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Abstract: Smart walkers are commonly used as potential gait assistance devices, to provide physical
and cognitive assistance within rehabilitation and clinical scenarios. To understand such rehabilitation
processes, several biomechanical studies have been conducted to assess human gait with passive
and active walkers. Several sessions were conducted with 11 healthy volunteers to assess three
interaction strategies based on passive, low and high mechanical stiffness values on the AGoRA
Smart Walker. The trials were carried out in a motion analysis laboratory. Kinematic data were
also collected from the smart walker sensory interface. The interaction force between users and
the device was recorded. The force required under passive and low stiffness modes was 56.66%
and 67.48% smaller than the high stiffness mode, respectively. An increase of 17.03% for the hip
range of motion, as well as the highest trunk’s inclination, were obtained under the resistive mode,
suggesting a compensating motion to exert a higher impulse force on the device. Kinematic and
physical interaction data suggested that the high stiffness mode significantly affected the users’ gait
pattern. Results suggested that users compensated their kinematics, tilting their trunk and lower
limbs to exert higher impulse forces on the device.

Keywords: physical interaction; smart walker; virtual stiffness; haptic interface; gait analysis;
assistive robotics

1. Introduction

Bipedal walking is one of the most important faculties of humans, as it involves
the central nervous system, muscular activation, and the integration of sensory informa-
tion [1,2]. These systems provide initiation, planning, and execution of gait, responding to
motivational and environmental demands of people [3]. Despite the evident gait complex-
ity, individuals usually exhibit smooth, regular, stable, and repeating movements during
walking [1].

Recent worldwide estimations report the growing incidence and prevalence rates
of health conditions that affect the essential components of gait [4]. There are several
neurological conditions, such as cerebrovascular accidents and Spinal Cord Injuries, that
are strongly related to locomotion impairments [5]. The effects of these pathologies on
human cognitive and physical ability often lead to a total or partial loss of mobility and
autonomy [6]. Additionally, the progressive deterioration of cognition and physical ability
in the elderly population is directly related to gait disorders [7]. As a result, gait training
programs and rehabilitation robotics have become an important research topic for several
multidisciplinary teams of health professionals, engineers, and patients [8,9].
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According to multiple studies, conventional assistive devices, such as canes, crutches,
rollators, manual wheelchairs, ambulatory training machines, and passive orthoses, im-
prove people’s quality of life [10,11]. These solutions have proven to help overcome and
compensate for people’s physical limitations by maintaining or improving individuals’
functioning and independence in clinical and everyday scenarios [12,13]. Regarding the
walking frames or walkers, these devices improve overall balance by increasing the pa-
tient’s base of support, enhancing lateral stability, and providing weight-bearing [14]. In
general, walkers exhibit simple mechanical structures and hold excellent rehabilitation
potential [10].

In recent years, electronics and robotic technology integration into conventional assis-
tive devices significantly improved and leveraged the functionalities of these devices [15].
For instance, sensing technologies and multiple actuators led to the emergence of wearable
robotics, mobile autonomous robots, and robots for gait training and rehabilitation [16].
According to literature evidence, the integration of robotics in gait training and reha-
bilitation enables several features such as (1) task-oriented and repeatable therapies; (2)
intensive activities with programmable difficulty; (3) online follow-up of performance and
physiological state of patients; (4) engaging rehabilitation environments through virtual
and augmented reality; (5) reliable assessment of patients’ rehabilitation progress; and (6)
reduction of the physical effort of therapists [12,17,18]. Technology for gait rehabilitation
often comprises robotic wheelchairs, lower-limb exoskeletons, robotic prostheses, robotic
rollators, and training devices with body-weight support [8].

In particular, robotic walkers, or Smart Walkers (SWs), are often referred to as a po-
tential tool for gait training, as they integrate simple mechanical structures and multiple
sensor interfaces [6]. The SWs overcome issues related to natural balance, users’ energetic
costs, the risk for falls, and safety issues, commonly found in conventional walkers and
rollators [19]. The main functionalities of SWs include biomechanical monitoring, indi-
viduals’ intention estimation, guiding strategies, navigation systems, and fall prevention
modules [20,21]. Literature evidence also reports several interfaces for safe and natural
interaction with users and the environment [19,20,22].

In addition to the control strategies’ development for an adequate user–SWs interac-
tion, assessments of performance and effects on the patient’s kinematics are also important
issues [23,24]. Current tools for gait analysis involve video-based motion capture sys-
tems [25], force platforms [26], inertial sensors [27], among others [24]. Additionally, as
for robotic walkers, sensors equipped in these devices are also used for gait analysis pur-
poses (e.g., force sensors, laser range-finders, cameras, etc.) [6]. In general terms, recent
studies refer to the motion capture systems and force platforms as the gold standard for
biomechanical analysis purposes [28,29].

To address gait assistance, smart walkers employ physical interaction strategies such
as admittance controllers [30], assistive and resistive forces [31,32], and systems for gait
intention detection [33,34]. However, the exploration of kinematics effects of these human-
robot interaction strategies (HRI) during walker-assisted gait is still lacking. In particular,
there is not enough evidence of the impact on the kinematic chain of HRI strategies
based on multiple stiffness levels during walking. Multiple stiffness levels can be used,
depending on the patient’s rehabilitation stage, for guiding, gait re-training, and safety
provision [30–32]. Moreover, high stiffness rendering can be useful for emulating different
virtual environments or training conditions.

In this sense, the main contribution of this paper is related to the identification of the
biomechanical effects of assistive, resistive, and passive interaction in smart walkers. To
this end. this work describes and evaluates three stiffness levels during walker-assisted gait,
based on the parameter’s modulation of an admittance controller that virtually resembles a
lighter or heavier device. This study also analyzes whether the high stiffness strategy will
significantly modify the people’s kinematic using a smart-walker. This work also describes
a statistical analysis performed with data collected from a motion capture system and the
internal sensors of the AGoRA SW to assess if the effects of such assistance levels were
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significant [19]. The remainder of this work presents the following sections. Section 2
describes the robotic platform, the interaction strategy, and the experimental setup used
in this study. Section 3 presents the primary outcomes related to the physical interaction
between the SW and the users, as well as the user’s kinematics. Section 4 presents the
discussion about the proposed strategies’ performance and compares related works. This
section also outlines the final remarks and future work.

