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Abstract: The objective of this study was the investigation of the effect of variable conditions on
quality parameters and the shelf life of fish during frozen storage. Three different fish products were
tested, i.e., gilthead sea bream (Sparus aurata) fillets, sea bass (Dicentrarchus labrax) fillets, and yellowfin
tuna (Thunnus albacares) slices stored in the range of −5 to −15 ◦C. The kinetic modeling of different
shelf-life indices was conducted. Sensory scoring of frozen fish showed high correlation with color
(L-value) and total volatile basic nitrogen (TVBN). The temperature dependence of the rates of quality
degradation was expressed via the activation energy values, calculated via the Arrhenius equation,
and ranged, for the tested quality indices, between 49 and 84 kJ/mol. The estimated kinetic parameters
were validated at dynamic conditions and their applicability in real conditions was established,
allowing for their practical application as tools for cold chain management.

Keywords: gilthead seabream; European sea bass; yellowfin tuna; kinetic study; predictive models;
Arrhenius; cold chain

1. Introduction

Freezing is considered one of the most effective fish preservation methods and has been applied
increasingly both on shore and on board fishing vessels. Although freezing results in significant
extension of shelf life of fish and fish products, sensory, chemical and physical changes of fish quality
occur during frozen storage [1]. The quality deterioration of frozen fish depends on extrinsic and
intrinsic factors. The determining extrinsic factors are the freezing speed, storage temperature and
the temperature fluctuations that often occur in the cold chain, oxygen penetration into the food
product, and the mode of thawing or heating of the product. Intrinsic factors are dependent on the
biochemical properties of fish and fish products. Enzyme content, the fatty acid profile of the lipid
fraction, and the presence of different metabolites, which may be precursors of undesirable components,
are responsible for several deteriorative processes [2]. As has long been established, important quality
modifications which take place during the frozen preservation of fish are chemical (due to action of
naturally occurring enzymes, oxidative and hydrolytic processes in the fats and oils, and denaturation
of proteins) and physical (ice crystal formation and desiccation or drying out of the flesh) [3].

When dealing with storage of frozen food, considerable emphasis has been placed on keeping a
constant temperature [4]. Temperature observations from recent surveys indicated that, despite good
practices, monitoring and control efforts, significant temperature fluctuations occur during distribution,
retail and domestic storage of frozen food products. Based on the profile temperatures of frozen
fish products, it has been reported that 40% of the total time are over the recommended temperature
of −18 ◦C, varying between −16 and −12 ◦C, and cases of temperatures above −8 ◦C are not rare
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occurrences in retail or domestic storage [5]. The quality degradation of frozen food products, albeit
relatively slow, are dependent on storage temperature. It becomes evident that temperature monitoring
and control within the cold chain is a prerequisite for effective quality management and optimization.
In current practice, this is usually handled by reporting on the packages of frozen food arbitrary
disclaimers, stating that if the food is stored always at −18 ◦C (which in practice rarely occurs), then the
expiry date is valid. However, at any other temperature, the food has a significantly shorter shelf life
(for example, 2 months for frozen shrimp stored at −8 ◦C compared to 25 months if stored at −18 ◦C) [6].

Since storage temperatures in the real cold chain vary, it is necessary to be able to estimate
reliably the effect of a known time-temperature scenario that may occur in the real frozen food supply
chain on the shelf life of the tested frozen food [7,8]. Despite the many years of research, only a few
methods have been employed for determining of quality attributes of frozen fish [2,9–17]. The systematic
monitoring and modeling of the temperature dependence would be an essential prerequisite for shelf-life
optimization and effective management of the cold chain [4,18,19], using conventional temperature
control and monitoring and intelligent packaging applications such as TTIs (Time Temperature
Integrators) [20–22]. Based on reliable kinetic and shelf-life models, the effect of temperature can be
monitored and quantitatively translated to food quality, from production to the point of consumption.
Such an experimental and systematic modeling approach, essential for effective cold chain management,
is lacking in the research literature for important commercial fish.

Gilthead sea bream (Sparus aurata) and European sea bass (Dicentrarhus labrax) are the two most
important cultured fish species in the Mediterranean area. Yellowfin tuna (Thunnus albacares) is
large pelagic fish, commercially important in the international market. The aim of the study was to
investigate and develop mathematical models that describe the effect of variable storage conditions
on shelf life and quality indices of frozen gilthead sea bream and sea bass fillets and yellowfin tuna
slices, and to comprehensively approach the issue of applicability of the developed models as effective
predictive tools for frozen chain monitoring and management.

