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Abstract: Background: Seasonality is a characteristic of some respiratory viruses. The aim of our
study was to evaluate the seasonality and the potential effects of different meteorological factors
on the detection rate of the non-SARS coronavirus detection by PCR. Methods: We performed a
retrospective analysis of 12,763 respiratory tract sample results (288 positive and 12,475 negative)
for non-SARS, non-MERS coronaviruses (NL63, 229E, OC43, HKU1). The effect of seven single
weather factors on the coronavirus detection rate was fitted in a logistic regression model with and
without adjusting for other weather factors. Results: Coronavirus infections followed a seasonal
pattern peaking from December to March and plunged from July to September. The seasonal
effect was less pronounced in immunosuppressed patients compared to immunocompetent patients.
Different automatic variable selection processes agreed on selecting the predictors temperature,
relative humidity, cloud cover and precipitation as remaining predictors in the multivariable logistic
regression model, including all weather factors, with low ambient temperature, low relative humidity,
high cloud cover and high precipitation being linked to increased coronavirus detection rates.
Conclusions: Coronavirus infections followed a seasonal pattern, which was more pronounced
in immunocompetent patients compared to immunosuppressed patients. Several meteorological
factors were associated with the coronavirus detection rate. However, when mutually adjusting for
all weather factors, only temperature, relative humidity, precipitation and cloud cover contributed
independently to predicting the coronavirus detection rate.

Keywords: weather; meteorological; coronavirus; immunosuppression; seasonality

1. Introduction

Respiratory tract infections (RTIs) are an important contributor to overall morbidity
and mortality, with lower RTI being the fourth most frequent cause of death worldwide [1].
Respiratory viruses are also an important cause of outbreaks and epidemics, including
the widespread and in-depth studied influenza virus [2], but also the recently isolated
coronavirus, SARS-CoV-2, which continues to have a devastating effect on public health
and global economy [3,4].

Seasonality is a prominent characteristic of many viral RTIs. In temperate climate
regions, viral RTIs reach their peak in winter, and in tropical areas during the rainy sea-
son [5–8]. It has been postulated that the underlying causes of their seasonality are both
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virus- and host-related. Meteorological factors can influence virus survival, but also mod-
ulate human behavior [5,9] and host immune responses [10]. Host-related factors can
influence not only the incidence but also the clinical course of an infection. Previous studies
have indicated that immunosuppression is a risk factor for an unfavorable outcome in pa-
tients with respiratory infections [11–13]. Furthermore, there is evidence of prolonged virus
shedding in immunocompromised hosts [14], the clinical and epidemiological importance
of which remains unclear.

Interestingly, meteorological factors seem to play a part in the seasonal distribution
of some respiratory viral pathogens [6,7]. Preprints of recent studies suggest a potential
association between SARS-CoV-2 incidence and climate conditions [15–17], but the evidence
remains inconclusive and the association is not supported by all available data [18]. In
addition, the seasonality and climate dependence of SARS-CoV-2 could not be adequately
studied until now, because the ongoing pandemic lasted only a couple of months, and
was dramatically influenced by contact distancing measures. The in-depth analysis of the
seasonal pattern of non-SARS, non-MERS coronaviruses in conjunction with meteorological
factors might therefore provide important insights into the biology of coronaviruses in
general.

The aim of the present study was to evaluate the seasonality and the potential effect
of different meteorological factors on the detection rate of the non-SARS, non-MERS
coronaviruses. Furthermore, we focused on potential differences in the seasonality of
coronaviruses in immunocompetent vs. immunosuppressed hosts.

2. Materials and Methods

We performed a retrospective analysis of 12,763 samples (288 positive and 12,475 neg-
ative), including nose/throat swabs, tracheal aspirates and bronchoalveolar lavages, tested
in the Institute for Virology of the University Hospital Essen, Germany from June 2013 to
December 2019. The samples were tested with the respiratory viral panel (FTD, Siemens,
Erlangen, Germany) according to the manufacturer’s instructions, for the detection of
non-SARS, non-MERS coronavirus (NL63, 229E, OC43, HKU1). The analysis included all
tested samples, meaning that a patient could contribute more than once over time, with
the following exception: repeated positive samples from the same individual collected
within two weeks of each other were removed. The term “coronavirus” corresponds to
non-SARS, non-MERS coronaviruses in our manuscript, unless specifically otherwise noted
(e.g., SARS-CoV-2). Nucleic acid extraction was performed using MagNA pure (Roche,
Mannheim, Germany). Demographic and clinical data were taken from patient charts.
A quarter of our cases (n = 3254, 26.1%) and a third of our positive cases (n = 92, 31.9%)
were generated by immunosuppressed individuals (patients with hematological or onco-
logical malignancies under chemotherapy, solid organ transplant recipients, patients after
allogeneic human stem cell transplantation).

Meteorological data were obtained for each day of the study period from the weather
station of Essen Bredeney, Germany, through the server of “Deutscher Wetterdienst”. The
data included daily average temperature, daily average relative humidity, precipitation,
daily average wind speed, sunlight hours, daily average cloud cover and daily average
atmospheric pressure. We expressed the association between continuous weather variables
and the coronavirus detection rates by increments of 5 units on the corresponding scales of
the variables if not otherwise specified. The meteorological factors in Essen, Germany for
the duration of the study are presented in the supplement (Figure S1). This retrospective
study was carried out in accordance with the Declaration of Helsinki and the guidelines of
the International Conference for Harmonization for Good Clinical Practice.

