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Abstract: The periosteum is a thin membrane that surrounds the outer surface of bones and
participates in fracture healing. However, the molecular signals that trigger/initiate the periosteal
reaction are not well established. We fractured the rat femoral bone at the diaphysis and fixed it
with an intramedullary inserted wire, and the expression of regenerating gene (Reg) I, which encodes
a tissue regeneration/growth factor, was analyzed. Neither bone/marrow nor muscle showed
Reg I gene expression before or after the fracture. By contrast, the periosteum showed an elevated
expression after the fracture, thereby confirming the localization of Reg I expression exclusively in
the periosteum around the fractured areas. Expression of the Reg family increased after the fracture,
followed by a decrease to basal levels by six weeks, when the fracture had almost healed. In vitro
cultures of periosteal cells showed no Reg I expression, but the addition of IL-6 significantly induced
Reg I gene expression. The addition of IL-6 also increased the cell number and reduced pro-apoptotic
gene expression of Bim. The increased cell proliferation and reduction in Bim gene expression were
abolished by transfection with Reg I siRNA, indicating that these IL-6-dependent effects require
the Reg I gene expression. These results indicate the involvement of the IL-6/Reg pathway in the
osteogenic response of the periosteum, which leads to fracture repair.

Keywords: bone regeneration; fracture; Reg (regenerating gene); IL-6; periosteum; Bim

1. Introduction

Bone tissue can be regenerated through osteogenic differentiation of undifferentiated cells into
bone-forming osteoblasts. This regeneration is frequently seen during fracture repair, which produces
new bone without scarring. Two types of bone formation processes are known: (1) endochondral bone
formation, in which a cartilaginous mass appears, followed by vascular invasion/new bone formation;
and (2) intramembranous bone formation, in which new bone forms directly through cascades of
osteogenic differentiation without cartilaginous mass formation [1].
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Fractures often occur in the mid-shaft (diaphysis) regions of long bones. The diaphysis consists
of cortical bone and marrow/fat tissues, and its outer surface is covered with a membrane called the
periosteum [2]. Shapiro [1] effectively summarizes the fracture repair process. At the periphery of
the fracture site (vascular rich areas), the periosteum, which is elevated from the cortex surface, lays
down intramembranous woven bone against the surface. Closer to the fracture site, the tissue damage
interrupts the blood supply and leads to the formation of cartilaginous masses both outside and within
the cortices. These areas eventually show endochondral bone formation. The chondrocytes within the
fracture areas are reported to derive predominantly from the periosteum [3]. When there is little motion
around the fractured ends due to stable fracture fixation, woven bone is first produced by the periosteal
tissue, followed by lamellar bone formation without the intervention of cartilage tissue formation.
Thus, the periosteum is essential for new bone formation during the fracture repair in the cascades
responsible for both endochondral and intramembranous bone formation. Many regulatory signals,
such as Wnt, Indian hedgehog, bone morphogenetic proteins, Smads 1–8, transforming growth factor
(TGF)-β superfamily, transcription factor Runt-related transcription factor 2 (Runx2), etc., reportedly
affect bone formation [4,5]. However, little is known about the nature of the molecules that trigger the
periosteal reaction that promotes fracture repair.

Many approaches have been reported for the investigation of various tissue regenerations,
and we have conducted extensive research that focuses on pancreatic β cell regeneration [6–8].
We screened a cDNA library from regenerating islets to isolate a novel gene Reg (Regenerating Gene)
expressed in the islets [9]. This gene was subsequently found in human tissues [9,10]. The Reg gene
encodes a C-type lectin, and structurally related molecules (Reg family genes) have been identified.
These genes are expressed in regenerating pancreatic β cells as well as in the other tissues, such as
liver, stomach, intestine etc., and are thought to be involved in cell proliferation and differentiation
in these tissues [7–13]. We also reported Reg gene expression in regenerating nerve and skeletal
muscle tissues [14,15], and we found a positive relation between this gene expression and survival
(regenerating capability) of vascular grafts [16]. Thus, Reg gene expression may be crucial for the
regeneration of several tissues.

We demonstrated that Reg protein induces β cell replication during pancreatic regeneration via
the Reg receptor. Administration of interleukin-6 (IL-6) together with dexamethasone (Dex) induced
the formation of an active transcriptional complex for Reg and finally triggered the Reg gene expression
in β cells. We recently found that IL-6 and Dex induced REG Iα and REG Iβ expression in human
β cells [17]. These findings indicate that Reg gene expression clearly has an important role in tissue
regeneration; however, there are no reports that study how Reg gene expression relates to bone tissue
regeneration. Therefore, we investigated the Reg gene expression during the cascade of rat femoral
bone fracture repair as well as the expression in periosteum-derived cell cultures. Here, we report
a high level of Reg gene expression in periosteal areas after a fracture. We also show that Reg gene
expression is drastically activated by the addition of IL-6 to the medium of periosteum-derived cell
cultures. Furthermore, the IL-6 addition down-regulated Bim (Bcl-2-like protein 11) gene expression.
This study is the first to show evidence for the involvement of Reg gene expression in fracture repair
(i.e., bone tissue regeneration). The study also discusses the possible role of apoptosis/anti-apoptosis
cascades in the regeneration.

