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Preterm birth is associated with dysconnectivity of structural brain networks and is a leading cause of neurocognitive impairment in
childhood. Variation in DNA methylation is associated with early exposure to extrauterine life but there has been little research ex-
ploring its relationship with brain development. Using genome-wide DNA methylation data from the saliva of 258 neonates, we in-
vestigated the impact of gestational age on themethylome and performed functional analysis to identify enriched gene sets from probes
that contributed to differentially methylated probes or regions. We tested the hypothesis that variation in DNA methylation could
underpin the association between low gestational age at birth and atypical brain development by linking differentially methylated
probes with measures of white matter connectivity derived from diffusion MRI metrics: peak width skeletonized mean diffusivity,
peak width skeletonized fractional anisotropy and peak width skeletonized neurite density index. Gestational age at birth was asso-
ciated with widespread differential methylation at term equivalent age, with genome-wide significant associations observed for 8870
CpG probes (P, 3.6×10−8) and 1767 differentially methylated regions. Functional analysis identified 14 enriched gene ontology
terms pertaining to cell–cell contacts and cell–extracellular matrix contacts. Principal component analysis of probes with genome-
wide significance revealed a first principal component that explained 23.5% of the variance in DNA methylation, and this was nega-
tively associated with gestational age at birth. The first principal component was associated with peak width of skeletonized mean
diffusivity (β=0.349, P= 8.37×10−10) and peak width skeletonized neurite density index (β= 0.364, P=4.15× 10−5), but not
with peak width skeletonized fraction anisotropy (β=−0.035, P= 0.510); these relationships mirrored the imaging metrics’ associa-
tions with gestational age at birth. Low gestational age at birth has a profound and widely distributed effect on the neonatal saliva
methylome that is apparent at term equivalent age. Enriched gene ontology terms related to cell–cell contacts reveal pathways that
could mediate the effect of early life environmental exposures on development. Finally, associations between differential DNAmethy-
lation and image markers of white matter tract microstructure suggest that variation in DNAmethylation may provide a link between
preterm birth and the dysconnectivity of developing brain networks that characterizes atypical brain development in preterm infants.
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Graphical Abstract

Introduction
Preterm birth, defined as birth at,37 weeks of gestation, af-
fects around 11%of births worldwide1 and is a leading cause
of neurodevelopmental and cognitive problems that extend
across the life course. These include autism spectrum dis-
order, social difficulties, language impairment, attention-
deficit hyperactivity disorder, reduced intelligence quotient,
educational underachievement and psychiatric diagnoses.2–9

The neural phenotypes that underlie long-term functional
impairment include diffuse white matter injury and subse-
quent dysmaturation of white matter and grey matter
neuroaxonal structures, collectively termed the ‘encephalop-
athy of prematurity’.10 A consequence of the encephalopathy
is generalized dysconnectivity of developing structural net-
works, which can be inferred from diffusion MRI (dMRI)
and neurite orientation dispersion and density imaging
(NODDI) during the neonatal period.11–15 Specifically,

normal maturation is characterized by a reduction in mean
diffusivity (MD) and increases in both fractional anisotropy
(FA) and neurite density index (NDI) in white matter; but
MD is increased, and FA and NDI are decreased in preterm
infants at term equivalent age, comparedwith control infants
born at term.16 These changes reflect an increase in water
content and a decrease in white matter organization in pre-
term infants. The peakwidth of skeletonizedmean diffusivity
(PSMD) is a method for histogram-based calculation of
MD distribution across the entire white matter skeleton; it
provides a measure of generalized white matter microstruc-
ture, is robust to scanner variation and is predictive of cogni-
tion in later life.17–19 In previous work, we extended the
histogram model to neonatal data and included other
dMRI and NODDI metrics. We found that PSMD and
peakwidth skeletonized neurite density index (PSNDI) are al-
tered in preterm infants at term equivalent age and that
histogram-based measures have utility for investigating
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upstream determinants of dysmaturation such as systemic
inflammation.20,21

The mechanisms that link the environmental stress of pre-
term birth with atypical brain development are uncertain.
Variation in DNA methylation (DNAm) is a possible mech-
anism; DNAm is involved in the regulation of gene expres-
sion and cell fate during foetal brain development.22

Alterations in DNAm contribute to the pathogenesis of
neurodevelopmental disorders [Rett syndrome,23

Immunodeficiency, Centromeric region instability, Facial
anomalies (ICE) syndrome24 and Angleman and Prader–
Willi syndromes].25 There is growing evidence that differen-
tial DNAm canmediate the effect of environmental pressures
on brain structure and function across the life course.26,27