Data Analysis

The virus detection rate was modeled via logistic regression with a seasonal effect
and/or weather factors as explanatory variables. Seasonal variation in virus detection rate
was fitted for each year separately with a cosinus function, with 1-year frequency length
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together with a sinus curve, and all variables with a p-value below 0.157 (i.e., improving
the model quality according to the Akaike information criterion (AIC)) were combined
into a single year-specific seasonal score. The formula can be found in the supplement
(Supplement Table S1).

Weather was represented as daily average values locally assessed 10 days prior to the
virus measurement to account for incubation time [19–21] and time from the first symptoms
to coronavirus diagnostis (10 days lag-time). Weather measurements and fitted seasonal
effect were compared via Pearson’s correlation analysis.

The effect of single weather factors on the coronavirus detection rate was fitted in a
logistic regression model with and without adjusting for other weather factors and season-
ality. Variable selection was applied to the weather factors with and without adjustment for
season, such as backward, forward, and stepwise selection, targeting statistical model opti-
mization, such as the improvement of AIC. Selected effects were also estimated in patients
stratified according to their immune status (immunocompetent vs. immunosuppressed).

The monthly coronavirus detection rate (as the number of positive samples per tested
samples per month) was compared with the corresponding sum of predicted values from
the logistic model. Additionally, the coronavirus detection rate was compared with the
sum of predicted values within deciles of the predicted values in a calibration plot. As our
study does not aim to test or confirm predefined associations, we display the statistical
precision of our parameter estimates in graphical presentations of odds ratio estimates
with confidence intervals, including a reference line at OR = 1 (as indicating absence of a
risk modifying effect). We calculate and report confidence intervals to assess the precision
of our estimates, because our goal is estimation and non-significance testing. We wish to
avoid publication bias by the preferential reporting of significant results. Instead, we judge
the value of our estimates by their precision and validity [22,23]. All statistical analyses
were performed using SAS v.9.4 (SAS Institute, Cary, NC USA).

3. Results
3.1. Coronavirus Infections Followed a Seasonal Pattern

Since 2013, we have generated 12,763 test results for the detection of the non-SARS,
non-MERS coronaviruses (NL63, 229E, OC43, HKU1) by multiplex PCR technology. Coro-
navirus infections followed a clear seasonal pattern among our patients. Although coro-
naviruses were detected throughout the years, detection rates were at their peak from
December to March and at their nadir from July to September. In October and November,
the number of positive cases was low in most years, usually lower than in May. As shown
in Figure 1 the monthly detection rate differed from year to year. A similar seasonal pattern
could be observed for the NL63, 229E, and OC43 coronavirus subtypes, as shown in the
supplement (Figure S2); an analysis for the HKU1 subtype was not possible due to the low
number of detected cases. Furthermore, we divided our patient cohort into three groups
according to age, including children and young adults ≤ 20 years old, adults aged from 20
to 60 years old and adults aged more than 60 years old, and fitted the seasonal coronavirus
detection rate for each patient group. A clear seasonal pattern could be observed for all
three age groups, as seen in Figure S3 in the supplement.

The coronavirus detection rate could be predicted well with a mathematical model
including the seasonal effect alone, as well as a model only including seven weather factors
(Figure 1a,b, respectively). The model based on seasonal effect was slightly superior in this
aspect, fitting the data more accurately, with concordance statistics c = 0.74 for model A
and c = 0.68 for model B, and as shown in calibration plots (Figure S4) in the supplement.
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Figure 1. Coronavirus infections followed a seasonal pattern. The needles in the A and B panels 
show the monthly detection rate. The curves in panels A and B depict the models describing a 
seasonality effect (a) and a combined effect of seven weather factors (daily average ambient tem-
perature, relative humidity, wind speed, cloud cover, atmospheric pressure, precipitation and 
number of sunlight hours) (b) on coronavirus detection rate, respectively. Both models had an 
adequate fit; however, a better model fit was obtained using seasonality to predict virus detection 
rates. 

  

Figure 1. Coronavirus infections followed a seasonal pattern. The needles in the A and B panels show
the monthly detection rate. The curves in panels A and B depict the models describing a seasonality
effect (a) and a combined effect of seven weather factors (daily average ambient temperature, relative
humidity, wind speed, cloud cover, atmospheric pressure, precipitation and number of sunlight
hours) (b) on coronavirus detection rate, respectively. Both models had an adequate fit; however, a
better model fit was obtained using seasonality to predict virus detection rates.
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3.2. Low Ambient Temperature, Minimum Sunlight Hours per Day, High Relative Humidity,
Wind Speed, Cloud Cover and Precipitation Were Each Associated with Higher Detection Rates of
Coronavirus