2. Results

2.1. Regenerating Gene (Reg) I Gene Expression in the Periosteum of Fractured Bone

We made a fracture at the mid-shaft of a rat femoral bone and then stably fixed the fracture site
with a wire inserted in the intramedullary region. Bone union was seen after about four weeks and
was almost complete by six weeks after fixation (Figure 1a–e). We analyzed Reg I gene expression
in tissues around the fracture areas by harvesting muscle surrounding the femoral bone, the thin
layer of periosteum covering the femoral bone, and the remaining femoral bone that contained
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bone marrow. The periosteum was easily identified and harvested from the bone. As shown in
Figure 1f, neither bone marrow nor muscle showed Reg I gene expression before or after the fracture.
By contrast, the periosteum showed basal expression of the Reg I before the fracture and prominently
elevated expression after the fracture. Thus, the Reg I gene expression was exclusively localized in the
periosteum around the fractured areas.
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The distal edge of the wire is bent (arrow); (b) Image and direction of the wire insertion.  
The direction is from the distal femora bone to the pelvic bone; (c) After 4 weeks of fixation, good 
bone union (red circle) is evident; (d) The periosteum covering the fractured bone was 
removed/harvested. The red bar area indicates bare bone; (e) The upper figure shows the histological 
section of the mid-shaft of an intact rat femoral (no fracture) bone. A thin layer of the periosteum 
(arrows) is evident between the muscle layer and bone surface. The lower figure shows the fracture 
area after four weeks. A thick periosteal layer surrounds newly formed bone; (f) The expression of 
Reg I in the periosteum. The mRNA levels of rat Reg I in bone marrow, periosteum, and muscle 
tissues before (intact) and four weeks after fracture (n = 6). Reg I mRNA levels were measured by 
real-time reverse transcription-polymerase chain reaction (RT-PCR) using glyceraldehyde-3 phosphate 
dehydrogenase (GAPDH) as an endogenous control (fg/pg GAPDH). The data are indicated by mean ± 
SE. * p < 0.05. 
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Figure 1. In vivo model of a rat bone fracture. (a) A fracture was created at the mid-shaft of the rat
femoral bone (red circle). The figure shows fracture fixation with a Kirschner wire (K-wire). The distal
edge of the wire is bent (arrow); (b) Image and direction of the wire insertion. The direction is from
the distal femora bone to the pelvic bone; (c) After 4 weeks of fixation, good bone union (red circle) is
evident; (d) The periosteum covering the fractured bone was removed/harvested. The red bar area
indicates bare bone; (e) The upper figure shows the histological section of the mid-shaft of an intact
rat femoral (no fracture) bone. A thin layer of the periosteum (arrows) is evident between the muscle
layer and bone surface. The lower figure shows the fracture area after four weeks. A thick periosteal
layer surrounds newly formed bone; (f) The expression of Reg I in the periosteum. The mRNA levels
of rat Reg I in bone marrow, periosteum, and muscle tissues before (intact) and four weeks after
fracture (n = 6). Reg I mRNA levels were measured by real-time reverse transcription-polymerase chain
reaction (RT-PCR) using glyceraldehyde-3 phosphate dehydrogenase (GAPDH) as an endogenous control
(fg/pg GAPDH). The data are indicated by mean ± SE. * p < 0.05.

2.2. Expression Profile of Reg Family Genes in the Periosteum of Fractured Bone

We also studied expression of all the rat Reg family genes (Reg I, Pap I/Reg II, Pap II/Reg III,
Pap III, and Reg IV) in the periosteum at multiple time points (before and at 1, 2, 4, and 6 weeks after
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the fracture). As shown in Figure 2, Reg I gene expression gradually increased after the fracture and
peaked at 4 weeks, when bone union was also detected. A comparison with this Reg I gene expression
revealed that Reg IV gene expression appeared much earlier, with expression noticeable even one week
after the fracture. Pap I/Reg II, Pap II/Reg III, and Pap III gene expressions showed similar patterns,
with peaks around two weeks after the fracture.