2. Materials and Methods

2.1. Raw Material

Marine cultured gilthead sea bream (Sparus aurata) and sea bass (Dicentrarchus labrax) fillets
(90 ± 10 g) were provided by Nireus Aquaculture S.A. (Attica, Greece) in polystyrene boxes, maintained
at 0 ◦C with appropriate quantities of flaked ice, while transferred to the Laboratory of Food Chemistry
and Technology (NTUA) within 2–3 h after filleting. Upon receipt, fillets were individually vacuum
packed (Boss NT42N, Bad Homburg, Germany) and frozen at −30 ◦C (Whirlpool AFG 610 M-B chest
freezer with convection cooling, Italy). Yellowfin tuna (Thunnus albacares) slices (weight: 100 ± 10 g)
were individually packed under vacuum and air shipped to the Laboratory of Food Chemistry and
Technology of NTUA in polystyrene boxes, with an adequate quantity of dry ice, directly after slicing
and freezing at the fish processing location (CEFRICO, Vigo, Spain).

Vacuum packed, frozen fish samples were distributed and stored in controlled temperature
cabinets (Sanyo MIR 553, Sanyo Electric Co, Ora-Gun, Gunma, Japan) at isothermal conditions
(−5, −8, −12 and −15 ◦C). Measurements of selected quality parameters were carried out as a function
of time during a 14-month period, the obtained data were analyzed and adequate mathematical
models were developed. The selected quality indices, sampling frequency and duration of experiments
were based on literature review and preliminary experiments conducted on relevant frozen seafood
products. The frequency and duration of samplings was selected so as to obtain 5–10 measurements
(triplicate samples) during storage for each isothermal experiment [6].

In order to validate the applicability of the mathematical models obtained from the isothermal
experiments to the actual time-temperature conditions, a variable scenario (Var) was applied, which
consisted of repeated cycles of three successive temperature steps of −12 ◦C for 24 h, −5 ◦C for 36 h
and −8 ◦C for 24 h, in a temperature programmable control cabinet (Sanyo MIR 153, Sanyo Electric Co,
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Ova-Gun, Gunma, Japan). The time-temperature scenario was selected in order to simulate abuse cold
chain conditions of frozen storage [5,6]. Temperature in the incubators was constantly monitored with
electronic, programmable miniature data loggers (COX TRACER®, Belmont, NC, USA).

Measurements were carried out in appropriate time intervals which allow for efficient kinetic
analysis of the quality degradation of the tested samples. Before analysis, samples were thawed at
room conditions (temperature ranging between 20 and 23 ◦C) for 60 min, prior to the removal of the
external packaging of the samples. Samples were analyzed immediately after thawing.

In order to validate the models for shelf-life prediction during distribution in the real path of frozen
fish, a realistic distribution scenario in the current chill chain was simulated. It included an initial stage
of 25 days of storage in the packing plant, followed by transportation and storage in a distribution
center for 25 days. Subsequently, fish was kept at retail freezers for 50 days, before being purchased
by the final consumers that stored them in their domestic freezer for 50 days before consumption [5].
The extent of quality deterioration at the end of each distribution phase was estimated using the
validated shelf-life predictive models.

2.2. Color Measurement

Color parameters were measured based on CIELab values (L-value: lightness, a-value: redness
and greenness, b-value: yellowness and blueness), using the CR-Minolta Chromameter® (Minolta
Co., Chuo-Ku, Osaka, Japan) with a measuring diameter of 8 mm. The instrument was standardized
under the “C” illuminant condition according to the CIE (Commission International de l’ Eclairage)
using a standard white reference tile (calibration plate CR-200, L = 97.50, a = −0.31, b = −3.83).
At predetermined times of storage, according to the design, measurements were conducted for fish
flesh at two different points [19]. Color was measured on the internal part of fillets (flesh) for gilthead
seabream and sea bass. Each measurement was carried out on three independent specimens and the
average values were calculated.

2.3. Total Volatile Basic Nitrogen (TVBN) Determination

Fish freshness has been evaluated by the measurement of total volatile bases, expressed as Total
Volatile Basic Nitrogen (TVBN). Analysis of fish flesh was conducted on a single trichloroacetic acid
extraction, followed by nitrogen distillation in a Kjeldahl rapid distillation unit (Büchi 321 Distillation
unit, Flawwil, Switzerland) and titration with sulfuric acid [23]. Each measurement was carried out on
two independent specimens and the average values were calculated.