The neonatal methylome is sensitive to prenatal factors
such as maternal smoking,28 maternal body mass index,29

as well as birth weight.30 It is altered in association with co-
morbidities of preterm birth,26,31,32 and there is some evi-
dence for legacy differences in the methylome two decades
after preterm birth.33 A meta-analysis investigating DNAm
from umbilical cord blood identified widespread differential
methylation associated with GA at birth (across the range
27−42 weeks) affecting 2% of sites and involving both
hypo- and hypermethylation, as measured on the Illumina
450k array.34 However, due to differences in the cellular
composition of samples, epigenetic signatures observed in
different tissues are likely to be distinct.35 The main cellular
component of saliva, buccal epithelium, may be more repre-
sentative of the brain than umbilical cord blood because of
ectodermal origin.36–38

Here, our first aim was to determine whether low gesta-
tional age at birth was associated with variation in the saliv-
ary methylome at term equivalent age and to characterize the
biological pathways implicated in the DNAm response to
preterm birth. Our second aim was to investigate whether
the DNAm signal of gestational age explains variance in
measures of white matter microstructure at term equivalent
age. We tested the hypotheses that low gestational age at
birth is associated with widespread differential methylation
apparent at the end of neonatal intensive care and that
DNAm contributes to variance in peak width skeletonized
metrics of white matter connectivity.

Materials and methods
Participants
All participants were born at the Royal Infirmary of
Edinburgh, UK. Preterm infants, defined as GA of ,33
weeks of gestation and term infants, defined as GA. 37
weeks based on first-trimester ultrasound scan dating, were
recruited to the Theirworld Edinburgh Birth Cohort. This
is a longitudinal study designed to investigate the effect of
preterm birth on brain development.39 Exclusion criteria
were major congenital malformations, chromosomal abnor-
malities, congenital infection, overt parenchymal lesions

(cystic periventricular leukomalacia, haemorrhagic paren-
chymal infarction) or posthaemorrhagic ventricular dilata-
tion. Ethical approval has been obtained from the National
Research Ethics Service, South East Scotland Research
Ethics Committee (11/55/0061, 13/SS/0143 and 16/SS/
0154). Informed consent was obtained from a person with
parental responsibility for each participant. The study was
conducted according to the principles of the Declaration of
Helsinki. DNAm data were available from 258 neonates,
214 of whom also had successful dMRI acquisition.

DNA extraction and methylation
measurement
Saliva obtained at term equivalent age, on the same day as
MRI acquisition, was collected in Oragene OG-575
Assisted Collection kits, by DNA Genotek, and DNA ex-
tracted using prepIT.L2P reagent (DNA Genotek, ON,
Canada). DNAwas bisulphite converted and methylation le-
vels were measured using Illumina HumanMethylationEPIC
BeadChip (Illumina, San Diego, CA, USA) at the Edinburgh
Clinical Research Facility (Edinburgh, UK). The arrays were
imaged on the Illumina iScan or HiScan platform, and geno-
types were called automatically using GenomeStudio
Analysis software version 2011.1 (Illumina). DNAm was
processed in two batches.

DNA methylation preprocessing
Raw intensity (.idat) files were read into the R environment
(version 3.4.4) using minfi. wateRmelon and minfi were
used for preprocessing, quality control and normaliza-
tion.40,41 The pfilter function in wateRmelon was used to ex-
clude samples with 1% of sites with a detection P-value.
0.05; sites with beadcount ,3 in 5% of samples and sites
with 1%of samples with detection P-value. 0.05. Cross hy-
bridizing probes and probes targeting single nucleotide poly-
morphisms with overall minor allele frequency ≥0.05 were
also removed.42 Control probes were also removed.
Samples were removed if there was a mismatch between pre-
dicted sex (minfi) and recorded sex (n= 3). Data were danet
normalized which includes background correction and dye
bias correction.41 Saliva contains different cells types, includ-
ing buccal epithelial cells and leucocytes. Epithelial cell pro-
portions were estimated with epigenetic dissection of
intra-sample heterogeneity with the reduced partial correl-
ation method implemented in the R package EpiDISH.43

Probes located on sex chromosomes were removed before
analysis. Data from one of each twin pair were removed ran-
domly (n= 20).

MRI acquisition
MRI was obtained at the same appointment as saliva sample
collection for DNAm analysis. Structural and dMRI were
performed on 93 infants using a MAGNETOM Verio
3T clinical MRI scanner (Siemens Healthcare GmbH,
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Erlangen, Germany) and 12-channel phased-array head coil,
whichwere used to acquire dMRI using a protocol consisting
of 11 T2- and 64 diffusion-weighted (b= 750 s/mm2) single-
shot spin-echo echo-planar imaging (EPI) volumes acquired
with 2 mm isotropic voxels (echo time (TE)= 106 ms and
repetition time (TR)= 7300 ms).