The in vivo studies showed baseline expression of all the Reg family genes before the fracture
and increased expressions following the fracture. The expression of the Reg family genes gradually
increased and concomitantly decreased with the fracture repair.
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Figure 2. The expression of Reg family genes in the periosteum. The mRNA levels of rat Reg family
genes (Reg I, Reg IV, Pap I/Reg II, Pap II/Reg III, and Pap III) in the periosteum before (0) and 1, 2, 4, and
6 weeks after the fracture (N = 4 to 8). The data are indicated by mean ± SD. The mRNA levels before
fracture (0 w) are set at 1. The level of Reg I mRNA at 4 weeks fracture was significantly increased
(p = 0.042 vs. 0 week). The levels of Pap I/Reg II mRNA at 1, 2, 4, and 6 weeks after fracture were
significantly increased (p = 0.0418, 0.0025, 0.0047, and 0.0254, respectively). The levels of Pap II/Reg III
mRNA at 2, 4, and 6 weeks after fracture were significantly increased (p = 0.0080, 0.0063, and 0.0150,
respectively). The Pap III mRNA levels at 2, 4, and 6 weeks after fracture were increased (p = 0.0113,
0.0005, and 0.0045, respectively). The Reg IV mRNA levels at 1, 2, and 4 weeks after fracture were
increased (p = 0.0006, 0.0403, and 0.0267, respectively). w = week.

2.3. The mRNA Levels of Reg I and Its Receptor (Extl3) in Cultured Periosteum-Derived Mesenchymal
Stem Cells

We harvested the periosteum from the mid-shaft of intact rat femoral bones (Figure 3a), treated it
with collagenase, and cultured the released cells in a basal culture medium. These periosteum-derived
cells were well attached to the culture dish and assumed a fibroblastic cell morphology, and they
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became nearly confluent after two weeks [18]. The culture was followed by subculture in 12-well
plates in the same medium with or without osteogenic supplements (Dex, ascorbic acid, and
β-glycerophosphate). As shown in Figure 3b, high alkaline phosphatase (ALP) and mineral stain were
detected in the subcultures with osteogenic media. Quantitative measurements of the ALP activity
of the subculture with osteogenic medium was 0.66 ± 0.10 µmol/30 min/well after seven days and
1.67 ± 0.26 µmol/30 min/well after 14 days. Thus, the cultured periosteal cells were mesenchymal
stem cell types that showed osteogenic differentiation capability, and these cells are referred to as
periosteum-derived mesenchymal stem cells (PMSCs) in this paper.
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Figure 3. (a) Harvesting the periosteum from the femoral bone shaft. The periosteum is easily
separated and peeled from the shaft. M: surrounding muscle tissue. F: shaft of the femoral bone.
Arrows: periosteum; (b) Alkaline phosphatase (ALP) and Alizarin Red S staining of periosteum-derived
mesenchymal stem cells (PMSCs) sub-cultured with (upper figures) or without (lower figures)
osteogenic medium supplemented with dexamethasone (Dex), ascorbic acid, and β-glycerophosphate
for two weeks; (c) The mRNA levels of Reg I in the culture of PMSCs. Rat PMSCs were transfected with
siRNA for Reg I, scrambled RNA, or no addition (control). After siRNA introduction, IL-6 (20 ng/mL),
Dex (100 nM), or IL-6+Dex was added to the PMSC culture medium and the cells were incubated for
24 h. Cells were harvested for real-time RT-PCR for Reg I mRNA; (d) The mRNA levels of Extl3 in the
culture of rat PMSCs. RNA was prepared from rat PMSCs stimulated with or without IL-6 (20 ng/mL)
for 24 h, and Reg receptor (Extl3) mRNA was measured by real-time RT-PCR. The data are relative
values compared with the mRNA levels of “No addition” and are reported as mean ± SE (N = 4);
(e) Concentration of IL-6 in the medium of the PMSCs sub-cultured with (Dex (+)) or without (Dex (-))
osteogenic supplements for one and two weeks.
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We analyzed the Reg I gene expression using PMSCs cultured for nine days in the basal medium
with or without IL-6 and Dex. We previously reported that the Reg gene is activated by IL-6 and Dex
and that a combination of IL-6 and Dex synergistically activates this gene expression in pancreatic
β cells [7,8,19,20]. As shown in Figure 3c, no Reg I expression was detected in the PMSCs, but
the addition of IL-6 to the culture medium significantly induced Reg I gene expression. By contrast,
Dex did not increase Reg I gene expression, but it inhibited the IL-6-induced Reg I expression (left panel).
Transfection with Reg I small interfering RNA (siRNA), but not with scrambled siRNA, completely
blocked IL-6-induced expression of Reg I (middle and right panels).

The Reg protein is a secretory protein and binds to the Reg protein receptor (Extl3) [21]. Therefore,
we also analyzed Extl3 mRNA expression in PMSCs. The level of Extl3 mRNA in PMSCs was not
changed by IL-6 treatment (Figure 3d), suggesting that the effect of IL-6 is due to the up-regulation of
Reg I mRNA rather than the up-regulation of its receptor.

We also measured IL-6 protein in the PMSCs culture medium during osteogenic differentiation
(one- and two-weeks subculture). As seen in Figure 3e, in contrast to in the non-osteogenic medium
lacking Dex, the levels of IL-6 protein in the osteogenic culture medium containing Dex were extremely
low, suggesting that Reg I mRNA is increased by IL-6 and that Dex decreased Reg I expression via the
decreased expression of IL-6 in the culture medium.

