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K-core robustness in ecological and 
financial networks
Kate Burleson-Lesser1,2,4, Flaviano Morone1,4, Maria S. Tomassone3,4 & Hernán A. Makse1,4*

In many real-world networks, the ability to withstand targeted or global attacks; extinctions; or shocks 
is vital to the survival of the network itself, and of dependent structures such as economies (for financial 
networks) or even the planet (for ecosystems). Previous attempts to characterise robustness include 
nestedness of mutualistic networks or exploration of degree distribution. In this work we present a 
new approach for characterising the stability and robustness of networks with all-positive interactions 
by studying the distribution of the k-shell of the underlying network. We find that high occupancy of 
nodes in the inner and outer k-shells and low occupancy in the middle shells of financial and ecological 
networks (yielding a “U-shape” in a histogram of k-shell occupancy) provide resilience against both local 
targeted and global attacks. Investigation of this highly-populated core gives insights into the nature of 
a network (such as sharp transitions in the core composition of the stock market from a mix of industries 
to domination by one or two in the mid-1990s) and allow predictions of future network stability, e.g., by 
monitoring populations of “core” species in an ecosystem or noting when stocks in the core-dominant 
sector begin to move in lock-step, presaging a dramatic move in the market. Moreover, this “U-shape” 
recalls core-periphery structure, seen in a wide range of networks including opinion and internet 
networks, suggesting that the “U-shaped” occupancy histogram and its implications for network health 
may indeed be universal.

Whether one examines ecological networks1–3, financial networks4–7, social networks8,9, neural networks10,11, 
or beyond, the identification of the features of these networks that characterise their robustness and resilience 
against external shocks is an important problem in network science today. The relation between network structure 
and network stability is essential to understanding why some networks survive in the face of global and random 
local changes, and why others do not. There have been many attempts to characterise what defines robustness 
in a network based on the features of the network, and the effects of this robustness on network dynamics9,12–17. 
Specifically, this has many applications in ecology2,3,18–22, where the robustness of an ecological network of spe-
cies may determine the ability of that network to withstand environmental changes, and in finance6,7, where it is 
important to have a robust financial network in order that the economy does not collapse. Furthermore, by iden-
tifying the species or companies that are most integral to network robustness, we may discover markers of future 
network health. In the ecological case, these species are typically monitored to make sure that their numbers do 
not fall too low and thus endanger the health of the entire ecosystem; in the case of the stock market, the financial 
sectors composed of these most-important stocks are usually monitored for lock-step correlations in returns, 
which is a warning sign of economic turbulence23. This “lock-step” behaviour has become especially prevalent—
and dangerous—since the 1990s, when financial deregulation led banks to repeatedly merge until the majority of 
money invested in the stock market was controlled by a few very powerful institutions24–28. Moreover, the use of 
automated trading algorithms has introduced further homogenisation, as these few banks now tend to buy or sell 
stocks based upon similar “advice”29–31.

Due to the importance of characterising the robustness of complex systems, there have been many attempts 
to introduce measures of robustness based on structural properties of the network. In supply networks, for exam-
ple, it has been shown that a network with a scale-free degree distribution will be more resilient than a network 
with a centralised or block-diagonal structure12. Similarly, studies of the robustness of the Internet have shown 
that, for large networks whose degree distributions are power-laws, an exponent less than or equal to 3 will lead 
to increased resilience13. Despite the amount of work done on the resilience of networks, most of the published 
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research on this topic has concentrated on experimental application of complex network theory to existing net-
works, or examination of the structures (such as nestedness19,21 or core-periphery14–16) of existing networks. None 
of the previous work has focused on a theoretical formalism aimed at finding the relationship of the occupancy 
of the k-core to the resilience of a network under both global and random attack. In this paper, we propose a 
new approach to quantify the resilience of the network and demonstrate that the occupancy of the k-core32–35 
can be linked to the resilience of dynamical mutualistic ecological networks and networks of stocks in the S&P 
500 under both random and global attack. We focus on a particular ecosystem, plant-pollinator interactions, but 
our results can potentially be applied to other mutualistic ecosystems. Following a k-core decomposition of the 
ecological and financial networks used in18, we find a quite universal U-shaped occupancy curve in their k-shells: 
the outer shells and inner core are highly occupied while the intermediate shells are not. This is reminiscent of the 
core-periphery structure found in the internet, opinion networks, and others14–16. The mutually-beneficial nature 
of interactions among members of the ecosystem means that, when quantified, these interactions are positive. 
For example, predator-prey interactions, would be positive for the predator but decidedly negative for the prey, 
while competitive interactions are negative for all involved species; in other biological systems such as neural and 
genetic networks, these negative interactions represent inhibitory or repressing interactions between neurons or 
genes. The financial systems discussed in this paper have all-positive interactions as well. This universal k-core 
structure provides robustness to the system against global changes such as climate change while providing resil-
ience against random local attacks on the network’s species.

Previous work in the field of complex networks relates ecosystems and financial systems, and the latter are 
occasionally referred to as “financial ecosystems”6,36. Here, we consider both real and “financial” ecosystems as 
networks of interacting species/stocks, with each species/stock as a node in this network, and an interaction 
between a pair of species/stocks taken as an edge, or link between the two nodes. The ecosystems are mutual-
istic— members interact in such a way that each derives some benefit from being a part of the network— and 
those members that contribute as well as derive a benefit are the most important to the integrity of the system 
and are called “symbionts”7,19,37–39. We examine the network structure via k-shell decomposition32–35 and simulate 
“attacks” which would remove nodes (species) from the network in order to probe robustness. Compared to a set 
of random networks, we find that the structure of these networks differs in a way that renders them considerably 
more robust against random attack: they have more nodes in the outer k-shells of the network, i.e., more nodes 
that have few connexions or are connected mainly (or only) to nodes with few connexions. In the parlance of 
ecology, these species are commensalists, or species that depend upon other species in the ecosystem more than 
they themselves are depended upon. The chances are thus higher that one of these outer nodes (commensalists) 
will be removed rather than one of the strongly interconnected central nodes (symbionts).