One hundred and twenty-one infants were scanned using a
MAGNETOM Prisma 3T clinical MRI scanner (Siemens
Healthcare GmbH) and 16-channel phased-array paediatric
head and neck coil. dMRI was acquired in two separate ac-
quisitions: the first consisted of eight baseline volumes [b=
0 s/mm2 (b0)] and 64 volumes with b= 750 s/mm2; the se-
cond consisted of 8 b0, 3 volumes with b= 200 s/mm2, 6 vo-
lumes with b= 500 s/mm2 and 64 volumes with b= 2500 s/
mm2. An optimal angular coverage for the sampling scheme
was applied.44 In addition, an acquisition of three b0 vo-
lumes with an inverse phase encoding direction was per-
formed. All dMRI volumes were acquired using single-shot
spin-echo EPI with 2-fold simultaneous multislice and
2-fold in-plane parallel imaging acceleration and 2 mm iso-
tropic voxels; all three diffusion acquisitions had the same
parameters (TR/TE 3500/78.0 ms). Images affected by mo-
tion artefact were re-acquired multiple times as required;
dMRI acquisitions were repeated if the signal loss was seen
in three or more volumes.

Infants were fed and wrapped and allowed to sleep natur-
ally in the scanner without sedation. Pulse oximetry, electro-
cardiography and temperature were monitored. Flexible
earplugs and neonatal earmuffs (MiniMuffs, Natus) were
used for acoustic protection. All scans were supervised by a
doctor or nurse trained in neonatal resuscitation.
Structural images were reported by an experienced paediat-
ric radiologist (A.J.Q.)

dMRI preprocessing
Diffusion images that were acquired on the MAGNETOM
Verio scanner were denoised using a Marchenko–
Pastur-principal component analysis (PCA)-based algo-
rithm45–47; eddy current distortion and head movement
were corrected using outlier replacement;48–50 bias field in-
homogeneity correction was performed by calculating the
bias field of the mean b0 volume and applying the correction
to all the volumes.51 FA and MD were calculated from the
dMRI data.

The two dMRI acquisitions from the MAGNETOM
Prisma scanner were first concatenated and then denoised
using a Marchenko–Pastur-PCA-based algorithm45–47;
eddy current, head movement and EPI geometric distortions
were corrected using outlier replacement and slice-to-volume
registration;48–50,52 bias field inhomogeneity correction was
performed by calculating the bias field of the mean b0 vol-
ume and applying the correction to all the other volumes.51

From the dMRI data, we calculated the three eigenvalues
and eigenvectors of the water diffusion tensor, and
NODDI (Bingham distribution) parametric maps using
cuDIMOT [intracellular volume fraction (NDI) and the

overall orientation dispersion index (ODITOT)].
12,13,53 FA

and MD were calculated using single-shell data to match
the Verio scanner.

The peak width of skeletonized water
diffusion parameters
All the subjects were registered to the Edinburgh Neonatal
Atlas (ENA50) using DTI-TK.20 The diffusion tensor derived
maps of each subject (FA andMD)were calculated after regis-
tration; NDI was then propagated to the template space using
the previously calculated transformations. The data were ske-
letonized using the ENA50 skeleton and then multiplied by a
custom mask. Finally, the peak width of the histogram of va-
lues computed within the skeletonized maps was calculated as
the difference between the 95th and 5th percentiles.17,20

Statistical analysis
Epigenome-wide association analyses
Unless otherwise stated, analysis was completed in R version
3.4.4.54 An overview of the analysis pipeline is shown in
Supplementary Fig. 1. Surrogate variable analysis (SVA) of
the data matrix was carried out, to adjust for potential con-
founders such as batch, using the sva function in the sva
package in R.55,56 A fully adjusted model was specified be-
fore SVA to retain signal explained by biological variables
of interest: CpG� gestational age at birth+ age at scan+
birthweight Z-score+maternal smoking+ sex+ epithelial
cells. SVA identified 17 significant surrogate variables
(SVs) which were subsequently included in the analysis.

An epigenome-wide association study (EWAS) was per-
formed using the limma package in R.57 Beta values of
each of 776025 CpG sites were regressed (as dependent vari-
ables) on gestational age (GA) at birth using linear regres-
sion. Covariates were added to adjust for sex, birthweight
Z-score, age at sample collection, maternal smoking, esti-
mated epithelial cell proportions and 17 surrogate variables.
A significance threshold of 3.6× 10−8 was selected, which
represents genome-wide significance.58

Differentially methylated region analysis
Differentially methylated regions (DMRs) were assessed
using the dmrff function in the dmrff package in R.59 Here,
a differentially methylated region is a region containing
two or more sites separated by≤500 bp with EWAS analysis
P≤ 0.05 and methylation changes in a consistent direction.
Following dmrff’s subregion selection step, DMRs with
Bonferroni-adjusted P≤0.05 were significant.

Gene set testing
Gene set enrichment analysis was carried out using the gene
ontology (GO) and Kyoto encyclopedia of genes and gen-
omes (KEGG) databases, and using the gometh function in
missMethyl package, which controls for multiple probe
bias.60 We performed an analysis that included those sites
that reached genome-wide significance in EWAS and a
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second analysis that also incorporated those sites that con-
tributed to differentially methylated regions.