2.4. Proliferation of Periosteum-Derived Mesenchymal Stem Cells PMSCs by Interleukin-6 (IL-6) via Reg I

We then examined the effect of IL-6 on cell proliferation using the 2-(2-methoxy-4-nitrophenyl)-
3-(4-nitrophenyl)-5-(2,4-disulfophenyl)-2H-tetrazoliummonosodium salt (WST-8) assay. The addition
of IL-6 to the culture medium of the PMSCs increased the cell numbers, and this effect was abolished
by transfection of PMSCs with Reg I siRNA (Figure 4). In contrast, the addition of Dex, either singly
or in combination with IL-6, had no effects on the proliferation of PMSCs. Relative cell numbers of
IL-6+Dex was significantly reduced (p = 0.001 vs. IL-6 alone).
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Figure 4. Effects of transfection with siRNA for Reg I on cell numbers of PMSCs. The WST-8 assay
was performed using siRNA-transfected PMSCs (scrambled siRNA or siReg I). These PMSCs were
stimulated with IL-6, Dex, and IL-6+Dex or without stimulants (No addition), and the relative cell
numbers were measured by cleavage of WST-8. The data are relative values compared with the
absorbance of cells with “No addition” and indicated by mean ± SE (n = 4).
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2.5. Down–Regulation of Bim, an Apoptosis-Related Gene, in PMSC by IL-6

We also investigated the intracellular mechanism underlying the enhancement of PMSC
proliferation by the IL-6/Reg I pathway by analyzing the expression of cyclin-dependent kinase (CDK4)
and E2F. IL-6 stimulation did not increase but rather decreased the mRNA levels of either of these
two positive cell cycle regulators (Figure 5). Cell proliferation is a key process in regeneration of many
tissues, and apoptotic stimuli affect the cell numbers. We previously reported that the Reg I protein
has both trophic and anti-apoptotic effects [22–24]. We therefore examined the expression of several
apoptosis/anti-apoptosis related genes: Bcl-2 (B cell lymphoma 2), Bcl-xL (B-cell lymphoma-extra
large), Bmf (Bcl-2-modifying factor), and Bim. We found that Bcl-2, Bcl-xL, and Bmf mRNA expressions
were unchanged following IL-6 stimulation (Bcl-2 and Bcl-xL showed decreased tendency by IL-6
stimulation although it was not statistically significant.). By contrast, IL-6-stimulated PMSCs showed
down-regulation of Bim, which is an apoptosis-related gene required for apoptosis in a broad range of
cell types [25] (Figure 5). This down-regulation of Bim was abolished by transfection with Reg I siRNA.
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and apoptosis-related (Bmf and Bim) genes in PMSCs. Scrambled RNA (upper panel) or siRNA for rat
Reg I (lower panel) was introduced into the cells. The measurements were done without the addition of
IL-6 to the medium (No addition) and with the addition of IL-6. The data are relative values compared
with the mRNA levels from cells with “No addition” and are reported as mean ± SE (n = 4).

3. Discussion

Bone formation following heterotopic transplantation of the periosteum, with or without a scaffold,
has been reported, supporting the inherent osteogenic capability of this tissue [26–28]. The fracture of
a rat femoral bone in the present study was repaired after about 4–6 weeks by extensive new bone
formation that united the fracture ends. This new bone formation was exclusively derived from the
periosteal reaction (Figure 1); thus, this rat model is suitable for investigating the role of the periosteum
in fracture repair.

We previously reported the importance of the Reg family gene expressions in regenerating tissues,
especially during pancreatic tissue regeneration [6–8,12]. The Reg genes are not expressed under
non-regenerating physiological conditions but are expressed during the regeneration of β cells. As was
noted for pancreatic tissue regeneration, Reg gene expression was difficult to detect in normal (before
fracture) periosteum tissue, but expression was clearly evident during the fracture repair process.
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No previous studies have reported Reg family expressions in bone tissue regeneration (fracture repair),
but the findings presented here clearly show this expression after the fracture (Figures 1f and 2).
The earlier expression of Reg IV [29–31] compared with Reg I may indicate the primary role of Reg IV
in bone tissue regeneration.

Based on these in vivo findings, we further focused on the study of Reg using in vitro culture of
periosteum-derived cells. The osteogenic capability of cultured cells derived from the periosteum has
been reported previously [32,33]. These cells also differentiate into multiple mesenchymal lineages [33].
Traditionally, mesenchymal stem cells (MSCs) reside in bone marrow and we have previously
reported the in vitro osteogenic differentiation of the bone marrow-derived MSCs in osteogenic
medium containing Dex, ascorbic acid, and β-glycerophosphate [34]. Periosteum-derived cells cultured
under the same conditions showed clear osteogenic differentiation capability, as indicated by a high
ALP activity and mineral deposition (Figure 3b). Our previous study indicated that these culture
conditions generate cells positive for CD29 and CD90 cell surface antigens but negative for CD45 [18].
Based on these previous findings and the observed osteogenic differentiation capability of the cultured
periosteum cells, we adopted the term PMSCs for the cultured cells described here.