2.4. Sensory Analysis

The sensory attributes of thawed fish were evaluated in fish samples by a sensory panel of
8 trained evaluators. Fish fillets, individually wrapped in aluminum foil, were broiled at 180 ◦C for
30 min in a preheated oven. The taste of broiled fish was evaluated and sensory scores were recorded
in appropriate forms, reflecting the organoleptic evolution of quality deterioration. An acceptance
test was also organized. A rating was assigned separately for each parameter on a 1–9 scale (9 being
the highest quality score and 1 the lowest). A sensory score of 5 was taken as the average score of
minimum acceptability [24].

2.5. Microbiological Analysis

For the enumeration of microbial load (Total Viable Count, TVC) in fish samples during frozen
storage, a representative sample (25 g) was transferred to a sterile stomacher bag with 225 mL sterilized
Ringer (Merck Ringer Tablets in distilled water) and was homogenized for 60 s with a Stomacher
(BagMixer® interscience, Saint-Nom-la-Bretèch, France). A total of 0.1 mL of 10-fold serial dilutions
of fish homogenates was spread on the surface of the appropriate media (Plate Count Agar-PCA,
Merck, Darmstadt, Germany) in Petri dishes for the enumeration of TVC and incubated at 25 ◦C for



Foods 2020, 9, 1893 4 of 17

72 h. Microbial load was expressed as logCFU/g of fish. Each measurement was carried out on two
independent specimens and the average values were calculated.

2.6. Data Analysis

In order to evaluate the quality changes of frozen fish during storage, the “apparent kinetics”
methodological approach was used. This methodology included two main successive calculations [25,26]:

(a) A primary kinetic model, where values obtained from the different measured quality parameters
were plotted vs. time for all the tested storage temperatures. The apparent order of quality loss
was estimated, based on the least square statistical fit.

(b) A secondary model, which reflects the effect of storage temperature on the parameters of the
primary model. The temperature dependence of the deterioration rate constants, k, was modeled
by the Arrhenius Equation (1)

ln k = ln kre f −

(Ea

R

)[ 1
T
−

1
Tre f

]
(1)

where kref (in d−1) is the rate constant of the degradation of the respective quality index at a reference
temperature, Tref (e.g., −18 ◦C for frozen foods), T is the temperature (in K), Ea is the activation energy
of the studied action (in J/mol) and R is the universal gas constant. The Ea values were estimated from
the slope of Arrhenius plots of lnk vs. (1/Tref − 1/T), by linear regression [27,28].

For mathematical model validation at variable conditions, two alternative methodologies were
compared for the estimation of the predicted quality indices (i.e., L-value, TVBN value and sensory
scoring), at predetermined points of the variable time-temperature scenario. The quality level of
fish was determined using the Arrhenius-based kinetics developed from the data obtained from the
isothermal experiments. To demonstrate the integrated effect of temperature variability on product
quality, the term of effective temperature Teff was introduced for the first method (Method #1) [29].
Teff, which is defined as the constant temperature that results in the same quality value as the variable
temperature distribution over the same time period, is based on the Arrhenius model and integrates in
a single value the effect of the variable temperature profile at a specific time of the time-temperature
scenario. Teff is calculated by the Arrhenius model (Equation (1)) for k = keff (i.e., the value of the rate of
the quality loss reaction at the effective temperature Teff), as estimated by Equation (2) [29].

kre f ·
∑
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Ea
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·

(
1
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−

1
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))
·ti

]
= ke f f ·ttot (2)

For the second method (Method #2), the T(t) function was discretized in small time increments ti
of constant temperature Ti. Data analysis was based on the determination of the quality status of fish at
any ti, by calculating the quality deterioration using the developed models for each ∆t (using the actual
time-temperature conditions at each ti). In this case, for the determination of the loss of a quality factor
(color change, TVBN or sensory scoring, s), the following equations were used (Equations (3)–(5)),

Li+1 = Li − kL·∆t (3)

CTVBN,i+1 = CTVBN,i·ekTVBN ·∆t (4)

si+1 = si − ks·∆t (5)

where k is the rate constant for color change (L-value decrease), TVBN increase or sensory scoring
decrease, i and i + 1 refer to time, as ti+1 = ti + ∆t, CTVBN is the TVBN concentration in fish flesh,
s is the sensory scoring and L is the L-value at the respective time indicated by the subscript. The rate
k is a function of storage temperature k(t) and is calculated by Equation (1) for Ti [30,31].
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The rates of quality deterioration (TVBN, sensory evaluation) that were calculated using the
proposed mathematical methods along with the kinetics derived from the isothermal experiments
were compared to the quality level of fish fillets that were experimentally measured at predetermined
points of frozen storage at the Var scenario.