We next analyzed the effect of weather factors on coronavirus detection rates. Since
coronaviruses including MERS and SARS have an incubation time between 2 and 11
days [19–21], we associated the weather factors with infection rates that were diagnosed 10
days later to account not only for the incubation time but also the time passing between the
first symptoms and the implementation of diagnostics. The crude effect of single weather
factors on the coronavirus detection rate showed associations of lower ambient temperature
(Odds Ratio (OR) 0.68, 95% confidence interval (CI) 0.62–0.74), minimum sunlight hours
per day (OR 0.93, 95% CI 0.9–0.96), higher relative humidity (OR 1.04, 95% CI 1–1.09)
and wind speed (OR 1.14, 95% CI 1.04–1.24), cloud cover (OR 1.12, 95% CI 1.05–1.19) and
precipitation (OR 1.14, 95% CI 1.03–1.27) with higher detection rates of coronavirus. Higher
atmospheric pressure showed only a weak decreasing effect (Figure 2). We expressed the
association between continuous weather variables and the coronavirus detection rates by
increments of five units (instead of one unit) on the corresponding scales of the variables
daily average temperature, daily average relative humidity, daily average atmospheric
pressure and daily precipitation. Since weather factors are correlated with each other to
a greater or lesser degree (from correlation (ρ) of 0.01 between temperature and rain to
ρ = 0.80 between sunlight and cloud cover; see Table S2 in the supplement), we performed
the same analysis for each weather factor after adjusting for all the others. After adjustment,
the above-mentioned effects were preserved for ambient temperature (OR 0.62, 95% CI
0.55–0.69), cloud cover (OR 1.13, 95% CI 1.02–1.26) and precipitation (OR 1.25, 95% CI
1.1–1.41). However, in this adjusted analysis, wind speed and hours of sunlight lost impact,
low relative humidity (OR 0.84, 95% CI 0.79–0.91) was now associated with higher virus
rates, and the atmospheric pressure showed a weak increasing effect.Pathogens 2020, 9, x FOR PEER REVIEW 6 of 13 

 

 
Figure 2. Logistic regression models were calculated for each of the weather factors with and with-
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5% change); wind: daily average wind speed (per 1m/s change); press5: daily average atmospheric 
pressure (per 5hPa change); ocast: daily average cloud cover; sun: sunlight hours daily; rain5: pre-
cipitation daily (per 5 mm change). 

3.3. Temperature, Relative Humidity, Precipitation and Cloud Cover were Independently Associ-
ated with the Coronavirus Detection Rate 

Next, we aimed to calculate a reduced predictive model for the coronavirus detection 
rate based on the weather factors. Different automatic variable selection processes agreed 
to select the predictors of ambient temperature, relative humidity, cloud cover and pre-
cipitation as the remaining predictors in the logistic regression model (Figure 3). All 
above-mentioned factors were independently associated with the coronavirus detection 
rate, with low ambient temperature, low relative humidity, high cloud cover and high 
precipitation being linked to increased coronavirus detection rates. 

Figure 2. Logistic regression models were calculated for each of the weather factors with and without
adjusting for other weather factors and/or seasonality. OR: odds ratio; CI: confidence interval. Temp5:
daily average temperature (per 5 ◦C change); rhum5: daily average relative humidity (per 5% change);
wind: daily average wind speed (per 1m/s change); press5: daily average atmospheric pressure (per
5hPa change); ocast: daily average cloud cover; sun: sunlight hours daily; rain5: precipitation daily
(per 5 mm change).
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Most weather factors demonstrate a seasonal pattern (Figure S1). To account for the
seasonality effect, we performed the same analysis for each weather factor after adjusting
for seasonality, and additionally after adjusting for seasonality and the other weather
factors. After adjusting for seasonality, all associations were maintained as before, but
largely lost impact. Only the effects of cloud cover and precipitation remained robust.
After adjusting for both seasonality and all other weather factors, the point estimates
followed the same pattern as in the multiple adjustment above, with cloud cover and
precipitation clearly showing increasing effects on virus detection rates (Figure 2). The fact
that ambient temperature lost its impact on the viral detection rate in the analysis adjusted
for seasonality might be explained by the strong association between temperature and
season (Supplement Figure S1 and Table S2).

3.3. Temperature, Relative Humidity, Precipitation and Cloud Cover Were Independently
Associated with the Coronavirus Detection Rate

Next, we aimed to calculate a reduced predictive model for the coronavirus detec-
tion rate based on the weather factors. Different automatic variable selection processes
agreed to select the predictors of ambient temperature, relative humidity, cloud cover and
precipitation as the remaining predictors in the logistic regression model (Figure 3). All
above-mentioned factors were independently associated with the coronavirus detection
rate, with low ambient temperature, low relative humidity, high cloud cover and high
precipitation being linked to increased coronavirus detection rates.Pathogens 2020, 9, x FOR PEER REVIEW 7 of 13 
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erating a third (31.9%) of our positive cases. The group of immunosuppressed patients 
included patients with hematological or oncological malignancies under chemotherapy, 
solid organ transplant recipients and patients after allogeneic human stem cell transplan-
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effect of weather factors through a multivariable logistic regression model (Figure 4). As 
demonstrated in Figure 4, the seasonality effect was less pronounced in cases involving 
immunosuppressed patients compared to their immunocompetent counterparts, but the 
selected weather factors had comparable effects in both groups.  