In vivo experiments showed that the periosteum expressed the Reg I gene at a basal level before
the fracture (Figure 1f). Likewise, PMSCs from intact bone did not show apparent Reg I expression
(Figure 3c). By contrast, after the fracture, the periosteum showed prominent Reg I gene expression
(Figures 1f and 2) and the in vitro cultured PMSCs that were cultured in vitro showed a drastically
increased gene expression following IL-6 stimulation (Figure 3c). Therefore, both fracturing and IL-6
can apparently trigger gene expression in periosteal cells, suggesting that IL-6 plays a role in fracture
repair. In this regard, bone tissue harvested from IL-6 knockout mice showed reduced crystallinity,
mineral/matrix ratio, tissue mineral density, and bone volume fraction when compared to wild-type
mice [35]. Furthermore, the knockout mice showed impaired fracture healing [35].

Kidd et al., using a stress fracture model, reported that even 4 h after a fracture, a marked (220-fold)
increase was observed in expression of the IL-6 gene. They proposed that the early up-regulation of IL-6
and IL-11 demonstrates the central role in initiating signaling events for fractures [36]. Others have also
reported that sclerostin, VEGF, TGF-β, COX-2, and IL-6 are early signals that facilitate the formation of
periosteal woven bone [37]. Glycoprotein 130 (gp130), a co-receptor subunit for transducing signals
in response to IL-6 family cytokines, has also been suggested as a possible contributor to bone
formation [38,39]. Overall, the available evidence suggests that IL-6 has an important role in the
cascade leading to fracture healing. Furthermore, IL-6 is linked to osteoclastogenesis [35,40] and
triggers Reg gene expression in the periosteal area. Therefore, activation of the IL-6/Reg pathway is a
prerequisite for fracture healing.

In cultured pancreatic β cells, the Reg gene is synergistically activated by IL-6 and Dex [7,8,17,41,42].
However, as shown in Figure 3c, Dex did not stimulate the gene expression; instead, it inhibited the
induction of Reg I gene expression by IL-6. Thus, PMSCs and pancreatic β cells exhibited different
responses to Dex. Furthermore, in the PMSCs culture, Dex seems to suppress the IL-6 gene expression,
as evidenced by the little amount of IL-6 protein in the osteogenic medium that contained Dex compared
with the medium that lacked Dex (Figure 3e). As described above, Dex also induces osteogenic
differentiation in PMSCs. The Dex-induced MSC differentiation into osteoblasts is reported to occur by
activation of the Runx2 expression that is dependent on the four and a half LIM domains protein
2 (FHL2)/β-catenin signaling pathway, which is essential for osteogenic differentiation. FHL2 is
upregulated in response to Dex, presumably because Dex binds to a glucocorticoid response element in
the promoter of FHL2 [43]. The presence of Dex-dependent FHL2 upregulation may reflect a different
response of Dex. We also reported that IL-6 significantly enhanced REG Iα promoter activity in human
salivary ductal cells and that supplementation with Dex had no additional effect on this activity [44].
Thus, the synergistic effect of Dex on IL-6 induced Reg gene expression seems to be cell-type dependent.

IL-6 also increased the cell number of PMSCs in culture, and this effect was not seen following
transfection with Reg I siRNA (Figure 4). A well-organized balance between cell proliferation and
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apoptosis is a key for normal tissue homeostasis and an inequitable induction of apoptosis may suppress
cell growth. The Reg protein was reported to stimulate cell proliferation [12,22,41,45] and to inhibit
apoptosis [23,24]. In the present study, we first analyzed the mRNA expression of two typical cell
cycle regulators, CDK4 and E2F, but we found no increase in response to IL-6 stimulation (Figure 5),
suggesting that the increased proliferation of PMSCs is not mediated by cell cycle progression. However,
down-regulation of CDK4 mRNA in IL-6-stimulated PMSCs was canceled by the introduction of siReg I
RNA (Figure 5). As down-regulation of CDK4 could work as an impediment in cell cycle progression,
Reg I may remove such an impediment to proliferation. We also test the possibility of the inhibition of
apoptosis through the stimulation of the IL-6-dependent Reg I expression.

Two pathways can lead to apoptosis: the extrinsic or death receptor pathway and the intrinsic,
or mitochondrial, pathway. In the latter pathway, mitochondria release cytochrome c and activate a
caspase cascade that results in programmed cell death [46]. The Bcl-2 family, consisting of Bcl-2 and
its homologues, regulate this mitochondrial pathway. Many genes have been identified in the Bcl-2
family: some have anti-apoptotic and some have pro-apoptotic functions [47]. As seen in Figure 5,
treatment of PMSC cultures with IL-6 did not affect the expressions of the anti-apoptotic family genes
but reduced the pro-apoptotic Bim gene expression, which is known to induce cell death in multiple
cell types [48]. Therefore, Reg I gene expression induced by IL-6 in PMSCs (Figure 3c) could be linked
to the inhibition of Bim expression and the resulting increase in cell proliferation (Figure 4).