The comparison between the experimental (actual) and predicted (calculated by the mathematical
food kinetic models) quality indices was based on the accuracy (Af) and bias (Bf) factors
(Equations (6) and (7))

A f = 10
∑
|log(ypredicted/yexperimental)|

n (6)

B f = 10
∑

log(ypredicted/yexperimental)

n (7)

where n is the number of observations, and the relative error (RE) calculated by Equation (8) for each
one of the obtained yi values. Perfect agreement between the predicted and the respective observed
values is represented with Af and Bf values of 1 [22,32].

RE =
(yobserved − ypredicted)

ypredicted
(8)

3. Results

3.1. Effect of Frozen Storage on Appearance and Color of Fish Fillets

At zero storage time, gilthead sea bream and sea bass had white and shiny flesh. Lightness values
were initially 66.7 ± 2.2, 56.3 ± 1.4 and 71.7 ± 2.4 for gilthead sea bream, sea bass and yellowfin tuna,
respectively, as indicated in Figure 1.
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Figure 1. Changes of color (L-value) of thawed (a) gilthead sea bream fillets, (b) sea bass fillets and
(c) yellowfin tuna slices during storage at ♦ −5, ∆ −8, 2 −12 and ∗ −15 ◦C. (Error bars indicate standard
error of measurements of three different samples.) (1a: R2

−5◦C = 0.822, R2
−8◦C = 0.820, R2

−12◦C = 0.939,
R2
−15◦C = 0.937; 1b: R2

−5◦C = 0.986, R2
−8◦C = 0.938, R2

−12◦C = 0.852, R2
−15◦C = 0.932; 1c: R2

−5◦C = 0.822,
R2
−8◦C = 0.820, R2

−12◦C = 0.939, R2
−15◦C = 0.937).

The L value of thawed fish flesh showed a significant decrease at the highest storage temperatures,
as shown at Figure 1, and was a good quality index, as darkened fish flesh was associated with poor
quality. The decrease in the L value of fish flesh during storage was adequately modeled by an apparent
zero order reaction (Equation (3)).

Temperature dependence of the rates of color degradation was adequately described by Arrhenius
kinetics in the temperature range studied. Changes of L-value showed Ea values and 95% confidence
range 48.9 ± 2.1 kJ/mol (R2 = 0.997), 64.4±6.4 kJ/mol (R2 = 0.980) and 83.9±10.4 kJ/mol (R2 = 0.970) for
gilthead sea bream fillets, sea bass fillets and yellowfin tuna slices, respectively (Table 1). Other color
parameters evaluated (i.e., a-value and b-value) showed slight changes during storage, within the
calculated sample variability, during the isothermal temperature conditions or not dependent changes
on storage temperature. Thus, other color changes were not modelable indices of frozen fish
quality deterioration.

Table 1. Activation energy values (Ea) for the quality deterioration rates of frozen gilthead sea
bream fillets, sea bass fillets and yellowfin tuna slices stored in the range of −5 to −15 ◦C (calculated
value ± 95% confidence intervals based on the statistical variation of the kinetic parameters of the
Arrhenius model—regression analysis).

L-Value TVBN Taste Ov. Acceptability

Gilthead sea bream fillets
Ea (kJ/mol) 48.9 ± 2.1 a 65.9 ± 7.0 a 65.2 ± 2.8 a 65.3 ± 14.9 a

R2 0.997 0.978 0.996 0.999

Sea bass fillets
Ea (kJ/mol) 64.4 ± 6.4 a 60.8 ± 2.7 a 64.5 ± 2.7 a 64.3 ± 0.5 a

R2 0.980 0.996 0.997 0.998

Yellowfin tuna slices
Ea (kJ/mol) 83.9 ± 10.4 a 69.9 ± 8.5 a 69.4 ± 3.5 a 77.9 ± 13.7 a

R2 0.970 0.971 0.995 0.942
a Different superscripts in the same raw indicate significant differences (p < 0.05).
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The L-value was determined during non-isothermal storage (Figure 2) and was compared with
the predicted values (Method #1 and Method #2), validating the applicability of the mathematical
models at non-isothermal temperature conditions (Figure 3). Teff was calculated as equal to −7.9 ◦C for
gilthead seabream fillets, −7.8 ◦C for sea bass fillets and −7.8 ◦C for yellowfin tuna slices (well within
the temperature range studied). For the calculations based on Method #1, the RE,L-value ranged from
−0.008 to 0.010 for gilthead seabream fillets, −0.011 to 0.008 for sea bass fillets and −0.065 to 0.019 for
yellowfin tuna slices. For the calculations based on Method #2, RE,L-value ranged from 0.007 to 0.008
for gilthead sea bream fillets, −0.011 to 0.008 for sea bass fillets and −0.066 to 0.019 for yellowfin tuna
slices. The calculated relative error revealed that all points fall within the acceptable prediction zone
as defined by [32], i.e., −0.3 < RE < 0.15. The Af and Bf values indicated that there was a satisfactory
agreement between predicted and observed L-values (Tables 2 and 3). The Bf values were within the
boundaries of 0.7 (fail-safe) to 1.15 (fail-dangerous) [33].
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solid lines indicate predictions by Method #1, the black dashed lines indicate the predictions by
Method #2, and the data points present the experimental values. (Error bars indicate standard error of
measurements of three different samples.)
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Table 2. Performance evaluation of the mathematical models for the quality parameters of frozen
gilthead sea bream fillets, sea bass fillets and yellowfin tuna slices (Method #1).