  

Figure 3. Effect of weather factors on coronavirus detection rate according to a reduced logistic
regression model of the combined effect of weather factors. OR: odds ratio; CI: confidence interval.
Temp5: daily average temperature (per 5 ◦C change); rhum5: daily average relative humidity (per 5%
change); ocast: daily average cloud cover; rain5: precipitation daily (per 5 mm change).

3.4. The Seasonality of Coronavirus Infections Was Less Pronounced in Immunosuppressed
Patients

A quarter (26.1%) of our patients consisted of immunosuppressed individuals, gen-
erating a third (31.9%) of our positive cases. The group of immunosuppressed patients
included patients with hematological or oncological malignancies under chemotherapy,
solid organ transplant recipients and patients after allogeneic human stem cell transplan-
tation. To evaluate the potential impact of immunosuppression on the seasonality of
coronavirus detection, we divided our patients into immunosuppressed and immunocom-
petent patients, and used logistic regression models to calculate the seasonal effect and the
effect of weather factors through a multivariable logistic regression model (Figure 4). As
demonstrated in Figure 4, the seasonality effect was less pronounced in cases involving
immunosuppressed patients compared to their immunocompetent counterparts, but the
selected weather factors had comparable effects in both groups.
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3.5. “Off-Season” Coronavirus Detection was More Frequent in Immunosuppressed Patients 
The coronavirus detection rate demonstrated a pronounced seasonal pattern, but 

even in the time period with the lowest detection rate (summer to fall), we could detect 
some coronavirus-positive cases. Thus, we aimed to characterize these cases from a clini-
cal point-of-view.  

As shown in Figure 1, the frequency of coronavirus detection was at its nadir from 
July to September. When analyzing the clinical characteristics of patients with coronavirus 
infection during its nadir (n = 33), we observed that the majority of positive cases (n = 22, 
66%) were immunosuppressed. This included eleven solid organ transplant recipients, six 
patients after allogeneic bone marrow transplantation and five patients on chemotherapy 
due to malignant diseases. Information on the travel history of these patients in the last 
two weeks before coronavirus detection was available for 29 cases, and all but 1 patient 
had not been abroad. Thus, they must have acquired their coronavirus infection in their 
local environment, which might have happened weeks before the positive test result.    

Among our patients, data on viral persistence were limited, since follow-up was not 
consistently performed in most cases. In six cases, we observed viral persistence lasting 
for more than a month (from 34 to 116 days). Of theses 6 patients, 5 were immunosup-
pressed. 

Figure 4. The seasonality and weather influence on coronavirus detection rates was compared
between immunosuppressed and immunocompetent patients. Logistic regression models were
calculated for the effect of seasonality (a) and the effect of selected weather factors (b) on the
coronavirus detection rate in immunosuppressed and immunocompetent patients. OR: odds ratio;
CI: confidence interval; Temp5: daily average temperature (per 5 ◦C change); rhum5: daily average
relative humidity (per 5% change); ocast: daily average cloud cover; rain5: precipitation daily (per
5 mm change); season: grand average year-specific seasonal effect.

3.5. “Off-Season” Coronavirus Detection Was More Frequent in Immunosuppressed Patients

The coronavirus detection rate demonstrated a pronounced seasonal pattern, but even
in the time period with the lowest detection rate (summer to fall), we could detect some
coronavirus-positive cases. Thus, we aimed to characterize these cases from a clinical
point-of-view.

As shown in Figure 1, the frequency of coronavirus detection was at its nadir from
July to September. When analyzing the clinical characteristics of patients with coronavirus
infection during its nadir (n = 33), we observed that the majority of positive cases (n = 22,
66%) were immunosuppressed. This included eleven solid organ transplant recipients, six
patients after allogeneic bone marrow transplantation and five patients on chemotherapy
due to malignant diseases. Information on the travel history of these patients in the last
two weeks before coronavirus detection was available for 29 cases, and all but 1 patient
had not been abroad. Thus, they must have acquired their coronavirus infection in their
local environment, which might have happened weeks before the positive test result.

Among our patients, data on viral persistence were limited, since follow-up was not
consistently performed in most cases. In six cases, we observed viral persistence lasting for
more than a month (from 34 to 116 days). Of theses 6 patients, 5 were immunosuppressed.
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4. Discussion

Coronavirus infections with the viruses NL63, 229E, OC43 and HKU1 followed a
seasonal pattern among our patients. Although coronaviruses were in principle detected
throughout the year, the detection rate was at its peak from December to March, and at its
nadir from July to September. “Off-season” detection of coronavirus was more frequent
in immunosuppressed patients. Low ambient temperature, few sunlight hours per day,
high relative humidity, wind speed, cloud cover and precipitation were each individually
associated with high detection rates of coronaviruses. In a multivariable model including
all weather factors, temperature, relative humidity, precipitation and cloud cover were
independently associated with the coronavirus detection rate

Seasonality is commonly observed in respiratory infections. Its form and impact
depend on the individual pathogen and the climate zone under evaluation [5–8]. Our study
focused on the seasonal non-SARS, non-MERS coronavirus detection rate in Germany, a
temperate-climate country. We observed a distinctive seasonal pattern, peaking in winter
and plunging in the summer. Our data on seasonality are largely consistent with previous
studies evaluating the seasonality of coronavirus [24,25]. However, we show for the first
time that data sets on detection rates over many years fit perfectly with a mathematical
model of seasonality and weather dependence.