Furthermore, the mapping to the k-core dynamical model indicates that the inner shells, or maximum k-core, 
are most robust under global attack on the network. We are inspired by the result of18 which is further expanded 
upon in11 and suggests that network robustness increases with maximum-core occupancy. We prove that for 
maximal resilience under both random local and global attack, a network requires both the maximum k-core and 
outermost shells to have high occupancy, corresponding to the U-shape found in ecosystems and financial net-
works. We see that robustness in the face of random attacks and global changes increases as there are more species 
in both the inner core and outer shells. This implies that greater diversity leads to greater stability in ecological 
networks, rather than the opposite as it has been proposed in the works of R. May and collaborators3,6,7.

Results
Theoretical formalism.  We will begin with a brief discussion of k-shell decomposition of a network. The 
k-shell decomposition is used to partition the network into hierarchically ordered sub-structures, by decompos-
ing the network iteratively removing all the nodes with order smaller than the index of the current shell until 
no removing is possible32. We divide our networks into a series of concentric “shells,” from the outermost to the 
innermost or “core”32,33,40. Each node is assigned an index k, and nodes that have the same value of k constitute 
the k-shell. Following a series of iterative prunings based upon degree k, each node is assigned a shell based upon 
its ultimate degree. From here, one can learn valuable information about the network’s structure, such as the 
occupancy of each shell; the level of k at which the core exists; and the tipping point of collapse for the network 
Kγ (discussed in the following section)18.

We explain the algorithm in greater detail below:

	 1.	 Find all nodes with degree k = 1.
	 2.	 Remove these nodes and their links from the network.
	 3.	 Since there may now be new nodes that have degree k = 1, repeat steps 1 and 2 until there are no more 

nodes with degree k = 1 in the network; these nodes belong to the k = 1 shell, or ks = 1.
	 4.	 Repeat the previous three steps for increasing values of k until all nodes in the network have been catego-

rised as belonging to a k-shell.
	 5.	 Those nodes belonging to the innermost k-shell—kmax—are considered as belonging to the "k-core” of the 

network.

The members of the network may then be grouped by the shells to which they belong. Figure 1 shows an 
example network divided into its constituent k-shells, with the innermost shell being the maximum core.

To justify the importance of a highly-occupied k-core for network resilience, we propose a simple model in 
Equation 1, the solution of which is based on the solution found in18 and shows that the high occupancy of the 
core protects against network collapse: 
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 Given some network with adjacency matrix Aij equal to 1 if species interact and 0 otherwise, x t( )i  as the density 
(population per unit area) of species i; d > 0 is the rate of species die-off; α is a half-saturation constant; n, the 
exponent of the Hill coefficient, governs the steepness of the functional response given by Hn(xj, α) and is taken 
as being equal to or greater than 241,42; and γ > 0 is the maximal interaction strength between pairs.

There is a nontrivial fixed point where each species in the system has some nonnegative density18. Logically, 
this is a possible solution because in actuality, a species cannot have a negative density. The average of all interac-
tions at this fixed point will be a critical value γc. In18, it is found that for average interactions γ above this value, 
the system survives at a nontrivial average fixed point, though if γ drops below γc, the ecosystem becomes extinct, 
i.e., average density of species goes to 0.

Equations 1 apply to the ecological networks due to the mutualistic, or all-positive, nature of the interactions 
(as opposed to predator-prey or competitive networks, which contain negative interactions and require a more 
general theory than the k-core percolation shown in18). Furthermore, the financial networks, likened to an eco-
system by May and collaborators6,36, also have completely positive interactions Jij. (Financial networks, like eco-
systems, evolve, albeit over a much shorter time scale. There is also an element of mutualism at play: a bank might 
lend to a steel plant, which ships raw materials to an automobile factory, and so forth).

Equations 1, then, are a model which predicts that the k-core is what determines the stability of the system. We 
do not claim that Eq. 1 can be applied directly to financial networks, but the k-core analysis is still valid, because 
it represents a network tool that can be applied to any network, independently of the validity of Eq. 1. Our study 
on the financial networks is based on the application of the occupancy of the k-shell in the same manner as for 
biological ecosystems.

The tipping point of the system can be determined by solving Equations 1 using the logic approximation of the 
Hill function (see18 for details) (Hn(xj) ≈ Θ(xj − α), exact as n → ∞). This point is related to the maximum k-core 
of the network as shown in Eq. 4 for equations with all-positive interactions because here, any decrease in γ would 
cause an increase in γK

c
. The logic approximation equals to 1 for x > 0, and 0 otherwise, meaning that the fixed 

point of Eq. 1 is given by 

Figure 1.  K-shell decomposition of an example network. The network shown here has undergone the k-shell 
decomposition described above. At each step of the algorithm, nodes with degree equal to or less than k are 
removed iteratively until none remain. These nodes are then said to belong to the k-th shell. The innermost shell 
kmax, or the core of the network, contains the nodes with the highest degree even after the iterative pruning, 
which are the ones responsible for providing a “structure” to the network with their high interaction strengths. 
Those in the outermost shell (or shells, in larger networks) are vital for network survival under random attack, 
where a greater number of “expendable” nodes in the outer shells decreases the chances of a vital node being 
removed. The “U”-shaped k-shell occupancy levels described in this paper therefore lead to networks that are 
more robust under both global and local attacks.