L-Value TVBN Taste Ov. Acceptability

Gilthead sea
bream fillets

Af 1.0012 1.0018 1.0061 1.0075
Bf 1.0015 0.9277 0.9447 0.9212
RE −0.008 to 0.010 −0.030 to 0.140 0.036 to 0.075 0.044 to 0.109

Sea bass
fillets

Af 1.0002 1.0051 1.0062 1.0048
Bf 1.0010 0.9079 1.0329 0.9743
RE −0.011 to 0.008 0.022 to 0.046 −0.073 to −0.010 −0.029 to 0.077

Yellowfin
tuna slices

Af 1.0042 1.0046 1.0032 1.0029
Bf 1.0103 0.9093 0.9725 0.9606
RE −0.0065 to 0.019 0.023 to 0.144 −0.104 to −0.033 −0.124 to 0.084

Table 3. Performance evaluation of the mathematical models for the quality parameters of frozen
gilthead sea bream fillets, sea bass fillets and yellowfin tuna slices (Method #2).

L-Value TVBN Taste Ov. Acceptability

Gilthead sea
bream fillets

Af 1.0012 1.0019 1.0055 1.0076
Bf 1.0016 0.9292 0.9660 0.9199
RE −0.007 to 0.008 −0.027 to 0.144 −0.025 to 0.062 0.044 to 0.110

Sea bass
fillets

Af 1.0003 1.0050 1.0064 1.0045
Bf 1.0014 0.9082 1.0337 0.9740
RE −0.011 to 0.008 0.022 to 0.145 −0.073 to −0.010 −0.028 to 0.076

Yellowfin
tuna slices

Af 1.0030 1.0056 1.0047 1.0052
Bf 1.0094 0.9086 0.9821 0.9832
RE −0.066 to 0.019 −0.104 to −0.032 −0.104 to −0.032 −0.124 to 0.084

3.2. Effect of Frozen Storage on TVBN

Changes in TVBN values are shown in Figure 4a–c. TVBN was initially 6.8 and 8.4 mg N/100 g for
gilthead sea bream and sea bass fillets and increased with storage time up to approximately 20 and
23 mg N/100 g, respectively. For yellowfin tuna slices, initial TVBN was 7.6 mg N/100 g and increased
with storage time up to approximately 18 mg N/100 g. TVBN values were modeled with apparent
first-order equations (Equation (4), R2 > 0.90 for all experiments).
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(b) sea bass fillets and (c) yellowfin tuna slices during storage at ♦ −5, ∆ −8, 2 −12 and ∗ −15 ◦C.
(Error bars indicate standard error of measurements of two different samples.) (1a: R2

−5◦C = 0.963,
R2
−8◦C = 0.924, R2

−12◦C = 0.885, R2
−15◦C = 0.931; 1b: R2

−5◦C = 0.983, R2
−8◦C = 0.963, R2

−12◦C = 0.990,
R2
−15◦C = 0.930; 1c: R2

−5◦C = 0.964, R2
−8◦C = 0.923, R2

−12◦C = 0.885, R2
−15◦C = 0.931.)

The temperature dependence of the TVBN formation rates in fish samples was adequately
described by Arrhenius kinetics in the temperature range studied, showing activation energy,
Ea, values and a 95% confidence range of 65.9 ± 7.0 (R2 = 0.978), 60.8 ± 2.7 (R2 = 0.996) and
69.9 ± 8.5 kJ/mol (R2 = 0.971) for gilthead seabream fillets, sea bass fillets and yellowfin tuna slices,
respectively. These values were close to the respective Ea for color change, indicating similar temperature
dependence to the chemical quality parameters (Table 1).

