of each sex collected for each
strain every 24 h. The duration of development was estimated
from egg hatching to pupation.

Pupal Weight
Ten female and 10male pupae per replicate were slightly air-dried
for 20 min by placing them on a towel paper, observing and
shaking the trays until they are not clustered. Batches of 10 pupae
each were weighed to calculate the average pupal weight. In total,
five replicates were counted for each strain per sex.

Survival Rate
Fifty newly emerged males and females per replicate per strain
were kept in small cages BugDorm-4S1515 (15 × 15 × 15 cm).
Each cage was provided with 10% sucrose solution. Dead
mosquitoes were counted and removed daily. At the end of
a 33-day period, dead mosquitoes were counted and subtracted
from the total number of adults released to estimate the
average survival rate. Three replicates were made per sex
per strain.

Flight Ability
Approximately one hundred 4–5 days old adult males of each
strain per replicate were tested in a Flight Test Device (FTD) as
described previously (Culbert et al., 2018). Three replicates per
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strain were performed. After 2 h from the release time,
successful fliers were aspirated from the outer part of the
FTD and were counted. Similarly, unsuccessful fliers trapped
in the glass tubes and the releasing arena were also counted. The
number of successful fliers out of the total number of adult
males released corresponded to the flight ability percentage.

Statistical Analysis
All statistical analysis was performed using R language
4.1.2—“Bird Hippie” (R Core Team, 2020) with RStudio
environment—version 2021.09.02 + 382 (RStudio Team,
2016). Normality was assessed by the data frequency
distribution and its point distribution of the quantile-quantile
plot, and it was then determined whether parametric or not. The
alpha < 0.05 was considered statistically significant for all
generalized linear models used for each parameter evaluated
with a multiple comparison of the mean using Tukey contrasts
as post hoc. The model has considered binomial distribution for
percentages Poisson distributions for counting, considering
logit and log their respective transformations. The box and
whiskers plot were used to demonstrate the full data distribution
representing the minimum, maximum, median, 1st and 3rd
quartiles. Parametric statistical comparisons were only
performed using multiple comparisons of means by
computing the contrast matrices of all comparisons obtained
by each generalized linear model. For survival analysis, the
Kaplan-Meier, Log-rank test, and the Cox proportional-
hazards model were used to distinguish differences and also
to obtain the survival curve plot using the survival package
(Therneau, 2020). Information about additional packages used
in the present study can be found in the supporting material
together with all statistical analysis (Supplementary Material
S1) and the original data used for all analysis (Supplementary
Material S2).

RESULTS

Genetic Stability
The genetic stability was assessed by recording the expected and
recombinant genotypes in the Red-eye GSS-PAK and the Red-eye
GSS/Inv35-PAK strains up to the seventh generation. In total,
10,211 Red-eye GSS-PAK and 8,479 Red-eye GSS/Inv35-PAK
individuals were screened and the recombination rate ranged
between 1.15–3.70% and 0.14–0.62%, respectively (Supplementary
Material S2). The results presented in Figure 1 confirm that the
presence of Inv35 significantly suppresses the recombination rate
(Df = 1, F = 25.73, p = 2.6−6) (Figure 1).

Biological Quality
Fecundity
The introduction of the red eye mutation and the inversion Inv35
into the Pakistani genomic background had a positive impact on the
fecundity, which was significantly increased in the first and the
second gonotrophic cycle in both GSS. The average fecundity of
the PAK strain was 31.97 and 21.60 eggs/female in the first and the
second gonotrophic cycle, respectively. On the contrary, the average
fecundity of the Red-eye GSS-PAK was 68.60 and 55.67 eggs/female
while that of the Red-eye GSS/Inv35-PAK was 74.27 and 60.80 eggs
per female in the first and the second gonotrophic cycle, respectively,
significantly higher than the values recorded for the PAK strain (Df =
2, F = 26.862, p = 0.00257—Figure 2). There was no statistically
significant difference in the fecundity between the Red-eye GSS-PAK
and Red-eye GSS/Inv35-PAK strains (z = −1.94 p = 0.127), while the
fecundity of both was higher than that of the PAK strain (z = 8.724
and 7.216 with p = < 1−4, for Red-eye GSS-PAK and Red-eye GSS/
Inv35-PAK respectively).

Fertility
Significant differences were observed among the three strains (PAK,
Red-eye GSS-PAK and Red-eye GSS/Inv35-PAK) in respect to the

FIGURE 1 | Recombination rate in Red-eye GSS-PAK and Red-eye
GSS/Inv35-PAK strains during seven generations. Lighter lines represent the
mean of the points, and the darker straight lines represent the GLM line for
each strain.