2. Materials and Methods

This section describes the robotic platform used during the study and the proposed
interaction strategies to provide different assistance levels during gait. This section outlines
the experimental setup and the data analysis methods.

2.1. Robotic Platform Description

The robot used during this study was the AGoRA Smart Walker. This device is a
robotic walker mounted on a commercial robot (Pioneer LX, Omron Adept, Amherst, NH,
USA), emulating the structural frame and functionality of an assistive smart walker (See
Figure 1).

2D LiDAR

Bumper Board

Tri-Axial Force Sensors (x2)

2D LRF

Handlebars (x2)

Ultrasonic Boards (x2)

User
Fy

Fz

Fx

Motorized Wheels (x2)

Deck

Figure 1. AGoRA Smart Walker illustration, a robotic platform for gait assistance and rehabilitation.

This platform uses several sensors, actuators, and processing units: (1) Two motorized
wheels and two caster wheels for propulsion and stability; (2) two encoders and one
Inertial Measurement Unit (IMU) to measure position, orientation, and speed; (3) a 2D
Light Detection and Ranging Sensor (LiDAR) (S300 Expert, SICK, Waldkirch, Germany) for
environment sensing; (4) two ultrasonic boards for user detection and low-rise obstacles
detection; (5) two tri-axial force sensors (MTA400, FUTEK, Irvine, CA, USA) to estimate
the user’s navigation commands; and (6) a 2D Laser Range-Finder (LRF) (Hokuyo URG-
04LX-UG01, Osaka, Japan) for the user’s gait estimation [19]. The device’s onboard CPU
runs a Linux distribution to support the Robotic Operating System (ROS) framework and
the software requirements [19]. Moreover, to ensure efficient processing resources, an
external computer is used to offload non-critical modules. The platform’s ethernet and
WiFi modules allow communication with the external CPU [19].

As previously described by the authors of [19], there is a vertical misalignment be-
tween the force sensors on the platform’s deck and the user’s support points on the
handlebars (See Figure 1). In particular, the forces along y- and z-axis read by the sensors
will be a combination of the forces along y- and z-axis at the supporting points. For the sake
of simplicity, in this paper, the forces along the y-axis were assumed to provide information
related to the user’s intention to move. Similarly, this work assumes that the forces along
the z-axis are a directly proportional estimation of the user’s support on the device. More-
over, according to previous experimental studies, the forces along the x-axis are discarded,
as they do not provide additional relevant information [19].
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2.2. Human-Robot Interaction (HRI) Strategy: Case Study

One of the main features of SWs is their ability to respond to the user’s intentions to
move compliantly. Notably, several studies report that SWs often equip sensory systems
such as force sensors, cameras, joysticks, voice recognition systems, among others, to effi-
ciently detect and extract the users’ navigation commands or intentions to move [6,19–21].
The way that these devices respond is controlled by virtually modifying their mechanical
stiffness. Specifically, given that users physically interact with SWs by exerting impulse
forces and torques, the SWs are often modeled as dynamic systems consisting of a vir-
tual mass connected to a virtual damper (i.e., an admittance controller) [19,30]. With this
model, it is possible to generate different velocities on the SW depending on the mechanical
stiffness’ values (i.e., virtual mass and damper) and physical interactions with the users.
Small stiffness values would lead to easier physical interactions, i.e., the SW resembles a
lightweight device, while large values would render a heavier device [19].

In this sense, this study proposes an admittance controller with different stiffness
configurations for the AGoRA Smart Walker. This approach aimed to provide different
assistance levels to the users, employing multiple dynamic responses on the SW during
gait assistance.

To this end, the system architecture described in Figure 2 was implemented. The
overall architecture is composed of several modules: (1) a signal processing module,
capable of filtering raw signals from force sensors and generating the resulting force and
torque; (2) an interaction strategy, composed of an admittance controller and an assistance
level selector; and finally (3) a safety supervisor, aimed at avoiding hazardous situations
for the user (e.g., collisions).
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Figure 2. Description of system’s architecture to provide multiple assistance levels.

2.2.1. Signal Processing

As previously stated, the forces along the y-axis from both sensors provide relevant
information about the user’s intention to move. The user’s intention calculation derives
from the resulting force and torque exerted on the platform. However, there are some noise
issues with these signals. The natural oscillatory pattern of gait often contaminates these
force signals [35], and the vibrations associated with the floor can also introduce sources
of high-frequency noise [19]. Therefore, these signals require a conditioning and filtering
process to remove such components.

This study implements the same filtering process presented by the authors in [19].
In general, the filtering process consists of four steps. The filtering process starts by
averaging the signal forces along the z-axis, as they contain information related to oscillatory
displacements of users’ trunks. Afterward, a band-pass filter removes high-frequency
components (i.e., 1 Hz–2 Hz cutoff frequencies). The Weighted Fourier Linear Combiner
filter estimates the resulting signal’s cadence [36]. Finally, the cadence is fed to a Fourier
Linear Combiner filter to remove oscillatory components from the forces along the y-axis
from each sensor [37].
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The next step estimates the resulting force ~F and torque ~τ, to obtain an indicator of
the physical interaction between the smart walker and the user. These final signals were
computed using the filtered signals ~F′LY and ~F′RY as described in Equations (1) and (2) (d is
the separation distance between the load cells on the device and is equals to 0.3 m). These
calculations did not include the forces along the z-axis.

~F = ~F′LY + ~F′RY, (1)

~τ =
(
~F′LY − ~F′RY

)
∗ d

2
. (2)

In particular, the resulting force ~F was estimated by adding the forces along the y-
axis on both sensors. It provides information about the users’ intention to start walking.
Similarly, the torque ~τ was estimated using the difference between the force along the
y-axis and the sensors’ distance. This indicator provides an indirect and partial estimation
of the torque exerted on the device and the information about the users’ intention to turn.