Principal component analysis
Principal component analysis (PCA) was conducted on CpG
probes that reached genome-wide significance, using the
prcomp function in R. CpGswere precorrected for the effects
of biological covariates and surrogate variables via linear re-
gression. The scree plot was visually inspected to select a
principal component (eigenvalue. 1) to be carried forward
for subsequent analysis.

Linear regression between DNAm and peak width
skeletonized metrics
Pearson’s correlation coefficient was used to assess the rela-
tionship between the first PC identified from PCA and gesta-
tional age at birth. This PC was used in linear regression
models, as an independent variable, to test the associations be-
tween peak width of skeletonised mean diffusivity (PSMD),
peak width of skeletonised neurite density index (PSNDI)
and peak width of skeletonised fractional anisotropy (PSFA)
with DNAm, conducted in R version 4.0.1.54 In models test-
ing PSMD and PSFA, MRI scanner was included as a binary
covariate as MRI data from two scanners were included.
PSNDIwas only available from data acquired on one scanner,
so it was not necessary to include the scanner as a covariate.
We report standardized regression coefficients and P-values.

Data availability
The atlas with templates can be found at https://git.ecdf.ed.
ac.uk/jbrl/ena and the code necessary to calculate histogram-
based metrics is at https://git.ecdf.ed.ac.uk/jbrl/psmd.
Requests for original image data will be considered through
the BRAINS governance process: www.brainsimagebank.ac.
uk.61 DNAm data available upon request from Theirworld
Edinburgh Birth Cohort, University of Edinburgh (james.
boardman@ed.ac.uk or https://www.tebc.ed.ac.uk/2019/
12/data-access-and-collaboration/). The DNAm and

metadata are not publicly available due to them containing
information that could compromise participant consent.

Results
Cohort
DNAm data were collected from 311 neonates. Twenty-nine
did not meet DNAm preprocessing QC criteria and were ex-
cluded. One participant with a congenital abnormality was
removed, as were three participants whose sex predicted
from DNAm data did not match their recorded sex. This
group of 278 neonates included 20 sets of twins. After ran-
dom removal of one twin from each set, there was no evi-
dence of imbalance for birthweight between the twins that
were removed and the twins that remained in the sample
(t=−0.157, P= 0.88) or for sex (χ2= 0.417, P= 0.52).

The study group consisted of 258 neonates: 155 partici-
pants were preterm (gestational age range 23.28–34.84) and
103 were infants born at full term (gestational age range
36.42–42.14), see Table 1 for participant characteristics and
Supplementary Fig. 2 for participant flow.Among the preterm
infants, 38 (25%) had bronchopulmonary dysplasia (defined
as need for supplementary oxygen ≥36 weeks gestational
age), 9(6%) developed necrotizing enterocolitis requiring
medical or surgical treatment and 31 (20%) had an episode
of postnatal sepsis defined as either blood culture positivity
with a pathogenic organism, or physician decision to treat
for≥5 days in the context of the growth of coagulase-negative
staphylococcus from blood or a negative culture. Of the 258
participants with DNAm data, 214 also had MRI data.

Widespread differential saliva DNAm
in association with gestational age at
birth
We conducted an epigenome-wide association study
whereby CpG methylation at 776 025 sites was regressed

Table 1 Participant characteristics

Preterm infants (n=155) Term infants (n= 103) P-valuea

Gestational age at birth/weeks (range) 28.84 (23.28–34.84) 39.7 (36.42–42.14) ,0.05
Gestational age at scan/weeks (range) 40.56 (37.70–45.14) 42.27 (39.84–47.14) ,0.05
Birth weight/g (range) 1177 (500–2100) 3482 (2346–4670) ,0.05
Birth weight Z-score (range) −0.19 (range −3.13–1.58) 0.43 (range −2.30–2.96) ,0.05
Sex: female (%) 75 (48) 44 (43) 0.37
Maternal folate supplementation in pregnancy (%) 136 (88) 86 (83) 0.33
Maternal age (years) 31.1 (17–44) 33.7 (19–48) ,0.05
Maternal tobacco smoker in pregnancy (%) 29 (19) 2 (2) ,0.05
Maternal diabetes (%) 10 (6) 6 (6) 0.84
Pregnancy-induced hypertension (%) 22 (14) 7 (7) 0.07
Highest maternal qualification ,0.05
None 4 (3) 0 (0)
High school 43 (28) 7 (7)
College/university 106 (68) 95 (92)