Seasonality is obviously a characteristic of coronavirus infections. Among our patients,
its detection rate was at its peak from December to March and at its nadir from July to
September. This pattern has similarities but also differences compared to influenza virus
detection. Both viruses peak in the winter, but the influenza virus has a markedly narrower
time interval of detection. It is highly prevalent from January to March, but disappears
in late spring (usually April), summer and autumn (apart from very few isolated cases),
as shown in previous studies [6,7] and in data from the German disease control and
prevention agency (Robert Koch Institute) (Supplement Figure S5). Coronavirus, on the
other hand, lingers longer during the spring months (until May/June) and appears earlier
in the autumn (in November), without completely disappearing over the summer.

A seasonal effect on coronavirus detection rates was present in both immunocompe-
tent and immunosuppressed patents, but it was less pronounced in the immunosuppressed
group. “Off-season” detection of coronavirus was more frequent in immunosuppressed
patients. Focusing on the “off-season” coronavirus cases, we found that 66% of them
were observed in immunosuppressed individuals, although immunosuppressed patients
accounted for only 26% of our cases. The difference in the effect of different weather
parameters on the coronavirus detection rate in immunosuppressed vs. immunocompetent
individuals is minimal. We observed, however, a slightly larger difference in the effect of
temperature on the coronavirus detection rate in immunosuppressed vs. immunocompe-
tent hosts, suggesting that temperature indeed may contribute to a greater degree than
other weather parameters to coronavirus seasonality, depending on the host’s immune
status. It is possible that the observed difference is associated with the fact that temperature
demonstrates greater variability throughout the year compared to the other parameters
in the model. Since, however, the difference in the above-mentioned effect is very small,
caution is warranted in attributing the difference to any particular pathophysiological
or behavioral parameter. We have only limited data on the persistence of coronaviruses,
but prolonged viral shedding was observed among our patients and it involved mainly
immunosuppressed individuals. This is consistent with current knowledge about respira-
tory virus shedding in humans [14,26], and has been reported in SARS-CoV-2 infection as
well [27]. Both phenomena are interesting from a clinical and epidemiological perspective.
Coronavirus infections can be detected in the summer months, albeit at very low infection
rates. Infections were especially found in immunosuppressed patients, who were reported
to be at risk for unfavorable outcomes in respiratory infections [11–13]. In addition, pro-
longed viral shedding may favor the wider distribution of the virus and the emergence
of viral variants, as has been reported for other viruses [28]. Immunosuppressed patients
may also serve as a reservoir for the virus in the summer. Thus, immunosuppressed hosts



Pathogens 2021, 10, 187 9 of 12

may sustain viral replication and spread under otherwise unfavorable external conditions
for coronaviruses.

We also evaluated the association of meteorological conditions and coronavirus detec-
tion rates. Taken individually, low ambient temperature, minimum sunlight hours per day,
high relative humidity, wind speed, cloud cover and precipitation were associated with
higher detection rates of coronaviruses 10 days later. Similar weather effects, to a lesser or
greater degree, have been described for other respiratory viruses, such as influenza virus
and respiratory syncytial virus [7]. In a pediatric population study, the authors looked at
the potential effects of some weather factors (temperature, wind velocity, relative humility)
on the non-SARS, non-MERS coronavirus detection rate. Each variable was individually
evaluated for its potential effect, and indeed a negative correlation between temperature
and the coronavirus detection rate, and a positive one for wind velocity and relative hu-
midity, were observed [6]. However, meteorological factors are not independent from one
another. Using a multivariable logistic regression analysis and including seven weather
factors, we found that only temperature, relative humidity, cloud cover and precipitation
were associated with the viral detection rate. Interestingly, relative humidity seemed to
have the opposite effect in a multivariable model compared to the univariate one; namely,
low relative humidity was associated with higher viral detection rate. The observed effects
of temperature and relative humidity are consistent with laboratory data for another coron-
avirus. SARS-CoV-1 had a better chance of remaining infectious in a low-temperature and
low-humidity environment [29]. Our results demonstrate that the coronavirus detection
rate is indeed associated with meteorological factors, but also underline the potential pit-
falls of analyzing the effects of single factors, without incorporating other interdependent
factors in a complex system.