Bone formation is closely associated with blood vessel growth (i.e., new capillary formation due
to proliferation and differentiation of the endothelial cells), and endothelial growth factor-A (VEGF-A)
is known to regulate this differentiation. In this regard, Bim appears to be responsible for the apoptotic
death of retinal endothelial cells during oxygen-induced ischemic retinopathy, and the lack of Bim
leads to increased retinal vascular density [49]. Bim is also required for the apoptotic death of tumor
endothelial cells and for inhibition of tumor growth by VEGF neutralization [50]. These findings may
imply an additional role of Reg gene expression at fracture sites; namely, the expression may favor
repair due to improvement of the proliferation/differentiation of endothelial cells around the fracture
site. Further studies are needed to elucidate the function of Reg gene expression in fracture repair,
especially regarding apoptosis and endothelial cell differentiation.

In conclusion, expression of Reg family genes in the rat periosteum was triggered by femoral
fracture, and this expression decreased after 4–6 weeks, when the fracture union was complete.
Therefore, the expression pattern coincided well with the process of fracture healing. Cultured PMSCs
derived from intact femoral bone did not show Reg I expression, but this expression was induced by
the addition of IL-6 to the culture medium. The addition of IL-6 also stimulated the proliferation of the
PMSCs, together with a reduction in the expression of the pro-apoptotic Bim gene. These effects of IL-6
were abolished by transfection of PMSCs with Reg I siRNA. IL-6 is reported to act as an initial signal
for bone fracture; these results may indicate an important role for the IL-6/Reg pathway in regulation
of the osteogenic capability of the periosteum, which leads to fracture healing.

4. Materials and Methods

4.1. Animals

Fischer 344 (F344) rats were purchased from Japan SLC, Inc. (Hamamatsu, Japan). Nine-week-old
male rats were used for the fracture model. Seven-week-old male rats were used as donors for the
in vitro culture experiments. The experimental protocol using these rats was approved by the Animal
Care and Use Committee of Nara Medical University (approval number 11936; 9 March 2017).

4.2. In Vivo Model of Bone Fracture

Twenty F344 male-specific pathogen-free rats were used in this study. Each cage housed
two rats and was equipped with an automatic-water supply apparatus. The rats were anesthetized by
intraperitoneal pentobarbital administration (3.5 mg/100 g body weight). A lateral skin incision was
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performed on the thigh area, and the vastus muscles were carefully divided to expose the femoral bone
without injuring the periosteum. Massive injury to soft tissues around the fracture sites was avoided
by making a small cut at the mid-shaft of the femoral bone with a mini electric circular saw. The cut
did not completely traverse the bone but only scored the bone surface at right angles to the long axis
of the bone. The fracture was then made manually. A Kirschner wire (K-wire) with a threaded tip
(1.4 mm diameter; DePuy Synthes, Zuchwil, Switzerland) was inserted in an intramedullary position
from the femoral condyle to the pelvis using a retrograde method. The distal edge of the wire was
bent to prevent migration of the distal femoral fragment. Thus, the fracture was fixed with a K-wire
from the knee joint (distal femur) to the pelvic bone. We made bilateral fractures in all rats.

4.3. Preparation of Tissue Samples for Gene Expression Analyses after Fracture

Muscle tissue was removed from the fracture area (the mid-shaft of the femoral bone). The bone
with periosteum was then harvested from around the fracture. A 10-mm wide section of periosteum
from the fracture site was detached using a surgical knife. A 5-mm wide bone fragment, without
periosteum, was then harvested from the fracture site using a mini electric circular saw. The harvested
bone sample contained marrow tissue. Similar tissue samples from the mid-shaft were harvested by
the same methods from a control group without fractures.

4.4. In Vitro Culture of Periosteum-Derived Cells

Three F344 male rats were used for the in vitro culture assay. The periosteum was harvested
from both mid-shafts of the intact femoral bones of each rat. The harvested periosteum was treated
for 1 h with 10 mL phosphate-buffered saline (PBS) containing 3 mg/mL collagenase (collagenase
type X filtered; Wako Pure Chemical Industries, Osaka, Japan) and then filtered through 40-µm cell
strainers (Falcon® 40 µcell strainer Cell Strainer 40 µm; Corning, Durham, NC, USA). The filtrates were
placed into T-75 culture flasks (Falcon® Flasks 250 mL, Corning) for primary culture for 10 days [18].
Cultures were maintained in a humidified atmosphere of 95% air and 5% CO2 at 37 ◦C. The culture
medium was renewed three times per week. The medium was a minimal essential medium (MEM;
Nacalai Tesque Inc., Kyoto, Japan) containing 15% fetal bovine serum (FBS; JRH Bioscience, Lenexa,
KS, USA) and a mixture of antibiotics (100 U/mL penicillin, 100 µg/mL streptomycin, and 0.25 µg/mL
amphotericin B; Nacalai Tesque). After 10 days of primary culture, adherent cells with fibroblastic
morphology were released using 0.25% trypsin-ethylenediaminetetraacetic acid (Life Technologies, Inc.,
Burlington, ON, Canada), centrifuged at 900 rpm for 5 min at room temperature and the supernatant
was discarded.