2.2.2. Interaction Strategy

Admittance controllers, often implemented in SWs, are dynamic models that enable
generating reference velocities from users’ intentions [30]. These controllers allow users to
control SWs by exerting forces and torques on the SWs’ handlebars in such a way that they
require less effort than if they were to control the robot without the controller enabled [13].
The selection of the controllers’ parameters requires an appropriate tuning process to
provide to the users the sensation of easiness and naturalness during physical interaction
with the SW [19]. During this tuning process, it is possible to provide different assistance
levels by changing the virtual stiffness of the platform [19,30]. This study proposes three
assistance levels through three virtual stiffness values. The following sections describe the
admittance controller and the assistance selector module.

Admittance Controller

In general terms, admittance controllers model SWs as a first-order mass-damper system,
whose inputs are the force (F) and torque (τ) applied to the platform by the user. These
controllers output linear (v) and angular (ω) velocities. In this manner, two admittance
controllers were proposed, as described in Equations (3) and (4):

L(s) =
v(s)
F(s)

=
1
m

s + bl
m

, (3)

A(s) =
ω(s)
τ(s)

=
1
J

s + ba
J

, (4)

where m is the walker’s virtual mass, J is the virtual moment of inertia of the walker, and
bl and ba are damping constants. These equations describe the transfer function of each
controller. L(s) stands for Linear System, and A(s) stands for Angular System.

Assistance Selector

The values of the controllers’ parameters determine the mechanical stiffness of the
SW. Thus, by changing the virtual mass, inertia, and damping constants, it is possible
to provide multiple assistance levels. In this work, the term “assistive level” refers to a
stiffness configuration that provides an easy interaction and requires low physical efforts.
In contrast, the term “resistive level” refers to a stiffness configuration with which the device
opposes the users’ intentions to move. Three stiffness levels designed for this work provide
the following assistance levels:

• Assistive Mode (AM): This configuration aimed to provide the easiest and lightest
behavior on the SW. Given that the AGoRA Walker is mounted on a heavy robotic
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platform (i.e., 70.2 kg), low mass and inertia values were required. Moreover, to ensure
stability and balance during walking, the inertia value was designed to be at least
twice the virtual mass. By means of several experimental tests, the following values
were used: m = 0.5 kg, bl = 4 N·s/m, J = 2.1 kg·m2/rad and ba = 2 N·m·s/rad.

• Resistive Mode (RM): This configuration aimed to make the SW oppose the users’
intentions. With this mode, the device was heavier and more difficult to maneuver by
users. Given that this study assumes that people with higher Body Mass Index (BMI)
values could exert higher force and torque values on the device, a unique stiffness
configuration was not suitable. This mode’s virtual mass was at least ten times greater
than the virtual mass of the AM. The value of the virtual inertia remained unchanged.
The following values were used: m = 10 kg, bl = β N·s/m, J = 2.1 kg·m2/rad
and ba = 7 N·m·s/rad. The calculation of the damping constant of the linear system
(β) employed the subjects’ weight, as follows:

β = 0.375 · weight − 12.5. (5)

The values of the model presented in Equation (5) were estimated empirically, in such
a way that a subject with a maximum weight of 120 kg or a minimum weight of 55
kg could move the device with moderate resistance. Five healthy subjects that did
not participate in this study participated in several trials to determine this model. The
subjects’ task was to freely interact with the smart walker with the proposed model,
which validated the resistive behavior achieved with these constants.

• Passive Mode (PM): This configuration disabled the admittance controllers and the
device’s brakes. Thus, the walker worked as a conventional wheeled walker with this
mode.

2.2.3. Safety Supervisor

As presented by the authors in previous works, the AGoRA Smart Walker includes
several safety rules that constraint the walker’s movement when hazardous situations are
detected [19].

On the one hand, the device movement is only allowed if the user supports itself on the
walker handlebars and stands behind it. Moreover, using the information gathered from
the 2D LiDAR mounted on the device, the walker’s speed is constrained when surrounding
obstacles are detected. Similarly, to avoid situations that could lead to falls, the device
cannot rotate on its axis or move backward. Finally, an emergency button is placed on the
platform’s deck to disable the motors if required.

On the other hand, an external CPU is monitoring the AGoRA Smart Walker’s systems’
behavior. If the operator determines that the device is malfunctioning, he can remotely
disable it. The supervisor’s safety restrictions are redundant, executed from the onboard
computer and the external computer. In case of communication loss with the external
computer, the device can continue running the safety supervisor autonomously.

2.3. Experimental Protocol

This section describes the implemented experimental protocol to assess the physical
interaction between the users and the AGoRA Smart Walker and the users’ kinematics
during the proposed interaction strategies.

2.3.1. Session Environment

This study took place at the Motion Capture and Analysis laboratory of the Department
of Biomedical Engineering at the Colombian School of Engineering Julio Garavito, Bogotá,
Colombia. This laboratory counts with 7 VICON (Oxford, UK) cameras operating at 120
Hz. Before the experiments, the researchers calibrated the motion analysis system with
the VICON active wand. The cameras were able to capture an area of 6 × 6 m2 (See an
illustration of the VICON set up in the following link: https://1drv.ms/u/s!Anv-5biOmd

https://1drv.ms/u/s!Anv-5biOmdEOhYs4FD4uqptnom1qsA?e=zJdzUJ
https://1drv.ms/u/s!Anv-5biOmdEOhYs4FD4uqptnom1qsA?e=zJdzUJ
https://1drv.ms/u/s!Anv-5biOmdEOhYs4FD4uqptnom1qsA?e=zJdzUJ
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EOhYs4FD4uqptnom1qsA?e=zJdzUJ, accessed on 17 February 2021). A private room was
set aside for the preparation of participants before each session.

2.3.2. Participants Recruitment

The university’s ethics committee approved this study, certifying that it agrees with
Helsinki’s declaration. This study is also part of the Development of an Adaptable Robotic
Platform for Gait Assistance and Rehabilitation (AGoRA) Project. The inclusion criteria were as
follows: Adults over 18 years old, height between 1.60 m and 1.90 m, weight between 50 kg
and 110 kg, and ability to read and sign the informed consent form. The exclusion criteria
were as follows: any physical or neurological conditions and subjects with gait assistance
requirements.