TVBN changes were also measured during storage experiment at dynamic conditions. The results,
as shown at Figure 5, indicated a satisfactory agreement between the experimental data and the
prediction based on the developed kinetic models, validating their applicability at variable conditions.
For Method #1, the RE,TVBN values ranged from −0.030 to 0.140 for gilthead seabream fillets,
0.022 to 0.046 for sea bass fillets and 0.023 to 0.144 for yellowfin tuna slices. For Method #2, the RE,TVBN

ranged from −0.027 to 0.144 for gilthead sea bream fillets, 0.022 to 0.145 for sea bass fillets and −0.104
to −0.032 for yellowfin tuna slices. The calculated relative errors revealed that all points fall within the
acceptable prediction zone as defined by [32], i.e., −0.3 < RE < 0.15. The Af and Bf values indicated
that there was a satisfactory agreement between predicted and observed L-values (Tables 2 and 3).
The Bf values were within the boundaries of 0.7 (fail-safe) to 1.15 (fail-dangerous) [33].
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3.3. Sensory Evaluation

Sensory scorings were evaluated by a sensory panel and the shelf life of frozen fish samples
was determined. Sensory scoring declined with storage time and temperature. The main parameter
that, according to the panelists, affected the overall acceptability of the fish samples was the taste
of the broiled fish. Fish flesh became darker and yellowish during storage, especially for samples
stored at −5 and −8 ◦C. Fish fillets or slices stored isothermally at −12 and −15 ◦C had acceptable
appearance, as indicated by the sensory panel, for approximately 9 months and 1 year, respectively.
Sensory scorings were modeled by apparent zero order reactions (Equation (5)) and they were good
quality indexes for the tested frozen fish products, as the calculated Ea values were in agreement
with the ones for flesh color (L-value) and chemical quality parameters (TVBN), i.e., Ea values of
65.2 ± 2.8 kJ/mol (R2 = 0.996) and 64.5 ± 2.7 kJ/mol (R2 = 0.997) for taste and 65.3 ± 14.9 kJ/mol
(R2 = 0.999) and 64.3 ± 0.5 kJ/mol (R2 = 0.998) for overall acceptability for gilthead sea bream and sea
bass fillets, respectively. For yellowfin tuna slices, the respective Ea values were calculated as 69.4 ± 3.5
(R2 = 0.995) and 77.9 ± 13.7 kJ/mol (R2 = 0.942) for taste and overall acceptability (Table 1). It has been
reported that the ± 20 kJ/mol of the activation energy of the selected quality index of the target food
product could be considered as similar temperature dependence [6].

The results of the sensory evaluation, as indicated by taste and overall acceptability scores, during
the non-isothermal experiments, as presented in Figure 6a,b, are in agreement with the ones calculated
by the models developed by the isothermal experiments, validating the applicability of the established
kinetic models in the dynamic temperature condition of the chill chain. For Method #1, the RE,taste

values ranged from 0.036 to 0.075 for gilthead seabream fillets, −0.073 to −0.010 for sea bass fillets and
−0.104 to −0.033 for yellowfin tuna slices. The respective RE,ov_acceptability values ranged from 0.044 to
0.109 for gilthead seabream fillets, −0.029 to 0.077 for sea bass fillets and −0.124 to 0.084 for yellowfin
tuna slices. For Method #2, the RE,taste value ranged from −0.025 to 0.062 for gilthead sea bream fillets,
−0.073 to −0.010 for sea bass fillets and −0.104 to −0.032 for yellowfin tuna slices. The respective
RE,ov_acceptability values ranged from 0.044 to 0.110 for gilthead sea bream fillets, −0.028 to 0.076 for sea
bass fillets and −0.124 to 0.084 for yellowfin tuna slices. The calculated relative errors revealed that all
points fall within the acceptable prediction zone as defined by [32], i.e., −0.3 < RE < 0.15. The Af and Bf
values indicated that there was a satisfactory agreement between predicted and observed L-values
(Tables 2 and 3). The Bf values were within the boundaries of 0.7 (fail-safe) to 1.15 (fail-dangerous) [33].
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frozen red hake; these objective tests were reported as useful for predicting textural quality and thus 
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Figure 6. Comparison of experimental and predicted changes in (a) taste and (b) overall acceptability
of gilthead sea bream fillets, sea bass fillets and yellowfin tuna slices at the temperature profile of the
non-isothermal experiment. The gray solid lines indicate predictions by Method #1, the black dashed
lines indicate the predictions by Method #2, and the data points present the experimental values.
(Error bars indicate standard error of scoring of eight panelists.)