FIGURE 2 | Fecundity of the PAK, Red-eye GSS-PAK, and Red-eye
GSS/Inv35-PAK strains during the first and second gonotrophic cycle.
Significance symbols: “***” for p < 0.001, and “ns” for “not significant”.
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fertility (egg hatching) (Df = 2, F = 6.062, p = 0.00799—Figure 3).
The average egg hatching of the PAK strain was 75.24%, slightly
reduced in Red-eye GSS-PAK to 70.92% with no statistic difference
(z = −0.37, p = 0.92584), while more pronounced reduction was
observed in the Red-eye GSS/Inv35-PAK 48.04% (PAK: z =
−2.38 p = 0.04367, and Red-eye GSS-PAK: z = −3.12, p = 0.00487).

Pupal and Adult Recovery Rates
Statistically significant difference was observed among the
strains in respect to the pupal and adult recovery rates. The
average pupal and adult recovery were 72 and 70% in the wild
type PAK strain, 60 and 59% in the Red-eye GSS-PAK strain,

and 45 and 44% in the Red-eye GSS/Inv35-PAK strain,
respectively (Pupal: Df = 2, F = 11.18, p = 0.00125; Adult:
Df = 2, F = 9.434, p = 0.00254—Figure 4).

There was no statistically significant difference between the
PAK and Red-eye GSS-PAK strains in respect to these two
traits (z = −1.98 (pupal), p = 0.1167 and z = −1.72 (adult), p =
0.199). However, significant reduction was observed in both
pupal and adult recovery rates between the Red-eye GSS/
Inv35 and the other two strains (PAK: z = −4.56 (pupal) and
−4.18 (adult), both with p = 0.001, Red-eye GSS-PAK: z =
−2.46 (pupal), p = 0.0367 and −2.34 (adult), p = 0.05).
Statistically significant differences were also observed
among the three strains in respect to the pupal and adult
recovery rates of males and females of the PAK, Red-eye GSS-
PAK, and Red-eye GSS/Inv35-PAK strains (Df = 1, F = 136.72,
p = 8.83−7—Figure 5).

The average female and male pupal recovery rate were 35
and 37% for PAK, 23 and 42% for Red-eyes GSS-PAK, and 21
and 26% for Red-eyes GSS/Inv35-PAK, respectively. On the
other hand, the average female and male adult recovery rate
were 34 and 36% for PAK, 23 and 41% for Red-eyes GSS-PAK,
and 21 and 26% for Red-eyes GSS/Inv35-PAK. Statistical
analysis indicated significant difference in female pupal and
adult recovery rates between PAK and Red-eye GSS-PAK
(pupal: z = −2.98, p = 0.00787, and adult: z = −2.91, p =
0.00989), and between PAK and Red-eyes GSS/Inv35-PAK
strain (pupal: z = −3.48, p = 0.00146, and adult: z = −3.44, p =
0.00166), but not between Red-eye GSS-PAK and Red-eyes
GSS/Inv35-PAK (pupal: z = −0.55, p = 0.84643, and adult: z =
−0.524, p = 0.85959) (Figure 5) In respect to the male pupal
and adult recovery rates, the statistical analysis indicated no
differences between PAK and Red-eyes GSS-PAK (pupal: z =
1.46, p = 0.30929, and adult: z = 1.54, p = 0.2745); however,
there was difference between PAK and Red-eyes GSS/Inv35-
PAK (pupal: z = −3.27, p = 0.00315, and adult: z = −2.86,

FIGURE 3 | Fertility of the PAK, Red-eye GSS-PAK, and Red-eye GSS/
Inv35-PAK strains. Significance symbols: “***” for p < 0.001, “*” for p < 0.05,
“ns” for “not significant”.

FIGURE 4 | Pupal and adult recovery rate of the PAK, Red-eye GSS-
PAK, and Red-eye GSS/Inv35-PAK strains. Significance symbols: “***” for p <
0.001, “*” for p < 0.05, and “ns” for “not significant”.

FIGURE 5 | Pupal and adult recovery rate of males and females of the
PAK, Red-eye GSS-PAK, and Red-eye GSS/Inv35-PAK strains. Significance
symbols: “***” for p < 0.001, and “ns” for “not significant”.
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p = 0.0119) as well as between Red-eyes GSS-PAK and Red-
eyes GSS/Inv35-PAK (pupa: z = −4.62, p = 0.001, and adult: z
= −4.28, p = 0.001) (Figure 5).