aStudent’s t-test was used to analyse continuous variables and χ2 to analyse proportions. There were three missing for maternal qualifications (two preterm, one term).
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on gestational age at birth, controlling for birthweight
Z-score, infant sex, age at sample collection, maternal
smoking, estimated epithelial cell proportion and surrogate
variables. The genomic inflation factor was 1.72
(Supplementary Fig. 3). Differential methylation in relation
to gestational age at birth was identified at 8870 CpG sites
at genome-wide significance (P,3.6×10−8), Fig. 1.Of these,
4250 (47.9%) sites demonstrated a positive association with
gestational age, while 4620 (52.1%) were negatively asso-
ciated. Following Bonferroni adjustment, 1767 DMRs corre-
sponding to 4664 CpG sites were significant at P, 0.05. Of
these, 11 had 10 or more CpG sites contributing to the
DMR. The largest DMRmapped to a genomic region that en-
codes two genes:NNAT and BLCAP. The 29 probes mapped
to this region were all located within islands and positively as-
sociated with gestational age at birth, indicating that longer
gestation corresponds to hypermethylation. Of the 10 most
significant differentially methylated probes (DMPs), three
probes were localized to the IRX4 gene, one probe to the
GAL3ST4 gene, and one to LOXL4 (Table 2;
Supplementary Fig. 4). The probes with the largest absolute
magnitude effect size (top five hypermethylated and hypo-
methylated) were mapped to the following genes: IRX2,
SMIM2, INTS1, HEATR2, ZBP1 and UBXN11 (Table 3).

Pathways implicated in functional
testing
Based on the 8870 sites thatmet the genome-wide significance
threshold (P, 3.6×10−8), no KEGG terms remained signifi-
cant following false discovery rate (FDR) correction for mul-
tiple comparisons. Two GO terms were enriched following

FDR correction: one for anchoring (GO:0070161; q=
0.0062) and one for adherens junction (GO:0005912; q=
0.0062). In an analysis that incorporated all 11 752 distinct
CpGs from both EWAS and DMR analysis, 14 GO terms
were enriched (Table 4).

Gestational age at birth is associated
with metrics of white matter
microstructure in neonates
DNAm and PSMD and PSFA were both available for 214 in-
fants (Supplementary Table 1), and DNAm and PSNDI were
available for the 121 infants from Phase 2 (Supplementary
Table 2). Gestational age at birth was significantly associated
with PSMD (β=−0.602, P,2× 10−16) and PSNDI (β=
−0.594, P= 2.17× 10−9) but not with PSFA (β=−0.005
P= 0.933) (Fig. 2A and B; Table 5).

Differential DNAm is associated with
white matter microstructure
The first unrotated PC (PC1) derived from the 8870 genome-
wide significant CpGs accounted for 23.5% of the variance,
and the second PC accounted for 2.5% (Fig. 3A). There was
no evidence of batch effects in the PCs (Supplementary Fig.
5). PC1 was significantly correlated with gestational age at
birth (r=−0.622; P, 2.2× 10−16) (Fig. 3B). PC1 was also
positively associated with PSNDI (β= 0.364, P= 4.15×
10−5), and in models adjusted for scanner it was positively
associated with PSMD (β= 0.349, P= 8.37× 10−10) but
not PSFA (β=−0.035, P= 0.510) (Table 5). All models
were adjusted for gestational age at scan.

Figure 1 Manhattan plot for the significance [−−−−−log10 (P-value) used for visualization purposes] of the association between
gestational age at birth (weeks) and DNA methylation, following adjustment for covariates and surrogate variables. The
solid horizontal line shows the genome-wide significance level and red dots above this line represent probes that are significant at this threshold
(P, 3.6× 10−8).
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Discussion
By studying a unique database of DNA linked to brain im-
aging in a population of preterm and term infants, we have
identified extensive differential methylation in association
with gestational age at birth and revealed an association be-
tween the principal axis of methylation and brain dysma-
turation within the same sample. Differentially methylated
regions and probes were distributed widely across the gen-
ome, indicating that gestation duration has a global effect
on DNAm. Gene enrichment analysis of changes associated
with gestational age identified gene sets pertaining to cell
contacts and cytoskeleton. A single principal component
that explained 23.5% of the variance in differential DNAm
linked to preterm birth was closely associated with markers
of generalized dysconnectivity across the white matter
skeleton.

The data are consistent with studies that have reported as-
sociations between length of gestation and genome-wide
variation in DNAm within foetal brain22 and umbilical
cord blood;34,62 and widely distributed variation is reported
in association with postmenstrual age at the sampling of pre-
term infants (a proxy for gestational age at birth).31 The sig-
nature we identified in saliva sampled at term equivalent age
included 233 probes that were previously shown to be differ-
entially methylated in association with gestational age in a
meta-analysis of umbilical cord blood samples that reported
8899 gestation-dependent CpGs.34 The limited overlap

could be explained by differences in the cellular composition
of assessed tissues, different array types used to measure
DNAm, or due to the time of sampling. Cord blood is col-
lected at birth and so methylation changes at this time reflect
foetal maturity and/or prenatal experience, whereas the
methylation signature at term equivalent age reflects the allo-
static load of early postnatal experiences, as well as the pre-
natal environment. We chose to sample at term equivalent
age because postnatal co-morbidities of preterm birth and
NICU care practices such as painful stress exposures alter
DNAm profiles, and because cumulative DNAm variations
over this time period may link exposure to behavioural out-
come in preterm infants.32,63,64