The residue of the primary cultured cells was subcultured in the same medium at
2.0 × 104 cells/well in 24-well plates (Falcon® Multiwell 24 well, Corning) for quantitative real-time
RT-PCR and 3.0 × 103 cells/well in 96-well plates (Falcon® 96 well, Corning) for viable cell counting
using WST-8 assay. The RT-PCR and WST-8 assay methods are described in Sections 4.5 and 4.6,
respectively. After two days of subculturing, the cells were transfected with siRNAs for rat Reg I
or with scrambled siRNA, then 20 ng/mL IL-6 and/or 100 nM Dex were added into the medium,
and the cells were incubated for another 24 h. The treated cells were then used for the real-time
RT-PCR and WST-8 assays. The subculture was also done in 12-well plates in the same medium or
in an osteogenic medium supplemented with 10 nM Dex, 0.28 mM ascorbic acid-2-phosphate, and
10 mM β-glycerophosphate. ALP activity measurements and mineral staining were done according
to our reported methods [18,34]. The concentration of IL-6 in the medium was measured using a Rat
IL-6 Platinum ELISA (enzyme-linked immunosorbent assay) kit (Bender MedSystems GmbH, Vienna,
Austria) according to the supplier’s instructions.

The Silencer® Select predesigned siRNAs for rat Reg I and the scrambled siRNA were purchased
from Life Technologies (Carlsbad, CA, USA). The sense sequence of siRNA for the rat Reg I
was 5′-GAAAUGGAGAGAUAACAGUtt-3′. The cells were transfected with the siRNAs using
Lipofectamine® RNAiMAX Reagent (Life Technologies), as previously described [19–21,51–53].
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Cells were transfected with siRNAs at 5 pmol/well in 24-well plates for real-time PCR and 1 pmol/well
in 96-well plates for WST-8 assays. IL-6 (Interleukin-6 Rat recombinant) was purchased from Wako
Pure Chemical Industries, and Dex was purchased from Sigma (St. Louis, MO, USA).

4.5. Quantitative Real-Time RT-PCR

Total RNA from in vivo samples was isolated using the Isogen RNA Extraction Kit (Nippon Gene,
Toyama, Japan), and total RNA from in vitro cultured PMSCs was isolated using the RNeasy® Plus
Mini Kit (Qiagen, Hilden, Germany), as previously described [19,20,44,51–53]. The corresponding
cDNA was synthesized using total RNA (2–5 µg) as a template and a High Capacity cDNA Reverse
Transcription Kit (Applied Biosystems Inc., Foster City, CA, USA) was used to produce a template
for real-time PCR. The real-time quantitative PCR was performed using a KAPA SYBR® Fast qPCR
kit (KAPA Biosystems, Boston, MA, USA) or TaqMan® Fast Universal PCR Master Mix (Applied
Biosystems) using a Thermal Cycler Dice Real Time System (Takara, Otsu, Japan), Applied Biosystems
StepOneTM, or StepOnePlusTM Real-Time PCR System (Japan Applied Biosystems Inc., Tokyo, Japan)
with the appropriate primers. The PCR primers were synthesized by Nippon Gene Research
Laboratories (Sendai, Japan), and their sequences are listed in Table 1. The thermal cycling conditions
were 3 min at 95 ◦C for activation of polymerase, followed by 40–45 cycles of 3–10 s at 95 ◦C for
denaturation, 5 s at 60 ◦C for annealing, and 20 s at 60–72 ◦C for extension. Target cDNAs were cloned
into pBluescript SK(-) plasmid (Stratagene, La Jolla, CA, USA), and sequential 10-fold dilutions from
102–107 copies/µL were prepared. The serial dilutions were run to verify the specificity and to test
the sensitivity of the SYBR Green-based real-time RT-PCR. Differences in the efficiency of reverse
transcription between the samples were adjusted by normalizing the level of target mRNA to the
mRNA level of GAPDH or ribosomal protein S15 (Rps15).

Table 1. Primers used for real-time RT-PCR of rat mRNA(s).