A group of 11 healthy male volunteers accepted to participate in the experimental
trials. The researchers formally recruited all the participants, which provided their signed
written consent to participate in the study. The participants were randomly recruited at
the facilities of the Colombian School of Engineering Julio Garavito. Moreover, none of
the participants had prior experience using the AGoRA Smart walker to avoid learning of
the assistance levels. The subjects did not report any history of injuries or musculoskeletal
dysfunctions. Table 1 summarizes the anthropometric measures of the participants.

Table 1. Summary of anthropometric measures of the volunteers that participated in the study.

Subject Age [y.o.] Height [m] Weight [kg] Body Mass Index (BMI)

1 23 1.80 72 22.20
2 26 1.79 70 21.80
3 28 1.79 90 28.10
4 20 1.87 95 27.20
5 23 1.78 72 22.70
6 24 1.76 62 20.00
7 23 1.62 58 22.10
8 23 1.79 90 28.10
9 22 1.68 60 21.30

10 23 1.76 65 21.00
11 22 1.74 85 28.10

Average 23.40 ± 2.00 1.80 ± 0.10 74.50 ± 12.70 23.90 ± 3.10

2.3.3. Session Procedure

The required clothing for the trials was only tight-fitting lycra shorts. At the beginning
of the session, the researchers instructed the participants on the session’s procedures and
the study objectives. Moreover, the participants provided their signed informed consent,
and the researchers solved any additional questions. The researchers asked the participants
to change their clothes into the clothing mentioned above. Participants were to be barefoot
and without any extra clothing or accessories.

As described in Figure 3a, the researchers fitted the subjects with 64 reflecting markers
(14 mm diameter), according to the full-body setup described by [38]. Similarly, eight
markers were placed on the SW, using the setup shown in Figure 3b.

Each session was composed of four parts corresponding to the three assistance levels
and an additional trial without the SW (i.e., referred to as Unassisted Mode (UM)). During
each session’s part, the users followed one path with turnings in two directions at their
preferred speed (See Figure 4). The users had to perform three repetitions in each path’s
way, i.e., six repetitions per assistance mode. There was no path marking on the floor, only
reference marks at the beginning, the turning points, and the route’s end. The turning
radius was approximately 0.8 m. Before recording each mode’s data, the users had a
training period to understand the assistance level to be assessed.

https://1drv.ms/u/s!Anv-5biOmdEOhYs4FD4uqptnom1qsA?e=zJdzUJ
https://1drv.ms/u/s!Anv-5biOmdEOhYs4FD4uqptnom1qsA?e=zJdzUJ
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(a) (b)

Figure 3. (a) Markers’ setup on subject. (b) Markers’ setup on the SW.

VICON Camera

Start Point of Each Path

Visible Area

Subject

3 m

3 m

Figure 4. Reference paths for the experimental trials in the motion analysis laboratory. The area that
the cameras were able to capture was 6× 6 m2.

Before each recording, the motion analysis system and the AGoRA Smart Walker in-
ternal systems were synchronized by gently hitting the force sensors with a stick, while the
cameras captured its motion. To this end, the synchronization stick required an additional
marker on top of it. Given the uncertainty at measuring the exact impact on the force
sensors, with this method, the maximal difference between the two systems was equal to
the difference between two consecutive frames (i.e., around 8 ms).

There were no breaks between trials. However, when switching between the different
operation modes (i.e., assistance levels), a short period of 3 min was required. During this
period, the researchers performed software adjustments to switch the assistance level and
review the stored data’s quality. Moreover, the users only interacted with the Smart Walker
during the execution of the path. A researcher moved the Smart Walker from the end of
the last route to the beginning of the next one.

After each trial, a researcher stored software logs in the VICON Workstation and the
AGoRA Smart Walker’s external CPU. The software Nexus 2 (VICON, Oxford, UK) [39]
allowed the storage of VICON data and ROS bags stored walker’s data [40]. Each subject
was only required to participate in one session.

2.3.4. Outcome Measures and Data Analysis

The Nexus 2 software allowed biomechanical data curation and pre-processing. Then
an inverse kinematics approach, using the full-body model reported by [38], was executed
with a multi-body kinematics optimization algorithm OpenSim software [41]. The Matlab
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R2018a Software and the Biomechanical ToolKit Library (BTK) allowed the computation
of interaction and kinematic indicators [42,43]. Finally, a resulting outcome was obtained
by averaging the kinematic and interaction indicators from the six repetitions (i.e., three
repetitions in each direction of the path) for each subject and each assistance mode.

This study proposes several quantitative indicators to measure the users’ performance
during trials and the effects of the assistance levels on the physical interaction between users
and the AGoRA Smart Walker. Among these, this work estimates gait’s spatiotemporal
parameters such as speed, cadence, cycle duration, and the number of cycles. Furthermore,
the inverse kinematics outcomes allowed the estimation of the average range of motion
(ROM) for hip, knee, and ankle joints in the sagittal plane were estimated. These indicators
were calculated for each gait cycle, using the knee flexion angle curve to detect each cycle’s
beginning and end. The SW’s sensory interface also recorded the resulting force and
torque exerted by users on the device. The estimation of all indicators required each trial’s
complete information without separating the straight parts or curves. The signal processing
cropped the data from the users’ first step to one step before reaching the end of the path.
Table 2 presents a brief explanation of these descriptors.

Table 2. Description and units for the outcome measures proposed to measure the performance, physical interaction, and
users’ kinematics during trials.

Indicator Units Description

Mean Force [N] The average value of the resulting force signal ~F acquired during each trial.

Peak Force [N]
The maximum positive value of ~F during each trial. It describes the initial
contact between users and the device, measuring the difficulty to start
moving the device.

Mean Torque [Nm]
The average value of the resulting torque signal ~τ acquired during each trial.
Since the proposed experimental setup considers paths with left and right
turnings, this indicator was reported using the modulus or absolute value.

Peak Torque [Nm] The highest positive or negative maximum ~τ value during each trial.

User’s Speed [m/s]
The average value of the magnitude of the user’s velocity. This indicator was
calculated using data of the marker corresponding to the 7th cervical
vertebra (C7).

SW Linear Speed [m/s] The average value of the magnitude of the smart walker’s linear speed, i.e.,
the speed in the y-axis direction.

SW Angular Speed [rad/s] The average value of the magnitude of the smart walker’s angular speed, i.e.,
the speed in the y-axis direction.