The shelf life of frozen gilthead sea bream and sea bass fillets and yellowfin tuna slices,
determined based on sensory scoring (limit = score 5 for overall acceptability) and on TVBN value
(limit = 20 mg N/100 g), is shown in Table 4. The estimated shelf-life values are in agreement with
previous studies on frozen albacore tuna, where TVBN correlated satisfactorily with the sensory
rejection [13] and vacuum packed, frozen, and scaled whitefish [10]. In the latter study, vacuum
packaging inhibited lipid oxidations reactions and extended frozen fish shelf life at −12 and −25 ◦C.
TVBN has also been reported as an adequate quality index for frozen cod by a relevant study [12].
Dimethylamine and formaldehyde content correlated satisfactorily with a texture sensory score of
frozen red hake; these objective tests were reported as useful for predicting textural quality and thus
shelf life [9].
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Table 4. Shelf life (days) of frozen gilthead sea bream fillets, sea bass fillets and yellowfin tuna slices
stored at different temperatures.

−5 ◦C −8 ◦C −12 ◦C −15 ◦C −18 ◦C

Gilthead sea
bream fillets

TVBN (limit = 15 mg N/100 g) 130 182 287 408 586
Sensory (limit = 5 score for

overall acceptability) 134 186 293 415 594

Sea bass
fillets

TVBN (limit = 20 mg N/100 g) 140 191 291 403 563
Sensory (limit = 5 score for

overall acceptability) 133 185 290 408 580

Yellowfin
tuna slices

TVBN (limit = 22 mg N/100 g) 156 212 323 448 624
Sensory (limit = 5 score for

overall acceptability) 152 208 320 445 623

Similar Arrhenius type models have been developed for blueshark slices and arrow squid, with the
aim of providing a TTI-based system for the effective management of the frozen seafood supply chain [8].
These models were validated in the real cold chain through a pilot field study [22]. The Ea values of the
quality deterioration rates of frozen gilthead sea bream fillets, sea bass fillets and yellowfin tuna slices
were lower than the respective values reported for frozen shrimp [19], indicating a higher temperature
sensitivity of frozen shrimp compared to the fish products studied in the present article. The Ea ranged
between 118 and 156 kJ/mol for the tested quality indices for frozen, whole, and unpeeled shrimp.
The higher values, compared to the respective Ea in the present study, may be attributed to the different
mechanisms of quality deterioration in the case of shrimp, i.e., mainly enzymatic browning resulting
in blackening, which significantly limits the shelf life at higher storage temperatures (−5 ◦C). A similar
approach, based on Arrhenius kinetics, has been previously reported for the shelf-life modelling of
frozen cod in the temperature range of −12 to −30 ◦C [4]. A prediction model of shelf life by fractal
dimension has been developed to observe the porous microstructure that results from the ice crystal
formation in frozen hairtail meat and tilapia [34,35]. The Gompertz and polynomial models have been
used for the evaluation of the correlations between TVBN and trimethylamine (TMA) formation in
mackerel during frozen storage [36].

3.4. Effect of Frozen Storage on Microbial Load

Total viable count in frozen gilthead sea bream fillets, European sea bass fillets and yellowfin tuna
slices was 4.4 ± 0.2, 5.5 ± 0.3 and 3.5 ± 0.2 logCFU/g, respectively. These values are in accordance with
the respective microbial count levels reported in the literature for frozen fish [33,37]. No significant
growth was observed during the storage of frozen fish samples at any of tested temperatures. The final
total viable counts ranged from 4.4 to 5.5, 5.8 to 6.3 and 3.9 to 4.2 logCFU/g for gilthead sea bream
fillets, European sea bass fillets and yellowfin tuna slices, respectively (Figure 7a–c). At the end of the
storage period, no “spoilage” characteristics were reported by the sensory panel.

3.5. Application of the Validated Models for Shelf-Life Prediction during the Distribution of Frozen Fish

The objective of the present study was to develop and validate reliable kinetic models of selected
quality indices in order to allow for the quality and shelf-life estimations of different fish products
during non-isothermal distribution and storage, in the actual frozen distribution path. The level
of quality deterioration at the end of each distribution and storage phase of the tested realistic
distribution scenario (Figure 8) was estimated using the validated shelf-life predictive models, and the
Teff calculation approach (Method #1), as presented in Table 5. Although Method #2 is mathematically
more rigorous compared to Method #1, the latter was selected for further use due to its simplicity.
Method #1 is not dynamic in nature; however, in the limited temperature range that occurred during
frozen storage, it gives acceptable results.
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(c) yellowfin tuna slices during storage at ♦ −5, ∆ −8, 2 −12 and ∗ −15 ◦C. (Error bars indicate standard
error of measurements of two different samples.)



Foods 2020, 9, 1893 14 of 17
Foods 2020, 9, x FOR PEER REVIEW 14 of 17 

 

 
Figure 8. Indicative temperature profile of the distribution of frozen fish in the real chill chain. The 
total distribution time was 150 days. (1st stage: packing plant storage, 2nd stage: transportation-
distribution center, 3rd stage: retail storage, 4th stage: domestic storage). 