Primer Sequence

Reg I Forward 5′-GGACACTGGGTATCCTAACAATTCC-3′ (M18962)
Reg I Reverse 5′-CTCTCCATTTCTTGTATCCTGAGTTTG-3′ (M18962)
Pap I/Reg II Forward 5′-AAAATACCCTCTGCACGCATTAG-3′ (NM_053289)
Pap I/Reg II Reverse 5′-GGGCATAGCAGTAGGAGCCATA-3′ (NM_053289)
Pap II/Reg III Forward 5′-CCAGAAGGCAGTGCCCTCTA-3′ (L10229)
Pap II/Reg III Reverse 5′-GCAGTAAGAACGATAAGCCTTGGA-3′ (L10229)
Pap III Forward 5′-TGTGCCCACTTCACGTATCAG-3′ (L_20869)
Pap III Reverse 5′-GGCATAGCAATAGGAGCCATAGG-3′ (L_20869)
Reg IV Forward 5′-CTGCTGAGCTGGGTAGCTGGCCC-3′ (AB164049)
Reg IV Reverse 5′-TTTATCCTTGGGGTTCATCTCAG-3′ (AB164049)
Extl3 Forward 5′-CAATCGGTTCTTGCCCTGG-3′ (NM_020097)
Extl3 Reverse 5′-GGAAGTTCATGGCGATATCC-3′ (NM_020097)
CDK4 Forward 5′-TTTGATCTCATTGGATTGCC-3′ (NM_053593)
CDK4 Reverse 5′-AGGTCAGCATTTCCAGCAG-3′ (NM_053593)
E2F Forward 5′-TTCTTGGAGCTGCTGAGCC-3′ (NM_001100778)
E2F Reverse 5′-TGGTGATGTCATAGATGCG-3′ (NM_001100778)
Bcl-2 Forward 5′-CGGGAGAACAGGGTATGA-3′ (NM_016993)
Bcl-2 Reverse 5′-CAGGCTGGAAGGAGAAGAT-3′ (NM_016993)
Bcl-xL Forward 5′-TCTAACATCCCAGCTTCAT-3′ (NM_001033672)
Bcl-xL Reverse 5′-GCAATCCGACTCACCAATA-3′ (NM_001033672)
Bmf Forward 5′-GAGACGCTGTCCTGGAGTCA-3′ (NM_139258)
Bmf Reverse 5′-GGCCTTGTCTTCCTGGCTTA-3′ (NM_139258)
Bim Forward 5′-GCCAAGCAACCTTCTGATGTA-3′ (NM_171989)
Bim Reverse 5′-CAGTGCCTTCTCCAGACCAG-3′ (NM_171989)
Rig/rpS15 Forward 5′-ACGGCAAGACCTTCAACCAG-3′ (NM_001018)
Rig/rpS15 Reverse 5′-ATGGAGAACTCGCCCAGGTAG-3′ (M_001018)
GAPDH Forward 5′-AACGACCCCTTCATTGACCTC-3′ (NM_017008)
GAPDH Reverse 5′-CCTTGACTGTGCCGTTGAACT-3′ (NM_017008)
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4.6. Measurement of Viable Cell Numbers by Tetrazolium Salt Cleavage

The viable cell numbers were determined using a Cell Counting Kit-8 (WST-8; Dojindo,
Mashiki-machi, Japan) according to the previously described method based on tetrazolium reductase
activity [19,20,45,53]. Briefly, WST-8 solution was added to cells in 96-well plates (10 µL in 100 µL
culture medium), and the cells were incubated for 2 h at 37 ◦C in a humidified atmosphere of 95% air
and 5% CO2. After incubation, the optical density of each well was read at 450 nm (reference wave
length at 650 nm) using a SpectraMax M2 instrument (Molecular Devices, Sunnyvale, CA, USA).

4.7. Data Analysis

Multiple comparisons regarding Reg gene expressions in the in vivo model were evaluated by
one-way analysis of variance with post-hoc multiple comparisons using the Tukey test. A value of
p < 0.05 was considered statistically significant. The WST-8 assay results were analyzed using the
Mann-Whitney U-test. A comparison between the two groups was evaluated by a Student’s t test
using GraphPad Prism (GraphPad Software, La Jolla, CA, USA).
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Abbreviations

TGF Transforming growth factor
Runx2 Runt-related transcription factor 2
Reg Regenerating gene
Dex Dexamethasone
IL-6 Interleukin-6
RT-PCR Reverse transcription-polymerase chain reaction
Extl3 Reg protein receptor
PMSC Periosteum-derived mesenchymal stem cell
ALP Alkaline phosphatase
WST-8 2-(2-Methoxy-4-nitrophenyl)-3-(4-nitrophenyl)-5-(2,4-disulfophenyl)-2H-tetrazoliummonosodium salt
CDK4 Cyclin-dependent kinase
Bcl-2 B Cell lymphoma 2
Bcl-xL B-Cell lymphoma-extra large
Bmf Bcl-2-Modifying factor
Bim Bcl-2-Like protein 11
MSC Mesenchymal stem cells
FHL2 Four and a half LIM domains protein 2
VEGF Endothelial growth factor
siRNA Small interfering RNA
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