Cadence [steps/min] The total number of full cycles or steps taken within a minute. This indicator
was reported as the average cadence during each trial.

Cycle Duration [s] The average duration of full gait cycles during each trial.

No. Cycles - The total number of cycles or steps taken during each trial.

Hip Flexion ROM [°] The average range of motion of the hip flexion angle. Estimated as the
average difference between the maximum and minimum angle.

Knee Flexion ROM [°] The average range of motion of the knee flexion angle. Estimated as the
average difference between the maximum and minimum angle.

Ankle Flexion ROM [°] The average range of motion of the ankle flexion angle. Estimated as the
average difference between the maximum and minimum angle.

Trial Duration [s] The duration of each trial measured in seconds.

Regarding statistical analyses, the significance level for all tests was set to 0.05. More-
over, descriptive statistics were used to report the outcomes of the study. All values were
reported using the mean plus or minus standard deviation. To determine the distributions
of the collected information, Shapiro-Wilk normality tests were carried out. To assess the



Sensors 2021, 21, 3242 10 of 19

existence of statistically significant differences, two types of tests were performed. In the
case of parametric data, one-way analysis of variance (ANOVA) for repeated measured was
conducted. In contrast, Friedman tests were conducted for non-parametric data. Finally,
two types of posthoc tests were performed. In the case of parametric data, Bonferroni
posthoc tests were performed. In contrast, Conover posthoc tests with Bonferroni correc-
tion were used for non-parametric data. All the statistical tests were performed using R
3.6.2 and RStudio Desktop software [44].

3. Results

A total of 264 trials divided into 11 sessions (i.e., one session per subject) were per-
formed and successfully recorded. This section describes and illustrates the outcomes of
the study.

3.1. Physical Interaction Results

The information provided by the tri-axial force sensors on the platform’s deck was
used to estimate the physical interaction between the smart walker and the users. In
this sense, Table 3 summarizes the values of resulting force and torque values for each
assistance level, where AM stands for Assistance Mode, PM stands for Passive Mode, and
RM stands for Resistance Mode. Moreover, peak values for these signals are also reported.
In this case, no data were reported for the unassisted trials (i.e., without the SW).

Table 3. Summary of physical interaction data between users and the AGoRA Smart Walker under
several assistance modes.

Indicator AM PM RM p-Value

Mean Force [N] 1.67 ± 0.60 2.22 ± 0.65 5.14 ± 1.53 2.2 × 10−16

Peak Force [N] 4.47 ± 1.23 4.85 ± 0.93 * 11.01 ± 2.35 1.5 × 10−12

Mean Torque [Nm] 0.38 ± 0.13 * 0.38 ± 0.10 0.88 ± 2.35 * <2.2 × 10−16

Peak Torque [Nm] 2.39 ± 0.68 * 1.56 ±0.40 5.77 ± 0.59 * 2.2 × 10−16

Asterisks mean that the variable is normally distributed. p-values in bold indicate significant differences be-
tween modes.

Considering that significant differences were found for some parameters, pairwise
comparisons were performed. Table 4 summarizes the results of the posthoc tests.

Table 4. Obtained p-values after pairwise comparisons of physical interaction parameters using
posthoc tests.

Indicator AM-PM AM-RM PM-RM

Mean Force 2.2 × 10−7 1.1 × 10−12 2.0 × 10−7

Peak Force 1.9 × 10−11 2.2 × 10−16 3.5 × 10−9

Mean Torque 2.0 × 10−16 1.9 × 10−9 1.1 × 10−12

Peak Torque 2.2 × 10−9 2.0 × 10−7 1.5 × 10−16

p-values in bold were found to be statistically different.

In addition to the above, to illustrate the behavior of the resulting force and torque
signals’ behavior under each assistance level, Figure 5 shows the recorded signals for one
representative subject. Particularly, no significant differences were found for the force and
torque signals within the same assistance mode (The p-value obtained for the force signals
was 0.173, and the p-value obtained for the torque signals was 0.7168).



Sensors 2021, 21, 3242 11 of 19

5 10 15 20 25

Time [s]

0

2

4

6

8

F
o
rc

e 
[N

]

AM 

PM 

RM 

5 10 15 20 25

Time [s]

−2

0

2

T
o
rq

u
e 

[N
.m

]

AM 

PM 

RM

A

B

Figure 5. Illustration of force and torque signals for one subject: Assistance Mode (AM), Passive
Mode (PM), Resistance Mode (RM).

3.2. Kinematic and Additional Results

Several indicators of the users’ performance were estimated by employing the data
collected by the motion capture system. On the one hand, to characterize users’ gait, several
parameters such as gait speed, cadence, average gait cycle duration, and the number of
gait cycles were calculated. On the one hand, to assess the effects of the assistance levels
on the lower-limb kinematic chain of users, the range of motion (ROM) was estimated for
ankle, knee, and hip joints. Likewise, the trunk’s angle was also estimated using the marker
located at C7 (i.e., at the 7th Cervical Vertebra) and the two markers located at the posterior
of the iliac crest. Moreover, data related to trials’ mean duration were also calculated. A
summary of this information is reported in Table 5, where the robotic platform’s linear and
angular speed are also reported. In this table, UM stands for Unassisted Mode, referring to
the conducted trials without the smart walker.

Table 5. Summary of kinematic and additional outcomes during trials.