Experimental data on the link between coronavirus transmission and weather factors
are largely missing. However, experiments performed with another respiratory virus,
e.g., influenza viruses, provide some insight into the possible mechanistic explanation
of these associations. We found a clear correlation between coronavirus detection rates
and cloud cover or sun light hours. How can this be explained? Solar radiation, which
is dependent on cloud cover and sunlight at a given location, has been shown to act in
a virucidal way against influenza virus [30]. The virucidal effect of ultraviolet radiation
has also been recently demonstrated on SARS-CoV-1 [31]. We also demonstrated a link
between temperature and relative humidity and coronavirus detection rates. Temperature
can influence virus stability through the inactivation of proteins and nucleic acids [32], but
may also influence the host’s defense systems. Cooling and drying of the nasal epithelium
inhibits mucociliary clearance and viral phagocytosis [33,34], thus facilitating infections.
Low relative humidity can also promote influenza infection and transmission. At lower
relative humidity, salts within aerosols tend to crystallize out of the solution, leading to
higher virion stability [35], while respiratory tract droplets stay suspended longer and end
in the lower respiratory tract more often, thus increasing both the risk of transmission and
the risk of an unfavorable infection outcome [32].

High precipitation was associated with increased coronavirus detection rates among
our patients, which seems counterintuitive when one considers the association of lower
relative humidity with higher coronavirus detection rates. Interestingly, the factors of
precipitation and relative humidity are not as closely linked (see Supplement, Table S2)
as one would expect. A possible explanation is that precipitation does not directly affect
viral infectivity or the host’s immune defenses, but mainly influences human behavior, e.g.,
through increased indoor congregation on a rainy day. Indeed, a similar effect has been
described in a study focusing on influenza, where a significant positive association was
observed between extreme precipitation and emergency room visits for influenza [36].

Both seasonality and the combined effects of weather factors are reliable predictors
of coronavirus detection rates, as shown in the models depicted in Figure 1. This is
not surprising, since most weather factors demonstrate a pronounced seasonal pattern
(Figure S1). Still, the model based on seasonal effects was slightly superior to the weather
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model in predicting the viral detection rate. Meteorological factors such as temperature
can influence the virus itself, including viability and infectivity, but also effect the host’s
immune response [10,37]. Furthermore, they can also modulate human behavior, increasing
or decreasing the risk of transmission. Factors potentially contributing to this effect include,
but are not limited to, indoor/outdoor activities, indoor heating, crowding, and the impact
of melatonin and vitamin D levels on the host’s immune defense [5,9]. The superiority
of seasonality as a predictive factor for infection rates suggests that beside the significant
correlation with several weather factors, social and cultural norms that modify human
behavior also influence viral spread.

A limitation of our study was that we used a convenience sample, namely, patients
seeking treatment at our hospital. This leads to the exclusion of infected but asymptomatic
individuals, and probably to a marked underestimation of mildly symptomatic individuals,
meaning that the true number of coronavirus-infected individuals in the general population
at any given time is probably much higher. Furthermore, due to the nature of our study we
cannot offer mechanistic explanations for the associations we observed. However, data on
the association of weather factors and coronavirus detection rates are very limited, but very
important in order to predict the ongoing SARS-CoV-2 pandemic. Our study describes, for
the first time, the effect of the interplay of seasonality and several weather factors on the
non-SARS, non-MERS coronaviruses’ detection rate, and indicates that some but not all
weather factors are independently associated with it, providing valuable insight into the
seasonal pattern of coronaviruses in general. This information is relevant for the calculation
of projections for disease development according to the time of year and certain weather
conditions. An association between meteorological factors and the SARS-CoV-2 detection
rate has been suggested [15–17], but the evidence remains, to date, inconclusive [18]. The
epidemiological situation for SARS-CoV-2 is being further complicated due to drastic
lockdown measures all over the world. Our analysis of the seasonal pattern of the non-
SARS coronaviruses in conjunction with a potential association with meteorological factors
might provide valuable information for the ongoing pandemic. Furthermore, data on the
temporal pattern of coronavirus infections in immunosuppressed patients in the literature
are limited. Our study allows a first direct comparison of the seasonal pattern and weather
effects on the coronavirus detection rate in immunosuppressed versus immunocompetent
patients. Our results hint at the relevance of an intact immune system for the epidemiology
and seasonality of acute respiratory infections, an aspect that, to the best of our knowledge,
has been investigated in a very limited way in the past.

In conclusion, coronavirus infections followed a clear seasonal pattern among our
patients, which was more pronounced in immunocompetent patients compared to the
immunosuppressed. Several meteorological factors were associated with the coronavirus
detection rate. However, after multiple adjustments for all weather factors, only tempera-
ture, relative humidity, precipitation and cloud cover remained independently associated
with the coronavirus detection rate.

Supplementary Materials: The following are available online at https://www.mdpi.com/2076-0
817/10/2/187/s1, Figure S1: Weather factors in Essen, Germany. Figure S1A,B depict the average
monthly weather factors in Essen, Germany from June 2013 to December 2019. Values are presented
as mean ± SD. SD: standard deviation. Table S1: Estimated equation for the outcome season
concerning the coronavirus detection rate. Table S2: Correlation between weather factors. Figure S2:
Coronavirus infections with different subtypes followed a seasonal pattern. The needles show the
monthly detection rate. The curves depict the model describing the seasonality effect. Panel A
corresponds to the OC43 subtype, which was detected in 129 samples, panel B to 229E, detected in 92
samples and panel C to the NL63 subtype detected in 59 samples. No analysis was possible for HKU1
due to the low number of positive samples (n = 12). In four samples more than one subtype could be
detected (OC43+NL63 in two cases, 229E+OC43, NL63+229E). Figure S3: The coronavirus infection
rate followed a seasonal pattern in all three age groups. The needles show the monthly detection
rate. The curves depict the model describing the seasonality effect. Panel A corresponds to data from
patients aged from 0 to 20 years (n = 89), panel B to data from patients from 20 to 60 years old (n =