https://doi.org/10.1038/s41598-020-59959-4


4Scientific Reports |         (2020) 10:3357  | https://doi.org/10.1038/s41598-020-59959-4

www.nature.com/scientificreportswww.nature.com/scientificreports/

∑γ α= Θ − = …∗
=

∗( )x
d

A x i N, , , (2)i j

N
ij j1

 with uniform dynamical parameters chosen for simplicity. Doing a change of variables =
γ

∗
∗

yi
x di , this becomes 

∑= Θ − γ
∗

=
∗( )y A y K (3)i j

N
ij j1

 where the degree threshold for calculating the k-core is =γ
α
γ

K d . The tipping point γK
c
 of the network—the point 

beyond which it collapses—is then 

α
γ

= = .γk K d
(4)core

max

c
c

Following this, the densities of all “species” would go to 0 (i.e., total network collapse) because the threshold 
for interactions would be too high to allow any mutualistic interactions between species. As the reduced densities 

∗yi  can only take integer values from 1 to ki (where ki is the degree of species i), all species with kj < Kγ are removed 
via the Heaviside function in Equations 3 so as to solve for ∗yi  at a threshold Kγ

18. Thus, the removal of any one 
species from the maximum k-core will cause all other species in the core now to have too few links to belong to 
that maximum core and it will collapse.

The remaining species now have a new degree ′k ; the network is checked again and species with ′ < γk K  are 
removed, continuing until no species has degree less than Kγ. This is the same algorithm used in k-shell decom-
postion18,32,35. The species left after this process, then, constitute the Kγ-core. We showed in our previous publica-
tion18 that the reduced density of species i, ∗yi , is equal to the number of links Ni(Kγ) from species i to the core 
species: = γ

∗ ( )y N Ki i  (the nontrivial fixed point solution for species in the Kγ-core)18. In this way, the network 
dynamics and the network structure are linked and the removal of links to the Kγ-core leads to a total network 
collapse. The densities ∗xi  and reduced densities ∗yi  are greater than 0, so the number of links to the Kγ-core must 
also be greater than 0. For average interactions γ with some value that forces Kγ to be larger than the maximum 
k-core of the network, there are no links to the maximum k-core; the network collapses to the extinct state =∗x 0i  
with critical threshold γK

c
. As a corollary of Eq. 1, the highly-occupied innermost k-shells are more resilient.

This result may also be applied to, among others43,44, financial systems which evolve dynamically6. While the 
time scale is much smaller than that which shapes an ecosystem, it cannot be denied that certain businesses and 
industries, and the economies which are centered around them, have continued to thrive while others have failed. 
The S&P 500 stock index is an example of such a system; the weaker performers are, over time, removed (as a 
species might go extinct from an ecosystem) while those businesses at the core of the network under a k-shell 
decomposition, which provide stability and robustness, have persisted over decades. If the weaker performers in 
the S&P 500 are also those at the periphery of the associated network, there is little disturbance in the economy 
as a whole when they are removed from the network of the S&P 500. Financial crises, analogous to an ecosystem 
being pushed to (or even past) the brink of collapse, occur when the businesses in or near the k-core begin to 
perform weakly and fail, thus endangering their presence in the stock index and potentially leading to the disap-
pearance of nodes essential for the maintenance of network structure.

Network structures: ecological and financial.  We begin the analysis by constructing our networks, 
both ecological and financial.

Ecological network.  The ecological data are found from field studies in which interactions between various spe-
cies in mutualistic ecosystems (i.e., plants and pollinators) are recorded and enumerated45. For example, one field 
study might count the number of bees and wasps visiting various plants within a certain area over a certain period 
of time46. These networks are straightforward to construct: adjacency matrices where a value of 1 denotes some 
directed interaction between one species and another, and a value of 0 denotes no interaction. An interaction 
here is a visit by a pollinator to a given plant; the networks constructed are bipartite and directed18. As these are 
mutualistic systems, where the plant provides a benefit to the pollinator in the form of food and the pollinator 
helps the plant to disperse pollen, all of the interactions are nonnegative.

Figure 2a shows as an example the ecological network studied by Santos, Aguiar, and Mello (2010)46. This 
plant-pollinator network is composed of the interactions of various species of social bees and social wasps in 
Bahia, Brazil with various types of plants. We display the network in a directed bipartite format, with the bees 
and wasps acting upon the plants by visiting them, following the convention of an interaction originating with 
an active party and performed upon a passive party21. Node size scales with in-degree, or the number of visits 
received by a given species of plant. Figure 2b shows the distribution of the parameter Kγ (the “tipping point” 
according to Eq. 4) for the 15 mutualistic plant-pollinator networks46–59 gotten from InteractionWeb45.

Financial network.  In our examination of the set of financial data, we construct both pairwise correlation and 
pairwise interaction networks— Cij and Jij, respectively60,61— using logarithmic returns of stocks belonging to 
the S&P 500. Given these time series of stock log-returns, we first calculate the pairwise Pearson correlations Cij 
and then infer the pairwise interactions Jij using maximisation of the log-likelihood via the Graphical Lasso algo-
rithm60,61. A detailed explanation of each method can be found in the Supplementary Information, in “Correlation 
matrices” and “Interaction matrices.” The data covers a period of roughly 45 years (2 January 1970 to 5 November 
2015)62–65 and is divided into overlapping windows of 100 days (see Methods section for further details).
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In Fig. 3a, we show the interaction matrix Jij of the stock network for the 100-day window ending 22 June 
1998. Nodes are colour-coded according to the stocks’ various financial sectors. Node size increases with degree, 
and edge thickness increases with interaction strength. Figure 3b shows the distribution of correlations P(Cij), 
and Fig. 3c shows the distribution of interactions P(Jij), for this network. It is important to note that, despite the 
presence of some negative correlations, the interactions inferred via Graphical Lasso are all positive, allowing us 
to describe the system with equations of the form of Eq. 1 and find a tipping point which relates to the k-core.