There was no significant difference among the three strains on
the pupation rate of males and females (Df = 1, F = 0.314, p =
0.57951). The maximum pupation rate for males was on the sixth
day for all three strains. For females, the peak was observed on the
seventh day for PAK and Red-eye GSS-PAK and on the sixth day
for Red-eye GSS/Inv35-PAK (Figure 6).

Pupal Weight
No statistically significant differences were observed among the
strains in respect to the weight (Df = 2, F = 1.776, p = 0.962) but,
as expected, female pupae were heavier than male ones in all three
strains studied (Df = 1, F = 1,194, p = 2−16—Figure 7).

Survival Rate
Male survival rate of the Red-eye GSS-PAK and Red-eye GSS/
Inv35-PAK strains was significantly reduced compared to PAK
(Likelihood ratio test = 24.36, df = 2, P = 5−6—Figure 8A) while
no statistically significant difference was observed in female
survival rate (Likelihood ratio test = 0.7, df = 2, p =
0.7—Figure 8B) during the first 30 days period post
emergence. It should be noted, however, that more than 85%
of Red-eye GSS-PAK and Red-eye GSS/Inv35-PAK males were
alive after the end of the observation period.

Flight Ability
In respect to the flight ability, the statistical analysis presented
significant differences among the three strains (Df = 2, F =
11.74, p = 0.00844—Figure 9) with mean percentage of
successful flyers being 65, 73 and 82% for the PAK, Red-
eye GSS-PAK, and Red-eye GSS/Inv35-Pak strains. There was
no difference between the PAK and Red-eye GSS-PAK strains
(z = 2.04, p = 0.1016); however, there was significant
difference between PAK and Red-eye GSS/Inv35-Pak (z =
4.78, p = 0.001) as well as between Red-eye GSS-PAK and Red-
eye GSS/Inv35-Pak strains (z = 2.87, p = 0.0115).

DISCUSSION

Efficient, cost-effective, and safe SIT applications against
major vector mosquito species, such as Ae. aegypti and Ae.
albopictus, depend on efficient sex separation methods and the
release of sterile males. The removal of Aedes female
mosquitoes is needed because they bite, blood-feed and
transmit pathogens such as chikungunya, dengue, yellow
fever and ZIKA (Gilles et al., 2014; Papathanos et al., 2018;
Lutrat et al., 2019). Current small-scale SIT trials are being
carried out using local populations to minimize the risks
associated with the introduction of vector mosquitoes of
different origin (Bouyer et al., 2020; Carvalho et al., 2020;
WHO and IAEA, 2020). Indeed, releasing GSS males carrying
the local genomic background will enhance the efficiency of
SIT since their mating competitiveness is likely to be higher
than that of males of different origin. In addition, the SIT
application with local males is not expected to raise biosafety
and biosecurity concerns compared to a trial which would be
based on mosquitoes originated from a different geographical
region (Bouyer et al., 2020; WHO and IAEA, 2020; Augustinos
et al., 2022). In the present study, the red eyes mutation and
the inversion Inv35, which were used in the initial
construction of the Ae. aegypti Red-eye GSS and Red-eye
GSS/Inv35 strains (Augustinos et al., 2020; Koskinioti et al.,
2021), were introduced into the genomic background of a
wild-type PAK strain to assess their impact on their
genetic stability, biological quality, and potential for SIT
applications.

The genetic stability of GSS highly depends on
recombination phenomena, which usually occur in males
(Franz et al., 2021). Filtering systems and chromosomal
inversions have been proposed as tools for the suppression
of recombination and/or the removal of recombinants in order
to maintain the genetic integrity of GSS (Franz et al., 2021).
Unlike in fruit flies, genetic recombination occurs in both
males and females of Aedes species, and this can

FIGURE 6 | Pupation curve of males and females of the PAK, Red-eye
GSS-PAK, and Red-eye GSS/Inv35-PAK strains.

FIGURE 7 | Pupal weight of males and females of the PAK, Red-eye
GSS-PAK, and Red-eye GSS/Inv35-PAK strains. Significance symbol:
“ns”—not significative.
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significantly affect their stability, especially in the context of
preserving the colony’s genetic integrity under mass rearing
and female contamination in male-only releases for SIT
programs (Augustinos et al., 2020; Franz et al., 2021). In
our recently published studies, we reported the construction
of the red-eye GSS (Koskinioti et al., 2021) and the
introduction of Inv35 to suppress recombination
(Augustinos et al., 2020). However, the recombination rate
as well as the overall performance of a strain depends on
several factors, including genomic background (Ouda and
Wood, 1985; Augustinos et al., 2020, 2022; Carvalho et al.,
2020). Therefore, in the present study, we introgressed the red
eye mutation and the chromosomal inversion Inv35 in a wild
population from Pakistan to assess the impact of the local
genomic background on the genetic stability and the biological
quality of newly constructed strains under laboratory rearing
conditions.