https://www.mdpi.com/2076-0817/10/2/187/s1
https://www.mdpi.com/2076-0817/10/2/187/s1
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111) and panel C to data from patients aged more than 60 years. Figure S4: Panels A and B depict the
calibration plot for the prediction of coronavirus detection rate in deciles of predicted values for a
model based on a year-specific seasonality effect (A) and a model based on the combined effect of
all weather factors (B), respectively. Figure S5: Influenza virus incidence per 100,000 inhabitants in
Germany from June 2013 to December 2019. Data are publicly available from the Survstat@RKI 2.0
server. Robert Koch Institut: SurvStat@RKI 2.0, https://survstat.rki.de, Query date: 22.06.2020.

Author Contributions: Conceptualization, O.E.A., A.S., U.D.; methodology, A.H., K.-H.J., A.S.;
software, A.H.; formal analysis, A.H., A.S.; investigation, O.E.A.; resources, O.E.A., J.K., F.T., C.T.,
A.S., U.D.; data curation, O.E.A., A.H.; writing—original draft preparation, O.E.A.; writing—review
and editing, A.H., J.K., F.T., C.T., K.-H.J., A.S., U.D.; supervision, U.D., A.S. All authors have read and
agreed to the published version of the manuscript.

Funding: The study was partially funded by “Stiftung Universitätsmedizin Essen”.

Institutional Review Board Statement: The study was conducted according to the guidelines of the
Declaration of Helsinki, and approved by the Ethics Committee of the University of Duisburg-Essen
(20-9265-BO, 14.04.2020).

Informed Consent Statement: Patient consent was waived due to the retrospective nature of the
study.

Data Availability Statement: The data presented in this study can become in part available on
request from the corresponding author. The data are not publicly available due to data protection
issues.

Acknowledgments: We acknowledge support by the Open Access Publication Fund of the University
of Duisburg-Essen.

Conflicts of Interest: OEA BMS, research grant from Hexal, all unrelated to the submitted work, AH
nothing to declare, JK grants speaker’s fee, honoraria and travel expenses from Astellas, Basilea,
Chiesi, Janssen, Novartis and Roche, all unrelated to the submitted work, FT nothing to declare, CT
nothing to declare, KHJ nothing to declare, AS nothing to declare, UD nothing to declare.

References
1. WHO. Global Health Estimates 2016: Disease burden by Cause, Age, Sex, by Country and by Region, 2000–2016; World Health

Organization: Geneva, Switzerland, 2018.
2. Dandachi, D.; Rodriguez-Barradas, M.C. Viral pneumonia: Etiologies and treatment. J. Investig. Med. 2018, 66, 957. [CrossRef]

[PubMed]
3. Stang, A.; Standl, F.; Jöckel, K.-H. Characteristics of COVID-19 pandemic and public health consequences. Herz 2020, 45, 313–315.

[CrossRef] [PubMed]
4. Welfens, P.J.J. Macroeconomic and health care aspects of the coronavirus epidemic: EU, US and global perspectives. Int. Econ.

Econ. Policy 2020, 1–68. [CrossRef]
5. Heikkinen, T.; Jarvinen, A. The common cold. Lancet 2003, 361, 51–59. [CrossRef]
6. Du Prel, J.B.; Puppe, W.; Grondahl, B.; Knuf, M.; Weigl, J.A.; Schaaff, F.; Schmitt, H.J. Are meteorological parameters associated

with acute respiratory tract infections? Clin. Infect. Dis. 2009, 49, 861–868. [CrossRef]
7. Price, R.H.M.; Graham, C.; Ramalingam, S. Association between viral seasonality and meteorological factors. Sci Rep. 2019, 9, 929.

[CrossRef] [PubMed]
8. Choe, Y.J.; Smit, M.A.; Mermel, L.A. Seasonality of respiratory viruses and bacterial pathogens. Antimicrob. Resist. Infect. Control.

2019, 8, 125. [CrossRef] [PubMed]
9. Lofgren, E.; Fefferman, N.H.; Naumov, Y.N.; Gorski, J.; Naumova, E.N. Influenza seasonality: Underlying causes and modeling

theories. J. Virol. 2007, 81, 5429–5436. [CrossRef]
10. Moriyama, M.; Ichinohe, T. High ambient temperature dampens adaptive immune responses to influenza A virus infection. Proc.