Mutualism and nestedness.  Nestedness quantifies the tendency of the most generalist nodes in a net-
work—those with the most connections— to interact with the most specialist nodes, or those with the fewest con-
nections2,19–21. Especially applicable to networks such as ecosystems, this measure posits that the more “nested” a 
network is (i.e., the more that the generalists interact with the specialists), the more robust it will be.In mutualistic 
ecosystems, we say that species both providing a benefit to, and reaping some reward from, others in the system 
are commensalists, while those that only derive a benefit are symbionts. It is shown in18 that the commensalists 
inhabit the maximum k-core of the network and the removal of one, then, has some strong negative impact on 
an ecosystem. A significant decrease in population of, for example, a pollinator that is a core species could then 
reverberate throughout a whole ecosystem, as herbivores require enough plant matter as food to maintain their 
own populations, and these herbivores are then eaten by carnivores.

In the context of real systems, the nestedness of a network has been linked with how mutualistic are the inter-
actions between its members. In Bascompte et al. (2003), it is shown that nestedness increases with mutualism 
in ecological networks, such that highly-mutualistic networks are also highly-nested (as opposed to having a 
compartmentalised structure)19. The system is then organised around a core of interactions, displaying a small 
number of species interacting with many others and many species which interact only with a few others. Similarly, 
May et al. (2008) noted that, in financial systems, smaller and more specialised banks and businesses tend to have 
few connexions which are mostly with larger, more "generalist" banks and businesses36, thus drawing a compari-
son between ecology and economics.

Due to this central core of interactions that is found in mutualistic networks, we hypothesise that the structure 
and occupancy of the network is related to its robustness and resilience. To study this hypothesis we examine both 
the ecological and financial networks via k-core decomposition. We probe the structure of the networks using 
k-shell decomposition and discover an unexpected structure in common among these networks when examining 
the population of each k-shell. As in Fig. 4, when the occupancy of each shell is plotted for both the ecological and 
financial networks, we find that the average over all histograms for each set of networks forms a “U” curve rather 
than the upward-sloping line expected for a random network18,32,33. Figure 4a,b show, respectively, normalised 
histograms of all k-shell occupancies for the 15 ecological and 1147 financial networks as well as the averages 
over these with a 95% confidence interval. Figure 4c,d show, respectively, examples of k-shell occupancy for the 
ecological network onstructed using data from Santos et al. (2010) and the financial network shown in Fig. 3a. 

Figure 2.  Example ecological network. (a) Schematic of a network built from the adjacency matrix of 
plant-pollinator interactions between a total of 76 plants and pollinators described in Santos et al.46 (b) the 
distribution of tipping points Kγ across all ecological networks considered in this work. Interactions in (a) are 
directed from the acting species (the pollinators) to the passive species (the plants); node size increases with in-
degree. Green nodes represent plant species while yellow nodes represent pollinators.
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Node size is given by in-degree (Fig. 4c, a directed network) or degree (Fig. 4d, which is undirected). The diame-
ter of the shells is in proportion to the occupancy; it can be seen that the maximum core and outermost shell are 
the most populated, and some intermediate shell is drastically less populated. This presents as a “U”-shape on the 
histograms in Fig. 4a,b. By contrast, the ecological networks whose structure do not differ significantly from the 
random case, do not display a “U”-shape when averaging over histograms of their k-shell occupancies. Similarly, 
in the case of the financial networks, we find that there are on average more nodes in the lower k-shells than 
would be expected from the random case, for times both of financial stability and financial crisis.

In random networks, the occupancy of each k-shell increases with k, such that the core of the network houses 
the largest amount of nodes32,33. Since the nodes at the core provide structure to the rest of the network, this 
strengthens the network against external global changes in conditions that lower the interaction strengths of all 
member nodes18—a relevant example in the case of ecological networks would be climate change. In this case, the 
nodes at the core, which have the most interactions, will persist the longest. Additionally, a larger k-core means 
there are more highly interconnected nodes providing a “backbone” for those parts of the network less essential 
to its survival. However, the very same structure also renders the network vulnerable to attacks where a node (or 
nodes) are removed simply based on some random probabilistic scheme. The bulk of the nodes are located at or 
near the core of the network, thus going on simple probability alone, it is much more likely that one of these cen-
tral nodes will be removed by a random attack as compared to one of the nodes at the periphery (of which there 
are fewer). Such removals will diminish the network’s robustness and eventually cause the network to collapse.