Functional analyses of DMPs identified two enriched GO
terms, for adherens and anchoring junctions. When distinct
probes that contributed to bothDMPs andDMRswere com-
bined, GO analysis identified an additional 14 terms related
to cell–cell adhesion, cell adhesions with the extracellular
matrix and signalling from the extracellular membrane; 12
of these were also identified in themeta-analysis of gestation-
al age effects on DNAm obtained at birth from umbilical
cord blood.34 Themost significantDMRmapped to a site en-
coding two genes: NNAT and BLCAP. NNAT encodes the
neural fate initiator neuronatin, the expression of which
decreases throughout development;65 there was a positive as-
sociation with increasing gestational age at birth.
Hypomethylation ofNNAT is associated with a correspond-
ing increase in the expression of neuronatin.66 BLCAP

Table 2 Most significant probes associated with gestational age at birth

Probe Chromosome P-value Gene Direction of effect Coefficienta Standard error Relation to island

cg03558436 5 1.26× 10−44 − + 1.02× 10−2 5.82× 10−4 Open Sea
cg04466438 9 1.13× 10−42 − + 7.55× 10−3 4.47× 10−4 Open Sea
cg23701943 10 1.11× 10−41 LOXL4 + 1.04× 10−2 6.29× 10−4 Open Sea
cg18172877 5 2.31× 10−39 IRX4 − −6.12× 10−3 3.85× 10−4 Island
cg04180086 5 3.22× 10−39 IRX4 − −7.36× 10−3 4.64× 10−4 Island
cg22645539 7 1.22× 10−38 GAL3ST4 − −8.15× 10−3 5.20× 10−4 North Shelf
cg17774559 5 2.09× 10−38 IRX4 − −6.35× 10−3 4.06× 10−4 Island
cg17582074 4 4.12× 10−38 − + 5.25× 10−3 3.38× 10−4 Open Sea
cg08915267 13 6.01× 10−38 − − −5.15× 10−3 3.32× 10−4 North Shelf
cg04441405 5 6.60× 10−38 − − −1.10× 10−2 7.13× 10−4 Island

aCoefficient corresponds to methylation change per week of gestation.

Table 3 Probes with the largest absolute magnitude of association with gestational age at birth

Probe Chromosome P-value Gene Direction of effect Coefficienta Standard error Relation to island

cg10402321 1 3.11× 10−36 UBXN11 − −1.14× 10-2 7.60× 10−4 Open Sea
cg04441405 5 6.60× 10−38 − − −1.10× 10−2 7.13× 10−4 Island
cg07167946 5 1.94× 10−32 IRX4 − −9.85× 10−3 7.13× 10−4 Island
cg07803375 7 3.6× 10−22 HEATR2 − −9.08× 10−3 8.50× 10−4 North Shelf
cg14670058 13 9.24× 10−23 SMIM2 − −9.07× 10−3 8.35× 10−4 Open Sea
cg16051275 6 7.53× 10−36 − + 1.23× 10−2 8.30× 10−4 Open Sea
cg11460314 20 4.21× 10−20 ZBP1 + 1.24× 10−2 1.24× 10−3 Open Sea
cg04118102 17 1.00× 10−30 − + 1.31× 10−2 9.86× 10−4 South Shelf
cg17368297 16 1.55× 10−25 − + 1.40× 10−2 1.20× 10−3 Open Sea
cg14576951 7 6.73× 10−30 INTS1 + 1.44× 10−2 1.10× 10−3 Island

aCoefficient corresponds to methylation change per week of gestation.
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Table 4 Gene ontology terms that were significantly enriched in an analysis of all probes that contributed to DMPs
and DMRs

Gene
ontology Term

FDR Q
value

Number of probes associated
with the gene ontology/total
number of probes in the

ontology Type Description

GO:0005912 Adherens
junction

0.00002317 217/545 Cellular
component

A cell–cell junction composed of the
epithelial cadherin–catenin
complex.

GO:0005925 Focal adhesion 0.00907565 154/404 Cellular
component

A cell–substrate junction that anchors the
cell to the extracellular matrix and that
forms a point of termination of actin
filaments.

GO:0007155 Cell adhesion 0.01728820 428/1413 Biological
process

The attachment of a cell, to another cell
or to the extracellular matrix, via cell
adhesion molecules.

GO:0007167 Enzyme-linked
receptor
protein signalling
pathway

0.01243116 322/1043 Biological
process

A series of molecular signals initiated by
the binding of an extracellular ligand to
a receptor on the target cell plasma
membrane, where the receptor
possesses catalytic activity or is closely
associated with an enzyme such as a
protein kinase, and ending with
regulation of a downstream cellular
process, e.g. transcription

GO:0007169 Transmembrane
receptor protein
tyrosine
kinase signalling
pathway

0.00907565 237/719 Biological
process

A series of molecular signals, initiated by
the binding of an extracellular ligand to
a tyrosine kinase receptor on the
target cell plasma membrane, ending
with regulation of a downstream
cellular process.