Indicator AM PM RM UM p-Value

Users’ Speed [m/s] 0.44 ± 0.05 * 0.46 ± 0.06 0.34 ± 0.04 * 0.77 ± 0.02 * 2.27 × 10−6

SW Linear Speed [m/s] 0.34 ± 0.08 0.33 ± 0.11 0.26 ± 0.05 - 8.63 × 10−9

SW Angular Speed [rad/s] 0.16 ± 0.04 0.12 ± 0.03 * 0.11 ± 0.03 - 1.31 × 10−12

Cadence [steps/min] 51.46 ± 11.73 50.21 ± 10.37 48.61 ± 31.11 53.41 ± 8.36 4.23 × 10−8

Cycle Duration [s] 1.21 ± 0.21 * 1.24 ± 0.23 * 1.48 ± 0.51 * 1.15 ± 0.15 3.22 × 10−7

No. Cycles 6.68 ± 1.75 6.82 ± 1.97 9.32 ± 6.51 4.29 ± 0.67 6.91 × 10−16

Hip Flexion ROM [°] 39.78 ± 4.57 * 43.06 ± 5.93 * 50.84 ± 7.66 * 43.44 ± 4.31 * 3.83 × 10−15

Knee ROM [°] 59.49 ± 6.38 59.34 ± 5.96 58.22 ± 7.25 * 64.28 ± 6.89 * 1.90 × 10−8

Ankle Flexion ROM [°] 27.05 ± 11.57 29.21 ± 5.85 34.90 ± 9.85 28.28 ± 5.16 * 7.82 × 10−7

Trunk Angle [°] 86.35 ± 5.67 * 88.95 ± 4.21 71.39 ± 8.75 85.48 ± 3.96 * 5.32 × 10−5

Trial Duration [s] [°] 13.35 ± 2.18 14.56 ± 6.44 16.78 ± 2.14 * 8.71 ± 1.67 * 2.0 × 10−16

Asterisks mean that the variable is normally distributed. p-values in bold indicate significant differences between modes.

Significant differences were found for all the reported parameters. In this sense,
pairwise comparisons were performed using Conover or Bonferroni posthoc tests. Table 6
shows the results obtained for such tests.
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Table 6. Obtained p-values after pairwise comparisons of kinematic and additional parameters using post-hoc tests.

Indicator AM-PM AM-RM AM-UM PM-RM PM-UM RM-UM

Users’ Speed 3.4 × 10−2 9.2 × 10−6 3.1 × 10−10 3.4 × 10−9 5.9 × 10−7 2.2 × 10−15

SW Linear Speed 1.4 × 10−5 2.3 × 10−10 - 1.4 × 10−5 - -
SW Angular Speed 6.1 × 10−6 4.1 × 10−4 - 2.2 × 10−16 - -

Cadence 1.3 × 10−5 4.9 × 10−10 2.0 × 10−4 3.0 × 10−3 5.2 × 10−11 2.1 × 10−14

Cycle Duration 7.7 × 10−7 1.1 × 10−13 7.7 × 10−7 7.7 × 10−7 1.1 × 10−13 2.0 × 10−16

No. Cycles 3.5 × 10−2 3.9 × 10−7 4.5 × 10−3 1.8 × 10−10 1.1 × 10−6 3.8 × 10−11

Hip Flexion ROM 5.1 × 10−2 2.7 × 10−15 2.0 × 10−2 1.3 × 10−8 1.4 × 10−1 6.3 × 10−8

Knee Flexion ROM 1.9 × 10−1 4.0 × 10−6 2.0 × 10−16 1.5 × 10−2 2.0 × 10−16 2.0 × 10−16

Ankle Flexion ROM 5.7 × 10−1 7.0 × 10−7 4.7 × 10−13 8.6 × 10−5 4.8 × 10−2 4.5 × 10−8

Trunk Angle 2.6 × 10−1 5.5 × 10−6 5.7 × 10−2 6.8 × 10−7 4.3 × 10−1 4.7 × 10−4

Trial Duration 1.5 × 10−4 2.0 × 10−8 5.1 × 10−9 4.3 × 10−5 6.9 × 10−15 2.0 × 10−16

p-values in bold were found to be statistically different.

An illustration of the hip, knee, and ankle joints’ behavior is shown in Figure 6, where
the average gait cycle is presented for each assistance level and joint. The average gait
cycle for the unassisted mode (UM) is also presented used for comparison purposes.
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Figure 6. Comparison of sagittal plane joint angles for the assistance levels. Each graph was generated
using average gait cycles and standard deviations within mode.

4. Discussion

All the subjects succeeded during trials, and no cases of misunderstanding of the
AGoRA Smart Walker behavior were reported. In this work, the sample size is considered
small; however, studies with walkers have been conducted with similar sample sizes [14].
On the one hand, regarding the interaction strategies, the users were entirely in control of
the walker’s movements in all of them. For the assistive (AM) and resistive (RM) modes,
an admittance controller was used to generate angular and linear speeds by taking the
force and torque exerted by the users on the device. For the passive mode (PM), the
walker’s speed controller and brakes were disabled, and it was meant to be operated as
a conventional four-wheeled walker. Thus, under the PM, the user only had to push the
device to make it move. Moreover, in terms of users’ safety, the supervisor was only active
for the AM and RM, given that it was designed to override the speed controller when
hazardous situations are detected. Thus, although the safety supervisor was disabled for
the PM, no collisions occurred during trials.

On the other hand, according to the results presented in the previous section, several
effects on the physical interaction and kinematics of the users were obtained. Notably,
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changes in the virtual stiffness programmed in the device (i.e., assistance level) significantly
impact users’ performance during trials. Moreover, despite the limited test area (i.e., paths’
area of 3 × 3 m2), it was sufficient to attain a stable gait. As reported in the literature,
between 3.5 and 5.2 steps are required to achieve a steady-state gait [45]. According to our
results, the average number of walking cycles (i.e., two consecutive steps) was around 6.7
to 9.3 cycles, ensuring enough space for the users’ gait to stabilize. Besides, the turning
radius in the curves was wide enough to prevent users from having to reduce their speed.

4.1. Physical Interaction Results

Regarding the physical interaction between the users and the SW, four indicators were
measured. On the one hand, the user’s mean force exerted was estimated during trials
for each assistance mode. As reported in Table 3, more significant efforts were required
from the user to handle the device during the resistive mode (RM). In contrast, the assistive
mode (AM) allowed the most effortless interaction, as the mean exerted force by the users
was lower than in passive mode (PM) and RM. This outcome indicated that the proposed
impedance configurations permitted to have the expected behavior for assisting the subject.
Moreover, by analyzing the posthoc tests results presented in Table 4, it can be seen that
this indicator exhibited significant differences for all the pairwise comparisons (p < 0.05).
These results might suggest that the proposed assistance levels allowed us to provide
completely different dynamic responses on the AGoRA Smart Walker. In the same manner,
the peak force values exhibited similar behavior. This indicator measures the initial contact
between the user and the SW, and it estimates how difficult it is to start walking with the
device. In this case, the highest value was also registered for the RM and the lowest value
was obtained with the AM.