With Eq. 1, we proved that high occupancy of the core provides resilience against global attacks. Moreover, 
we propose that the “U”-shape structure obtained in the financial and ecological networks, and shown in Fig. 4, 
contributes to the resiliency of both financial and ecological networks in two ways. First, the increased occupancy 
of the core (relative to those shells with middling values of k) provides structure to the network by the core nodes’ 
high interaction strengths and thus helps to protect against the effects of external global changes; second, the 
large amount of nodes in the lowest k-shells provides a measure of protection against random attacks by acting 
as a buffer. In other words, the more important nodes in the inner shells, whose removal would quickly lead 
to a collapse of the network, are better-protected because their probability of random deletion decreases when 
they are surrounded by more nodes whose survival is not essential to that of the network. (For a more in-depth 

Figure 3.  Example network of the S&P 500. (a) Schematic of the network built from pairwise interactions Jij 
between 489 stocks in the 100-day window ending 22 June 1998. Nodes are colored according to the financial 
sector to which they belong, and node size increases with degree. Interactions are symmetric, i.e., Jij = Jji. 
(b,c) show the distribution of pairwise correlations Cij and nonzero pairwise interactions Jij, respectively. It is 
important to note that, while the Cij shown in (b) take some negative values, the nonzero Jij shown in (c) are all 
positive. To determine the tipping point of a network using Eq. 1, Jij > 0 are necessary.
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examination of this, please see Supplementary Information, section “Testing the networks”). A larger core pro-
vides more stability and thus a more robust network, while a larger amount of nodes in the outermost shells pro-
vides greater protection to those essential nodes. In fact,18 shows that larger ecosystems with more species in both 
the core and the periphery are more resilient to attack than ones with fewer species overall. This runs contrary to 
the diversity-stability paradox proposed by May3,6,7, which states that more diverse ecosystems are actually less 
stable.

As nodes are deleted starting from the outermost shell and approaching the tipping point, the network col-
lapses from the outside in. The k = 1 shell will collapse first, with enough nodes removed; the k = 2 shell will 
soon follow if enough of its nodes are removed, and so forth. For ecological networks, the extinction of species 
in k-shells increasingly close to the tipping point changes the mutualistic structure of the network. As more and 
more species are removed and the outermost shells collapse, species closer and closer to the core of the network 
become commensalists (which only receive a benefit from other species) rather than symbionts (which both give 
and receive a benefit). At some point, the core species are providing too much for the rest of the network and not 
receiving enough of a benefit in return; as this continues and there cease to be any species providing benefits to 
the others, the network is rendered unsustainable and totally collapses. Relating to the shell structure of the net-
work, as more and more species are removed, the k-shell structure changes. Eventually, the maximum k-shell (or 
“core”) kmax takes an integer value less than the tipping point Kγ, leading to the collapse of the network.

Figure 4.  Occupancy of k-shells in ecological and financial networks. (a) k-shell (normalised as −k shell
kmax

 versus 
k-shell occupancy (normalised as occupancy

occupancy
shell

max

) for the ecological networks; the black solid line gives the average 
over all ecosystems (N = 15, 95% confidence interval of the average given by the black dashed lines). (b) k-shell 
versus occupancy, normalised as in (a), for the networks of stocks in the S&P 500 in overlapping 100-day 
windows ranging between 2 November 2015 and 2 January 1970 (N = 1147; average over all stocks given by the 
black solid line, 95% confidence interval of the average given by the black dashed lines). (c,d) show k-shell 
occupancy for a single ecological network46 from (a) and a single financial network from (b) for the 100-day 
window ending 22 June 1998, respectively. Shell diameter is proportional to occupancy and node size is 
proportional to degree.
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As γ is proportional to the average of interactions in a network18, we can estimate Kγ also as 
γ
1 . We apply such 

an estimation to the stock market networks. γ must take positive values, therefore it is important that the interac-
tions (if not necessarily the correlations) of the stocks in each network take values greater than 0. As with the 
ecological networks, those nodes in the core and higher-numbered k-shells are integral to the stability of the 
network, or “keystone” nodes18,66. This is analogous to the discovery of "influencers” in social networks, without 
whom the networks would collapse, using k-shell decomposition35,40.

Moreover, examination of real financial data bears out the importance of nodes belonging to the core. Figure 5 
shows the Gini coefficient G of the core (Fig. 5a), as well as the membership of the kcore

max and the outermost 
k = 1-shell broken down by economic sector (Fig. 5b,c, respectively). The Gini coefficient is a measure of equality 
in how resources are shared among a population; a higher Gini coefficient implies greater inequality, i.e., a small 
number of the population controlling the majority of the resources67. (Details of the calculation can be found in 
Supplementary Information). Here, the population is the set of stocks in the S&P 500 while the “resource” is core-
ness, or membership in the maximum k-core. In 1992, there is a sudden transition from a k-core with more 
diverse membership among industries (average Gini coefficient Gavg = 0.51 from 1970 to 1992) to a k-core mostly 
populated by one or two industries (Gavg = 0.87 from 1992 to 2015). Despite this, Fig. 5c shows that the outermost 
core of the network has remained fairly stable in composition over the past 45 years, with some changes due to, 
e.g., increasing prevalence of digital devices and the accompanying rise of the information technology sector.

In contrast to this stability is the composition of the kcore
max, which seems to be largely dependent upon the mar-

ket sector(s) moving the United States economy at a given time. We see in Fig. 5b that businesses in the financial 
sector, coloured red, dominated the kcore

max for nearly two years preceding the 2008–2009 US financial crisis. The 
demise of these core companies (seen in the lack of any financial-sector stocks in the core during the worst of the 
crisis) had dire consequences for the US economy. Indeed, a similar sentiment is shown in the idea of businesses 
being “too big to fail”—there are certain companies whose removal from the economy would cause some 

Figure 5.  K-shell population of financial networks by economic sector. (a) shows the Gini coefficient G of each 
network’s maximum core kcore

max. Note the drastic shift from average G of 0.51 before 1992 to a much higher 
average G of 0.87 afterwards. This agrees with the shift from a core occupied by a variety of industries to one 
occupied by only one or two. (b) Shows the composition of the maximum core for each network. The sudden 
transition to domination by one or two sectors could stem from the advent of online trading in the early 1990s 
allowing for anyone, anywhere to be involved in the stock market, or of financial deregulation in the 1990s. (c) 
shows the composition of the outermost (k = 1) shell of the financial networks, which stays more or less 
constant.
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catastrophic collapse or near-collapse. The underlying origins of the 2008–2009 US financial crisis can be seen in 
Fig. 5b, in the sudden shift from a kcore

max which is fairly balanced in composition to one ruled by one or two eco-
nomic sectors. Figure 6 shows a typical stock network before this transition (Fig. 6a) in contrast with a typical 
stock network after the transition (Fig. 6b). Note the diversity of industries in the core in Fig. 6a as compared with 
the dominance of the core by the financial industry in Fig. 6b.