As concerns the genetic stability, our results showed that
genetic recombination was significantly suppressed in the
presence of Inv35 and that the overall recombination rate in
the Red-eye GSS-PAK and Red-eye GSS/Inv35-PAK strains
was in the same range as described in the original strains, Red-
eye GSS and Red-eye GSS/Inv35, reported in our previous
study (Koskinioti et al., 2021). Taken together these data
suggest that the genomic background did not have a
significant impact on the genetic stability of the genetic
sexing strains and are in accordance with recently reported
recombination-suppressing properties of Inv35 (Augustinos
et al., 2022).

One of the most important requirements for a successful SIT
mosquito program is to mass produce and release high-quality
sterile males that can compete with wild males for mating wild
females (Bouyer and Vreysen, 2020; Parker et al., 2021). Quality
of males is essential to determine the number of males to be
released in the field, and high productivity, proper mating
behavior, high survival, and good flight ability are among the
desirable characters (Culbert et al., 2018; Parker et al., 2021). In
the present study, we also determined the impact of the local
Pakistani genomic background on the biological quality of the
Red-eye GSS-PAK and the Red-eye GSS/Inv35-PAK under
laboratory conditions by assessing parameters like fecundity,
fertility, pupa and adult recovery, time of development, pupal
weight, survival, and flight ability in comparison with the wild-
type PAK strain.

Our results showed that the introgression had a positive
impact on the fecundity of Red-eye GSS-PAK and Red-eye
GSS/Inv35-PAK strains in both the first and the second
gonotrophic cycle, similar to that reported for the originally
constructed Red-eye GSS (Koskinioti et al., 2021). However,
female pupal and adult recovery rate, and male survival rate
were negatively affected. A positive impact on the flight ability
of Red-eye GSS/Inv35-PAK males, compared to both PAK and
Red-eye GSS-PAK males, was observed which could be
attributed to heterozygote advantage. It is also important to
note that the fertility as well as the male pupal and adult

FIGURE 8 | Survival rate of males (A) and females (B) of the PAK, Red-eye GSS-PAK, and Red-eye GSS/Inv35-PAK strains during the first 33 days post-
emergence observation period.

FIGURE 9 | Flight ability of males of the PAK, Red-eye GSS-PAK, and
Red-eye GSS/Inv35-PAK strains. Significance symbols: “***” for p < 0.001, “*”
for p < 0.05, and “ns” for “not significant”.
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recovery rate was reduced in the Red-eye GSS/Inv35-PAK
strain. On the other hand, the introgression had no effect
on the pupation rate of males and females, and the pupal
weight. The latter observation is very important in case a novel
sex separation approach is developed based on both selectable
markers, pupal size and eye color, as recently suggested
(Koskinioti et al., 2021). In addition, it should be noted
that, although the flight ability is a good indicator for the
biological quality of males, proper evaluation of the male
mating competitiveness of the Red-eye GSS and Red-eye
GSS/Inv35 will be required prior to their use in any small-
or large-scale field applications.

CONCLUSION

Although the actual performance of a potential SIT strain can
only be assessed in open-field conditions, laboratory
characterization regarding genetic stability and biological
quality is of utmost importance prior to mass production and
releases of sterile males. Our present study studied biological
traits or parameters, such as genetic recombination, fecundity,
fertility, pupa and adult recovery, time of development, pupal
weight, survival, and flight ability of two newly constructed
introgressed strains Red-eye GSS-PAK and the Red-eye GSS/
Inv35-PAK in comparison to the wild-type PAK strain. The
results indicated that important biological quality parameters
such as fecundity, fertility, pupal and adult recovery rate, survival
rate, and flight ability, can be affected during the introgression
process of different factors, such as the red-eye mutation and
Inv35, into a new genomic background, which is in agreement
with previous reports (Carvalho et al., 2020). Interestingly, some
of these traits were affected in a sex specific manner. It is therefore
recommended that the transfer of the selectable marker (red eye)
and/or chromosomal inversion (Inv35) of the Ae. aegypti red eye
GSS into new genomic backgrounds for the construction of the
respective GSS should be accompanied by a thorough evaluation
of the genetic stability and biological quality prior to its use in SIT
applications in the field.
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