GO:0022610 Biological adhesion 0.01266030 431/1420 Biological
process

The attachment of a cell to a substrate,
another cell, including intracellular
attachment betweenmembrane regions.

GO:0030029 Actin filament-based
process

0.03635020 257/756 Biological
process

Any cellular process that depends upon,
or alters, the actin cytoskeleton
(comprising actin filaments and their
associated proteins).

GO:0030036 Actin cytoskeleton
organization

0.04472556 229/664 Biological
process

The assembly, arrangement of constituent
parts or disassembly of cytoskeletal
structures comprising actin filaments
and their associated proteins.

GO:0030054 Cell junction 0.00907565 422/1296 Cellular
component

Forms a specialized region of connection
between two or more cells, or
between a cell and the extracellular
matrix, or between two
membrane-bound components of a
cell, such as flagella.

GO:0030055 Cell–substrate
junction

0.00907565 155/411 Cellular
component

A cell junction between a cell and the
extracellular matrix.

GO:0034330 Cell junction
organization

0.04159681 119/290 Biological
process

The assembly, arrangement of
constituent parts, or disassembly of a
cell junction. A cell junction is a
specialized region of connection
between two cells or between a cell
and the extracellular matrix

GO:0045296 Cadherin binding 0.00207297 130/331 Molecular
function

Interacting selectively and non-covalently
with cadherin, a Type I membrane
protein involved in cell adhesion.

GO:0050839 Cell adhesion
molecule binding

0.00207297 186/499 Molecular
function

Interacting selectively and non-covalently
with a cell adhesion molecule.

GO:0070161 Anchoring
junction

0.00002317 222/561 Cellular
component

A cell junction that mechanically
attaches a cell, and its
cytoskeleton, to neighbouring
cells or the extracellular matrix.

Terms in bold were enriched in an analysis of 8870 genome-wide significant DMPs.
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encodes the bladder cancer-associated protein. This is a tu-
mour suppressor that induces apoptosis, with high expres-
sion in brain and B lymphocyte. The candidacy of this
locus, encoding NNAT and BLCAP, as a region of interest
whose expression may be modified by perinatal exposures
is supported by previous EWAS of gestational age, maternal
body mass index, maternal smoking and schizophre-
nia.22,29,62,67–70 In addition, BLCAP was found to have re-
duced methylation in placental samples from women who
had preeclampsia.71

Probes that demonstrated the largest magnitude of effect
in association with gestational age mapped to genes previ-
ously associated with gestational age or maternal risk factors
in EWAS.70 Hypermethylated probes were found in genes in-
cluding ZBP1, which was identified in EWAS investigating
gestational age and hypertensive disorders of preg-
nancy;62,69,72 INTS1, which has been identified in EWAS
of gestational age, hypertensive disorders of pregnancy, ma-
ternal body mass index, birthweight and breastfeeding dur-
ation.22,30,62,67,72,73 Hypomethylated probes were found in
genes including UBXN11, which was identified in studies
of gestational age;22,62 and IRX4. Three of the 10 most sig-
nificant DMPs mapped to the IRX4 gene, all of which

displayed a negative associationwith gestational age at birth.
IRX4 is associated with cardiac development in vertebrates,
including humans.74 Its homologues have been implicated in
retinal axon guidance in zebrafish, and neural patterning in
Xenopus,75,76 and it has been identified in previous EWAS
of hypertensive disorders of pregnancy72 and prenatalmater-
nal stress.77

The novel pathways and genes implicated by EWAS stud-
ies of gestational age could provide a strong empirical basis
for the selection of genes in targeted analyses in association
with neuroimaging.27 For example, one of the genes identi-
fied in our EWAS has been implicated in neurodevelopmen-
tal disorders; biallelic mutations in INTS1 have been
associated with a rare neurodevelopmental syndrome char-
acterized by intellectual disability.78–80

We used metrics of generalized white matter connectivity
to assess relationships between DNAm and brain develop-
ment because generalized dysconnectivity of structural net-
works is a hallmark of preterm brain dysmaturation.10,14,81

PSNDI and PSMD were strongly associated with the first
principal component of gestational age-dependent variation
in DNAm but PSFA was not. This suggests that variations
in DNAm could contribute to the higher variability in water