This shift occurred in the early 1990s and was likely the result of a confluence of factors. First, the deregula-
tion of the banks during the administration of President Clinton: the Glass Steagall Act prohibited mergers of 
investment and lending banks but was toothless by the early to mid-1990s; major banks began to merge as early 
as 1990, creating institutions which were “too big to fail”24,25,27,28. The Riegle-Neal Act of 1994 further loosened 
the rules by allowing bank acquisitions across state lines26,28, greatly increasing the number of banks available to 
merge or acquire. Although this caused the price of the S&P 500 to nearly triple in value over the next five years 
as banks merged together at an unprecedented rate (Fig. 7a), it set the stage for an economy whose maximum 
k-core was dominated, and thus whose health was dictated, by one or two industries (the large blocks of colour 
seen in Fig. 5b)24,28. Only a few banks controlling much of the country’s wealth has led to periods of homogenous 
k-core. These few banks rush to invest in what industries they deem most promising, but since there are so few 
banks, there is not a great deal of diversity in the investments and one industry dominates the maximum k-core. 
Thus, institutions that are “too big to fail” create industries that are “too core to fail”—maximum-core-dominant 
industries where instability could prove catastrophic for the overall financial health of the country. The financial 
industry was, for several years, one of these core industries; moreover, the uncontrolled merging of banks had 
led not only to the loss of diversity in the industries making up the maximum core, but to the reduction of the 
number of influential companies making up that particular core industry! Sure enough, this confluence of factors 
meant that the subprime mortgage crisis and subsequent collapse or near-collapse of a few essential banks in 2008 
severely hurt the economy of the United States and sent shockwaves through the global economy.

Of note is the fact that, while previous works have experimentally found network structures where there 
are a large group of peripheral nodes connected to a large group of core nodes, k-shell decomposition offers 
a network-theoretical method of determining the role of various nodes in the robustness of a network. In this 
manner, one may, for example, determine the magnitude of harm that a given species’ extinction or even endan-
germent will do to an ecosystem. Moreover, by dividing the ecosystem into shells, one may determine how dire 
is the situation of the ecosystem, i.e., if many species in the shell closest to the tipping point are disappearing or 
in danger of doing so. In the case of the stock market, there are two types of predictors: individual stocks in the 
core and core-dominant economic sectors (following the deregulation of banks in the early 1990s24–28 and the 
increased prevalence of automated trading systems29–31, core nodes tend to belong to only one or two economic 

Figure 6.  K-shell decomposition of stock market networks before and after 1990s deregulation. (a) Pre-
deregulation; stock network for 100-day period ending 17 June 1988. The various sectors of the economy are all 
well-represented in each shell, including the maximum k-core, implying that the economic health of the United 
States is not dependent upon any single industry. (b) Post-deregulation; stock network for 100-day period 
ending 25 July 2003. The innermost cores of the network are dominated by a single industry (finance), meaning 
that turmoil in the financial sector would have negative effects on the stock market and the U.S. economy as a 
whole. Each network is color-coded by economic sector and divided into its constituent shells.
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sectors out of a possible ten). The individual companies are those that should be monitored to prevent their fail-
ure and an ensuing “domino effect” throughout the economy, as happened in the financial crisis of 2008, while 
the correlation of stocks within the core-dominant sectors should be monitored for signs of the stocks moving in 
lock-step— a harbinger of market volatility23 (Fig. 7b). More generally, one may predict the future health of a net-
work by identifying key nodes, and then act upon those predictions in order to maintain the network’s integrity.

The “U-shape” in the k-shell occupancies is reminiscent of networks with core-periphery structure. These 
display a highly interconnected subset of nodes at the core and another subset of nodes at the periphery loosely 
connected to those core nodes15. Core-periphery structure has been found in networks ranging from economies68 
to interactions amongst a troop of monkeys69. Such similarities may mean that the U-shape structure seen in the 
the networks we examined— and its corresponding implications for network robustness— could be more com-
mon than previously thought. By k-core theory, the nodes in the outermost shells are loosely connected to the rest 
of the network (e.g., nodes in the k = 1-shell have only one link to the rest of the network following the iterative 
pruning described earlier, those in the k = 2-shell have two, etc.), while those in the maximum k-shell (the core) 
have the greatest number of links to the rest of the network. A U-shape in the occupancy histogram of k-shells 
would then mean that the majority of the nodes have either very few links to the rest of the network (those in the 
outermost shells) or very many links (those in the innermost shells and core)—the type of network defined by 
core-periphery structure.