An illustration of these parameters can be found in Figure 5A, where the force signals
of a representative subject are shown. These signals describe an interesting outcome related
to the initial force required to move the device. Comparing the AM and the PM, the peak
force is higher with the AM. However, the required force to keep the device moving is lower
for the AM than for the PM. The admittance controller explains this outcome as it models
the walker as a dynamic mass-damping system. In this way, it is possible to make the
smart walker feel more lightweight with the virtual mass. Moreover, the damper prevents
the propagation of the natural oscillations of gait to the walker [19,46]. The combined
effect of these elements induces inertia that must be overcome by the user to start walking.
However, these elements also ensure that the walker’s movement can be maintained with
less effort compared to the PM. In a real application, this behavior makes the AGoRA
walker suitable for providing stability to users and assisting users’ gait without requiring
as much effort as in the PM.

On the other hand, the mean and peak torque values were also estimated. Regarding
the mean torque, significant differences were found for all the assistance levels. Moreover,
by analyzing the magnitudes of this parameter, the highest mean torque values were
obtained with the RM and the lowest ones with the PM. These results confirm the fact that
the SW was virtually more challenging to handle with RM. Regarding the peak torque
parameter, similar results were obtained. Significant differences were found for all the
assistance levels. The highest values were obtained with the RM and the lowest ones with
PM. Moreover, it can also be noted that the standard deviation values were higher with the
RM, for both mean and peak torque parameters. This suggests that how users maneuvered
the SW was more variable with this level of assistance.

Similar studies to this work have been reported by [30,31,47]. Specifically, ref. [47]
implemented several motion control algorithms based on impulse force information. More-
over, this study evaluated the comfortableness of such control strategies. This study
concluded that users prefer to interact with devices that provide good maneuverability,
require small forces to move, and ensure safety [47]. Although this study analyzed multiple
sets of control parameters, no resistive mode was evaluated. Moreover, no kinematic
information was reported. Regarding the work presented by [31], the effects of multiple
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assistive and resistive forces were addressed. The authors reported using foot-switches
for gait analysis purposes, finding that cadence, stride length, and double support phase
were affected [31]. This study did not measure the interaction force with users, and thus
the movement of the device was not based on users’ intention (i.e., which might lead
to hazardous situations). Moreover, applying constant assistive or resistive forces could
hinder the implementation in real scenarios. Finally, a dynamic modulation strategy for an
admittance controller was proposed by [30]. In this study, the parameters of the controller
were modified to guide users through the desired path. Although this controller is suitable
for assisted navigation purposes, the effects on users’ kinematics were not reported.

4.2. Kinematic and Additional Results

Using the information captured by the motion analysis system, several indicators of
users’ lower-limb kinematics were estimated (See Table 5).

On the one hand, the users’ and SW’s speeds were registered for all the assistance
levels. Regarding the users’ speed, the RM induced the lowest values (0.345± 0.043 m/s),
mainly because with this configuration the SW opposed the users’ intentions to move.
The highest speed values (0.774± 0.016 m/s) were reached under the unassisted mode
(UM). Particularly, the users reduced their walking speed to 57.56%, 59.57%, and 44.57%
of their unassisted speed, with the AM, PM, and RM, respectively. Moreover, statistical
tests suggested significant differences for all pairwise comparisons of the users’ speed
(See Table 6). This outcome suggests that each assistance level could provide a completely
different walking behavior of users. Furthermore, the gait speeds obtained in this work
are slightly different from those from the literature evidence. Particularly, several studies
report walking speeds ranging from 0.9 to 1.25 m/s [28,31]. Thus, the AGoRA Smart
Walker allows slower speeds than the average unassisted walking speed [48]. However,
the AGoRA Walker is a rehabilitation device aimed at being used in clinical scenarios,
where medical staff often require slower and controlled speeds to correct inappropriate
gait patterns [48].

Regarding the SW motion, the linear speed showed similar behavior to users’ speed,
where the lowest values were obtained with the RM (See Table 5). This parameter also
exhibited significant differences between all the assistance levels. The SW’s angular speed
exhibited similar behavior. Significant differences were obtained for all pairwise compar-
isons (See Table 6). These outcomes also support the fact that each assistance level provides
completely different walking behaviors for the users.

On the other hand, gait parameters such as cadence, cycle duration, and the number of
cycles were also calculated. The differences between all the assistance levels were found to
be statistically significant for these parameters (See Table 6). Regarding cadence, literature
evidence suggests that the users’ cadence in this study was nearly 50% of the average
cadence during unassisted walking in healthy adults [49]. This discrepancy might be
supported by the fact that this work’s experimental environment was considerably smaller
to reach average gait speeds, and thus average cadences [31]. The lowest cadence was
obtained with the RM, and this outcome is supported by the most prolonged gait cycles
also obtained with the RM (See Table 5). The RM induced more step cycles, thus it can be
deduced that shorter steps were obtained under the RM.

In terms of the effects of the assistance levels on the lower-limb kinematics chain, the
range of motion (ROM) was calculated for hip, knee, and ankle joints in the sagittal plane
(See Table 5). Moreover, a comparison of such flexion angles with the unassisted mode
is shown in Figure 6. Regarding hip joint, significant differences were found for nearly
all pairwise comparisons (See Table 6). Particularly, no differences were found for AM
vs. PM and PM vs. UM comparisons. Reductions of 8.41%, and 0.87% of the unassisted
ROM were obtained for the AM and PM, respectively. However, an increase of 17.03%
was obtained for the RM. This result might suggest that when the device opposes the
users’ movement intention, they compensate their motion with slower and wider walking
patterns, to exert a higher impulse force (i.e., higher forces along the y-axis, see Table 3).
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Furthermore, by analyzing the hip flexion curves presented in Figure 6, it can be noted that
for all assistance levels a reduction of the initial flexion angle occurred in comparison to
the UM. Such reduction could be caused by compensation on the trunk inclination angle
during walker-assisted gait (See Figure 6).