Figure 2 Scatter plots with regression lines and 95% confidence intervals showing the relationships between gestational age at
birth (weeks) and DNAm with PSMD and PSNDI, where peak width is the difference between the 95th and 5th centile of
histogram values across the whitematter skeleton. The associations between gestational age (weeks) and PSMD and PSNDI are shown in
(A) and (B), respectively. The relationships between DNAm PC1 and PSMD and PSNDI are shown in (C) and (D), respectively. PS metrics are
residualized for gestational age at scan; PSMD is additionally residualized for scanner variable.
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content and intra-axonal volume that characterize preterm
brain dysmaturation.20We have previously reported that dif-
ferential DNAm is associated with FA of the genu of the cor-
pus callosum and tract shape of the right corticospinal
tract;26 it ismost likely thatwe did not observe an association
between gestational age or DNAm with PSFA because this
metric is subject to histogram shift,20 meaning that although
there are groupwise differences in FA values across the skel-
eton, the spread of values is the same. Associations between
gestational age at birth and both DNAm and image markers
of dysconnectivity, and between DNAm and image features,
suggest that differential DNAmcontributes, in part, to the re-
lationship between gestational age and brain network dys-
connectivity in preterm infants. However, some of the
DNAmsignaturesmay be related to underlying causes of pre-
maturity that operate in foetal life, such as infection or

preeclampsia. We cannot rule out that such changes are in-
volved in the aetiology of preterm birth, which might pre-
clude them from mediating specific associations with brain
development.

The strengths of this study are that we studied a popula-
tion of preterm and term infants across the gestational age
range of 23–42 weeks, who were uniquely phenotyped
with DNAm and dMRI. We sampled after the period of
NICU care to capture the allostatic load of preterm birth.
We measured DNAm from neonatal saliva samples, which
has consistency with brain DNAm patterns and is non-
invasive. The Illumina EPIC platform provided extensive
coverage of the methylome (850 000 sites) and we controlled
for cell composition. Finally, we used an image phenotype
that is robust to scanner variation.17 There are some limita-
tions. First, control for cell composition was based on esti-
mation of cell proportions rather than measurement, so we
cannot rule out the possibility that some of the signal identi-
fied was related to variation in cell composition. Second, me-
diation analysis to assess causation was not possible because
the association between the DNAmPC1 and peakwidth ske-
letonized metrics might result from the DNAm PC being de-
rived fromCpG sites that are associated with gestational age,
so variance attributable to the mediating variable cannot be
assumed. This could be addressed by out-of-sample valid-
ation, which will require other neonatal cohorts with both
saliva methylome and dMRI data. Cohorts, with such
data, that recruit neonates from across the gestational age
continuum would also provide valuable replication of ana-
lyses described here. There was also some evidence of infla-
tion of test statistics based on the genomic inflation factor.
However, the genomic inflation factor is thought to provide
an overestimate of inflation and corrections based on it may

Table 5 Associations between global metrics of white
matter microstructure, DNAm first principal
component (left) and gestational age (right)

PS metric

Metric∼PC1 DNAm
+++++ age at scan+++++
scanner variablea

Metric∼ gestational
age at birth+++++ age at

scan+++++ scanner
variablea

β P β P

PSFA −0.035 0.510 −0.005 0.933
PSMD 0.349 8.37×××××10−−−−−10 −−−−−0.602 ,2××××× 10−−−−−16

PSNDI 0.364 4.15×××××10−−−−−5 −−−−−0.594 2.17××××× 10−−−−−9

aScanner variable was included in the model for PSFA and PSMD but not PSNDI because
NODDI imaging was carried out for a subset using a single MRI scanner (n= 121). Bold
print signifies significant associations.

Figure 3 Variation in DNAm probes selected by EWAS captured by principal component analysis, and the relationship with
gestational age (weeks). A. A scree plot showing percentage of variance accounted for by the first 10 components, with a sharp elbow after the
first PC, accounting for 23.5% of variance. B. A scatter plot, with regression line, showing the relationship between gestational age at birth (weeks)
and PC1 (r=−0.622) with 95% confidence intervals.
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be overly conservative.82 The value of the genomic inflation
factor was also similar to those previously reported in neo-
natal cohorts.34 In addition, visual inspection of our results
viaManhattan plots suggests that our finding, of widespread
differences in DNAm in relation to gestational age at birth, is
in line with previous studies that have investigated this in
cord blood and foetal brain tissue.22,34 Finally, preterm birth
itself can reflect maternal health or circumstance; in this co-
hort, mothers of preterm infants were more likely to have
pregnancy-induced hypertension and the control mothers
were more likely to have college or university qualifications.
It is possible that these, or other maternal factors associated
with preterm birth such as infection, chronic disease, poor
nutrition and alcohol, tobacco or drug use, could influence
the neonatal methylome at term equivalent age. A large pro-
spective study with longitudinal sampling from birth would
be required to test the hypothesis that maternal factors con-
tribute to changes in the methylome apparent after neonatal
intensive care.

In conclusion, gestational age at birth has a profound and
widely distributed impact on the neonatal saliva methylome
at term equivalent age, which reflects the allostatic load of
preterm birth itself and postnatal exposures during neonatal
intensive care. GO terms related to cell–cell contacts were en-
riched, indicating that cell contacts and organization are im-
plicated in the phenotype. Associations between DNAm and
PSMD and PSNDI suggest that variations in DNAm could
contribute to white matter dysconnectivity commonly seen
in preterm infants, and this analysis identified several genes
and gene regions that could provide further insight into the
molecular mechanisms bywhich early exposure to extrauter-
ine life influences neurodevelopment.
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