Comparison with diversity-stability paradox of May.  The networks examined in the present work 
which display U-shaped k-shell occupancy histograms not only have higher values of maximum core kcore

max, but 
are also more stable (see the previous section) than random networks of the same number of nodes. For the non-
linear dynamical systems described by Equations 1, the stability of the fixed-point solution given by Eq. 2 is con-
trolled by a Jacobian matrix →∗M x( )ij

18: 

δ
δ

→ =
∗

→=→∗

M x x
x

( )
(5)

ij
i

j x x

 Here, species i and j have densities x and fixed-point solutions x*. It is found that the nontrivial fixed-point solu-
tion is stable if the eigenvalues of Eq. 5 have a negative real part and that the solution becomes unstable when the 
system collapses (that is, the threshold on mutualistic benefit =γK kcore

max, where kcore
max is the maximum k-shell, or 

Figure 7.  Changes in stock network metrics due to deregulation. (a) Average share prices of the S&P 500 index 
(1970–2015) and cumulative assets in bank mergers (1980–2004), versus time. The deregulation of the mid-
1990s allowed banks to acquire one another and merge with impunity, massively increasing the amount of assets 
involved. Simultaneously, the average share price of the S&P 500 nearly tripled. Once there were no more small 
banks left to absorb, these mergers and acquisitions dropped off. Inset: increase of assets moved from 1980 to 
2000 is strongly correlated with average share price of the S&P 500 (r2 = 0.97, p = 0, n = 5056 data points). (b) 
Average correlation between member stocks of the S&P 500 from 1970 to 2015. Following bank deregulation, 
average correlations of core stocks become much greater than the average over all stocks, most likely due to the 
makeup of the core becoming drastically more homogeneous once fewer banks had most of the investing power. 
As in23, the correlation between core stocks jumps dramatically higher (i.e., almost lock-step) preceding periods 
of economic distress such as the Enron scandal 2002–2003 and financial crisis of 2008.
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“core” of the network found following a k-shell decomposition); the details of the calculation are in18. As stated in 
the section “Network Dynamics”, analytical solution of the dynamical equations of a mutualistic system finds that 
more diverse systems, i.e., those with more species at the maximum core of the network under a k-shell decom-
position, are more resilient to global and random local attacks. The finding that a larger maximum k-core number 
kcore

max makes the system more stable is one of the key points of Morone, Del Ferraro, and Makse (2019)18. A higher 
value of kcore

max implies a greater number of species present in the system, as kcore
max can take a value of, at maximum, 

one less than the number of species found to be at the kmax-core of the network (corresponding to each of such 
species having an interaction with all other members of the core). Ecosystems with fewer species are thus bound 
by a lower maximum possible value of kcore

max and are less stable.
This runs opposite to the conclusion of Sir Robert May, who proposed that increasing the diversity of ecosys-

tems, counterintuitively, decreases their stability (the “diversity-stability paradox”)3. Here, the difference lies in 
the choice of stability matrix; the one used by May does not depend upon the fixed-point solution3,18: 

δ′ = − +
γ

M
A
K (6)

ij
ij

 Again, i and j refer to species, but the adjacency matrix Aij is a random model and thus ′M  is random as well3. The 
stability condition here also requires that the eigenvalues of this matrix have negative real parts. The maximum 
eigenvalue of the stability matrix in18 is upper-bounded by λ = − γ

+γ
max
M

K 1
, guaranteeing that λ < 0max

M  and the 
nontrivial fixed point is stable. However, the stability condition in3 requires that the largest eigenvalue of the adja-
cency matrix Aij is upper-bounded as λ < γKmax

A . In Equation 6, λmax
A  is a nondecreasing function of the number 

of species3,18, meaning that the more species there are in an ecosystem, the more difficult it is to satisfy this stabil-
ity condition. The conclusion of Morone, Del Ferraro, and Makse (2019), in contrast, depends upon the 
fixed-point solution and finds that for increasing values of species in the maximum core (and thus increasing 
values of kcore

max), the stability condition is actually easier to satisfy18. Hence, the diversity-stability paradox is done 
away with.

Discussion
Network robustness is an issue relevant to many systems the world over, from finance to the Internet to ecosys-
tems; the well-being of economies, countries, and even the earth depend upon the survival of these networks so 
it is important to quantify their resilience. A number of methods have thus been proposed previously to calculate 
robustness. Similarly important is the point at which enough nodes have been removed to cause network collapse. 
If the tipping point of collapse of an ecosystem (for example) is known, prevention of that collapse will be more 
possible because we will see warning signs in the degrading structure of the network. Here, we have proposed a 
new k-core-based robustness that is based in theory rather than individual examinations of discrete networks, 
and a method of determining a network’s tipping point of collapse which is also based in a k-shell decomposition 
of a network. Since the maximum k-core is a topological invariant (i.e., structurally based and not dependent 
upon, for example, how the nodes are labelled)18, this method can be generalised across networks so long as they 
have all positive interactions.

Following k-shell decompositions of both ecological and financial networks, we find that histograms of the 
occupancy of each k-shell form a “U-shape.” Thus, the outermost shells— the periphery— and the innermost 
shells— the core— are the most highly-populated, while the intermediate shells are very sparsely populated. 
This is, in fact, similar to core-periphery structure, wherein there exists a subset of nodes (the “core”) connected 
strongly not only to each other, but to most of the other nodes in the network, and a subset of nodes (the “periph-
ery”) connected more loosely to a few of the nodes in the core70. Core-periphery structure has been found in 
many types of networks, from world systems, to economics, to social networks among primates15,71,72. Our struc-
ture differs in that there are more than two subsets, or shells, but the underlying idea remains: there is a central 
subset of nodes which are integral for the maintenance of network structure, while the most peripheral nodes are 
less important for the network’s survival and may cease to provide a mutualistic interaction without causing a 
total collapse of the network.