Table 5. Quality deterioration and remaining shelf life (RSL according to sensory scoring (limit = 5 
for overall acceptability) of frozen gilthead sea bream fillets, sea bass fillets and yellowfin tuna slices 
at the end of each stage of the realistic time-temperature profile (Figure 7). 

 1st Stage 
Duration: 25 Days 

2nd Stage 
Duration: 25 Days 

3rd Stage 
Duration: 50 Days 

4th Stage 
Duration: 50 Days 

Teff (°C) −15.6 −13.3 −11.8 −10.4 
Frozen gilthead sea bream fillets 

Sensory Scoring 8.77 8.48 7.78 6.96 
RSLpredicted (d) 391 361 288 204 

Frozen sea bass fillets 
Sensory Scoring 8.72 8.25 7.61 6.85 

RSLpredicted (d) 384 353 281 197 
Frozen yellowfin tuna slices 

Sensory Scoring 8.79 8.50 7.80 6.95 
RSLpredicted (d) 421 389 311 217 

At the end of the simulated cycle, i.e., assumed as the time of consumption, the estimated 
remaining shelf life (RSL) for gilthead sea bream fillets, sea bass fillets and yellowfin tuna slices (at 
−15 °C) according to sensory scoring was 204, 197 and 217 days, respectively. The nominal RSL based 
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Figure 8. Indicative temperature profile of the distribution of frozen fish in the real chill chain. The total
distribution time was 150 days. (1st stage: packing plant storage, 2nd stage: transportation-distribution
center, 3rd stage: retail storage, 4th stage: domestic storage).

Table 5. Quality deterioration and remaining shelf life (RSL according to sensory scoring (limit = 5 for
overall acceptability) of frozen gilthead sea bream fillets, sea bass fillets and yellowfin tuna slices at the
end of each stage of the realistic time-temperature profile (Figure 7).

1st Stage
Duration: 25 Days

2nd Stage
Duration: 25 Days

3rd Stage
Duration: 50 Days

4th Stage
Duration: 50 Days

Teff (◦C) −15.6 −13.3 −11.8 −10.4

Frozen gilthead sea bream fillets

Sensory Scoring 8.77 8.48 7.78 6.96
RSLpredicted (d) 391 361 288 204

Frozen sea bass fillets

Sensory Scoring 8.72 8.25 7.61 6.85
RSLpredicted (d) 384 353 281 197

Frozen yellowfin tuna slices

Sensory Scoring 8.79 8.50 7.80 6.95
RSLpredicted (d) 421 389 311 217

At the end of the simulated cycle, i.e., assumed as the time of consumption, the estimated
remaining shelf life (RSL) for gilthead sea bream fillets, sea bass fillets and yellowfin tuna slices
(at −15 ◦C) according to sensory scoring was 204, 197 and 217 days, respectively. The nominal RSL
based on the “use by” date, which does not take into account the food product time-temperature
history, would be higher than 250 days (i.e., 265, 258 and 295 days for gilthead sea bream fillets, sea bass
fillets and yellowfin tuna slices, respectively). Under this context, the potential of using validated
shelf-life predictive models as reliable tools for the quality assessment of products at the given point of
the frozen distribution chain is substantiated. These models in combination with adequate TTI smart
labels could allow for better management and optimization of the cold chain, from manufacture to the
point of consumption.

4. Conclusions

The process of freezing as a method of preserving fish quality has been long established. However,
temperature fluctuations may occur throughout the production and distribution chain. Overall,
in this study, a systematic modeling of quality deterioration of frozen fish at variable temperature
conditions was achieved.
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The protocols for the shelf-life testing of foods consist of defining the quality parameters which
deteriorate faster with time and the mathematical modeling of these indices. In several cases,
shelf-life testing experiments are accelerated in order to evaluate the effect of different formulation
and processing parameters on the quality and shelf life of the tested food product. Accelerated
shelf-life testing conducted at elevated isothermal temperatures for frozen products has been used
extensively for several decades by industry and government agencies [38]. In addition, temperature
fluctuations may occur in distribution and retail holding for frozen storage. Thus, kinetic studies at
several temperatures within that range are necessary to predict its shelf life. The applicability of the
developed models was evaluated via non-isothermal experiments using independent product batches,
in order to validate the reliability of the shelf-life models for the frozen fish production sector at the
temperature range of −15 to −5 ◦C, which lies within the reported temperature conditions of the actual
supply chain of frozen foods [5]. The validated models combined with the application of TTI may be
an effective tool for frozen fish quality monitoring during their transportation and storage.
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