Regarding the knee joint, the ROM was smaller than the UM for all the assistance
levels provided by the SW. As described in Table 6, significant differences were found
between each assistance mode and UM, whilst no significant differences were found for
AM vs. PM. Regarding the ankle joint, the PM and RM induced increases in the range of
motion of this joint (See Table 5). This result also supports the fact that, when users interact
with the SW, they tilt the trunk and lower limbs to generate greater impulse forces on the
device (See Figure 6). In this sense, it can be noted that the ankle flexion was higher with
the RM (34.9± 9.8°). These results suggest that RM is the level of assistance that most
affected the users’ gait pattern.

In addition to the above, to better understand the behavior of users’ trunk kinemat-
ics, the trunk’s angle was estimated along the sagittal plane for all the assistance levels.
Specifically, this angle was calculated using the ground plane as a reference, so that a
person completely standing would have a 90° angle. Significant differences were found
between the assistance levels. Regarding the outcomes of pairwise comparisons, significant
differences were found between all modes compared to the RM. Moreover, increases of
17.32%, 19.74%, 16.48% in trunk’s angle were found for AM, PM, and UM, compared to the
RM. This outcome suggests that users tilted the most during the resistive behavior of the
Smart Walker.

An additional parameter related to the trial duration was also calculated. As expected,
the RM’s trials were the longest ones, and the UM trials were the shortest ones (See Table 5).
Moreover, significant differences were found for all pairwise comparisons, supporting the
fact that each assistance level provides a completely different interaction with the SW (See
Table 6).

In terms of safety provision during each of the assistance levels, several aspects are
worth mentioning. In particular, Pervez et al. proposed a danger index to estimate user’s
safety during mobility assistance [50]. Even though this study does not calculate such
indicators, it avoids most of the unsafe situations highlighted in Pervez et al. On the one
hand, it is pointed out that for safe assistance there should not be any appreciable speed
mismatch between the assistive robot and the user. All the assistance levels proposed in
this work guarantee that the smart walker moves at the desired speed of the user. Even
in the RM when the smart walker is harder to push, the speed of the user is adjusted to a
slower velocity that matches the smart walker’s speed. Regarding obstacles management,
the danger index formulation suggests that the robot should not be very close to obstacles
nor collide with them. In this case, the safety supervisor maintains the smart walker away
from obstacles, as it limits the speed of the walker when approaching an obstacle. This
safety condition is not guaranteed in the passive mode, as the brakes and motors are
completely disabled. Additionally, the danger index also considers vibrations and jerks. In
these cases, the AGoRA smart walker uses an admittance controller that acts as a low pass
filter, mitigating any vibrations or jerks.

Finally, although this work was performed on healthy subjects, it is expected that,
when testing the assist levels on patients with gait limitations, similar behaviors in kine-
matic and physical parameters will be obtained. This means that, regardless of the gait
condition, the RM will be harder to interact with, and thus patients will exhibit slower
gait patterns and increased interaction forces. Moreover, as previously reported in the
literature, it is expected that older adult patients or patients with gait dysfunctions will
present slower gait patterns in all modes, and will have the less muscular capacity to exert
forces on the device [51–53].
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4.3. Final Remarks and Future Works

One of the main findings of this study is related to the kinematic and interaction
parameters during the resistive mode (RM). Although the RM opposes the user’s intention
to move, it might induce muscular training during rehabilitation processes; the level of
resistance could be configured to meet each user’s specific needs. This assistance level also
induces slower gait patterns compared to the reported studies in the literature. However,
these could be interpreted as a safety strategy, where slower gait patterns might help users
to avoid collisions and stumbling during walking. Additionally, the force data gathered
during the RM provided insights into possible applications of muscular training.

This study was carried out employing the AGoRA Smart Walker, which is mounted on
a commercial robotic platform. This selection was made as the Human–Robot Interface of
this assistive device was validated in a previous study with healthy subjects [19]. Moreover,
this platform can provide enough safety constraints to guarantee users natural and proper
interaction.

One of the limitations of this study is that it lacks EMG information that supports these
findings related to physical interaction under the RM. Moreover, it should also be noted
that a limitation of this research is the sample size and the participation of only healthy
subjects. However, this study is the first approach to the use of controllers with different
levels of assistance in walker-assisted gait, and further analyses are required in populations
with gait problems, such as older adults or patients with neurological conditions.

Regarding the behavior of the assistive (AM) and the passive modes (PM), they may
be useful in patients with lower assistance requirements, as the device allows faster and
less controlled movements. However, considering that, during the PM, no speed controller
is active, hazardous situations might occur as neither safety supervisor is active. During
this mode, the user is completely in control of the smart walker motion.

By comparing the AM and PM behavior, AM can be beneficial to users as it allows the
dynamics of the device to be removed. Specifically, the AGoRA Walker is a device mounted
on a heavy commercial robotic platform. Thus the implementation of the admittance
controller facilitates the user’s interaction with the device. Specifically, the smart walker
can be configured to render a lightweight (i.e., as the AM) or bulky device (i.e., as the RM)
by setting small or large values on the virtual mass parameter of the admittance controller.
It has been reported that these modifications could be suitable to assist activities of daily
living, like walking up and down on-ramps using a smart walker [13]. To validate the
performance, safety, and effects of the interaction strategies, this study was conducted on
a group of healthy subjects, before their deployment in a clinical setting. Moreover, as
reported by several related works, the implementation of assistive and resistive strategies
might be useful to provide guidance and gait re-training in clinical scenarios [30–32]. In
particular, the proposed strategies in this work can be easily adapted to cognitive interaction
strategies (e.g., assisted navigation) where the smart walker modifies its virtual stiffness to
provide feedback in path following, guidance, and navigation tasks.

In addition to the above, it is worth mentioning that the paradigm of multiple assis-
tance levels is not exclusive to walker-assisted gait. In particular, these strategies can be
easily implemented in other assistive devices such as exoskeletons or hybrid devices [54–56].
Finally, future works will address the assessment of these interaction strategies in a clinical
scenario with pathological patients or older people. In this work, the RM was configured
according to the weight of the users. Therefore, future works will also address the devel-
opment of a multivariate model to determine the correlation between the users’ weight
and the ability to maneuver the SW. Future studies will also assess more complex walking
tasks, including longer and more challenging paths and tasks.
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