It is known that the degree of a node in a random network is highly correlated with the k-shell to which 
the node belongs, as noted in previous work by Kitsak et al.35 and found in many other studies in the litera-
ture. Crucially, however, we observe that the U-shape cannot be found in a random network and thus cannot be 
directly related to the degree distribution. There may be some higher-order degree correlations which determine 
the non-random U-shape, and although that is beyond the scope of this paper, it would be an interesting problem 
to directly relate the k-core structure to these higher-order correlations. We note that the k-core is composed 
of nodes of degree at least k that are also surrounded by other nodes with degree at least k, clearly indicating 
both strong degree-degree correlations and that these correlations could be responsible also for the U-shaped 
distribution.

The persistence of the core and inner shells, essential for network structure, even in the face of average inter-
actions being weakened across the whole network shows the importance of the “U”-shaped k-shell structure to 
those networks’ survival, and to determining and predicting networks’ health. An abundance of species in the 
outer shells protects those species in the maximum core and inner shells when the ecosystem comes under attack, 
though when the maximum-core species cease to provide any mutualistic benefit to the other species in the net-
work, the ecosystem cannot sustain itself and collapses fully. It can be useful to monitor the populations and inter-
actions of species in a given ecosystem through the lens of such a k-core decomposition: those in the outer shells, 
often commensalists who derive more benefits than they provide, tend to disappear or cease to provide mutualis-
tic benefits first with less of a negative impact; the network collapses when symbionts, who have interactions with 
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many other species both in the core and at the periphery, disappear or cannot provide enough of a mutualistic 
benefit for the system to be sustainable. Thus, certain species may be treated as indicators of the health of a given 
ecosystem in that a population decline could be an early warning of a collapse if corrective action is not taken.

Similarly, the businesses and industries whose stocks make up the maximum core of a financial network could 
be viewed as indicators of economic health. That is, if certain core businesses begin to show signs of distress via 
their stock activity, they could be more closely regulated in order to prevent (or mitigate the effects of) a future 
recession or even depression. Since the bank deregulation of the 1990s, the banks, emboldened by deregulation, 
merged repeatedly until there were only a few major banks remaining; this was the advent of banks that were “too 
big to fail,” as they were responisble for the money of much of the United States. Much of the investing power 
was now in the hands of a few banks, leading to less diversity in where the money was going (as shown by the 
sudden change during the 1990s to a core dominated by only one or two industries) and thus tying the health of 
the economy to the fortunes of companies in, e.g., finance or information technology. Furthermore, the adoption 
of automated online trading systems has led to further homogenisation of investing strategies, where trades are 
made using computerised analysis of past data, leading to similar behaviour among everyone from investment 
firms and banks to individuals29–31. This similar behaviour then becomes the past data that is analysed and used 
for decision-making, creating a cycle of increasing dependence upon a few companies in one or two industries (as 
seen in Fig. 5b) that can lead to economic turmoil if several of these companies go under. It has been shown23 that 
stocks move in lock-step (high correlation between returns) prior to drastic swings in the market; we find that this 
lock-step behaviour is shown even more dramatically within the core-dominant economic sectors. Beyond single 
core companies, entire core sectors may be monitored for signs of abruptly and abnormally high correlation, and 
corrective or preventative measures may then be taken.

The idea of monitoring a core subset of vital nodes in order to preserve the structure of a network is also 
generalisable beyond the applications explored in this paper. Due to the breadth of networks which display a 
core-periphery structure, one may use the k-core structure of a social network to more effectively inoculate pop-
ulations against disease, or take advantage of the structure of Internet networks to better guard digital infra-
structure against viral attacks. In sum, since core-periphery and k-shell structure are ubiquitous in real-world 
networks, a better understanding of what makes these networks robust— and how to determine whether or not 
that robustness is being endangered— can be utilised to protect against, or at least soften the effects of, a wide 
range of variously catastrophic events.

Methods
Data acquisition.  Ecological data was downloaded from the Interaction Web DataBase45, for anemone-fish; 
plant-pollinator; plant-ant; and plant-disperser interactions. These data were converted to a standard format of a 
binary directed adjacency matrix where a value of "1” indicates a link (or interaction) and a value of 0 denotes no 
interaction. We selected 49 plant-pollinator networks (further details in Supplementary Information).

The economic data was daily open and close prices for stocks belonging to the S&P 500 index over a period 
spanning from 2 January 1970 to 5 November 2015. Data of each individual stock were only used for the time 
during which the stock belongs to the index. A formal list of changes to the composition of the S&P 500 was con-
sulted63 to ensure that the networks include the correct stocks. Data for stocks that were still extant at the time of 
data collection (5 November 2015) were collected from the Yahoo! Finance page64 and data for stocks that were 
no longer being traded were purchased in order to avoid survivorship bias65,73.

We then calculated the daily log-returns ri(t) of a given stock i for the period t during which it belongs to the 
index as follows74: 

=










r t Close t
Open t

( ) log ( )
( ) (7)

i
i

i

 Here, the variables Closei(t) and Openi(t) represent the opening and closing prices of the stocks on the same 
day. Open-to-close return data maintains synchronicity in the trading hours of all the stocks5,75. Some stocks, 
for example, might be traded online during hours when the New York Stock Exchange is closed, whereas others 
might not be (and would not have been, prior to the advent of online trading); this could potentially lead to a 
situation in which one stock belonging to the S&P 500 for some duration, is traded more than another stock 
belonging to the index for the same amount of time.

Data availability
The datasets produced in this study will be made available upon reasonable request. Requests should be sent to 
the corresponding author.
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