Natl. Acad. Sci. USA 2019, 116, 3118. [CrossRef]
11. Branche, A.R.; Falsey, A.R. Respiratory Syncytial Virus Infection in Older Adults: An Under-Recognized Problem. Drugs Aging

2015, 32, 261–269. [CrossRef]
12. Shah, D.P.; Shah, P.K.; Azzi, J.M.; Chemaly, R.F. Parainfluenza virus infections in hematopoietic cell transplant recipients and

hematologic malignancy patients: A systematic review. Cancer Lett. 2016, 370, 358–364. [CrossRef] [PubMed]
13. Ramsey, C.D.; Kumar, A. Influenza and Endemic Viral Pneumonia. Crit. Care Clin. 2013, 29, 1069–1086. [CrossRef] [PubMed]
14. Lehners, N.; Tabatabai, J.; Prifert, C.; Wedde, M.; Puthenparambil, J.; Weissbrich, B.; Biere, B.; Schweiger, B.; Egerer, G.; Schnitzler,

P. Long-Term Shedding of Influenza Virus, Parainfluenza Virus, Respiratory Syncytial Virus and Nosocomial Epidemiology in
Patients with Hematological Disorders. PLoS ONE 2016, 11, e0148258. [CrossRef] [PubMed]

https://survstat.rki.de
http://doi.org/10.1136/jim-2018-000712
http://www.ncbi.nlm.nih.gov/pubmed/29680828
http://doi.org/10.1007/s00059-020-04932-0
http://www.ncbi.nlm.nih.gov/pubmed/32333025
http://doi.org/10.1007/s10368-020-00465-3
http://doi.org/10.1016/S0140-6736(03)12162-9
http://doi.org/10.1086/605435
http://doi.org/10.1038/s41598-018-37481-y
http://www.ncbi.nlm.nih.gov/pubmed/30700747
http://doi.org/10.1186/s13756-019-0574-7
http://www.ncbi.nlm.nih.gov/pubmed/31367346
http://doi.org/10.1128/JVI.01680-06
http://doi.org/10.1073/pnas.1815029116
http://doi.org/10.1007/s40266-015-0258-9
http://doi.org/10.1016/j.canlet.2015.11.014
http://www.ncbi.nlm.nih.gov/pubmed/26582658
http://doi.org/10.1016/j.ccc.2013.06.003
http://www.ncbi.nlm.nih.gov/pubmed/24094391
http://doi.org/10.1371/journal.pone.0148258
http://www.ncbi.nlm.nih.gov/pubmed/26866481


Pathogens 2021, 10, 187 12 of 12

15. Merow, C.; Urban, M.C. Seasonality and uncertainty in COVID-19 growth rates. medRxiv 2020, 117, 27456–27464. [CrossRef]
[PubMed]

16. Chiyomaru, K.; Takemoto, K. Global COVID-19 transmission rate is influenced by precipitation seasonality and the speed of
climate temperature warming. medRxiv 2020. [CrossRef]

17. Mecenas, P.; Bastos, R.; Vallinoto, A.; Normando, D. Effects of temperature and humidity on the spread of COVID-19: A systematic
review. medRxiv 2020. [CrossRef]

18. Bhattacharjee, S. Statistical investigation of relationship between spread of coronavirus disease (COVID-19) and environmental
factors based on study of four mostly affected places of China and five mostly affected places of Italy. arXiv 2020, arXiv:2003.11277.

19. Lessler, J.; Reich, N.G.; Brookmeyer, R.; Perl, T.M.; Nelson, K.E.; Cummings, D.A.T. Incubation periods of acute respiratory viral
infections: A systematic review. Lancet Infect. Dis. 2009, 9, 291–300. [CrossRef]

20. Virlogeux, V.; Fang, V.J.; Park, M.; Wu, J.T.; Cowling, B.J. Comparison of incubation period distribution of human infections with
MERS-CoV in South Korea and Saudi Arabia. Sci. Rep. 2016, 6, 35839. [CrossRef]

21. Backer, J.A.; Klinkenberg, D.; Wallinga, J. Incubation period of 2019 novel coronavirus (2019-nCoV) infections among travellers
from Wuhan, China, 20–28 January 2020. Eurosurveillance 2020, 25, 2000062. [CrossRef]

22. Lash, T.L. Heuristic Thinking and Inference From Observational Epidemiology. Epidemiology 2007, 18, 67–72. [CrossRef] [PubMed]
23. Sterne, J.A.; Davey Smith, G. Sifting the evidence-what’s wrong with significance tests? BMJ 2001, 322, 226–231. [CrossRef]
24. Lau, S.K.P.; Woo, P.C.Y.; Yip, C.C.Y.; Tse, H.; Tsoi, H.-W.; Cheng, V.C.C.; Lee, P.; Tang, B.S.F.; Cheung, C.H.Y.; Lee, R.A.; et al.

Coronavirus HKU1 and other coronavirus infections in Hong Kong. J. Clin. Microbiol. 2006, 44, 2063–2071. [CrossRef] [PubMed]
25. Nickbakhsh, S.; Ho, A.; Marques, D.F.P.; McMenamin, J.; Gunson, R.N.; Murcia, P.R. Epidemiology of Seasonal Coronaviruses:

Establishing the Context for the Emergence of Coronavirus Disease 2019. J. Infect. Dis. 2020, 222, 17–25. [CrossRef] [PubMed]
26. Van der Vries, E.; Stittelaar, K.J.; van Amerongen, G.; Veldhuis Kroeze, E.J.; de Waal, L.; Fraaij, P.L.; Meesters, R.J.; Luider, T.M.; van

der Nagel, B.; Koch, B.; et al. Prolonged influenza virus shedding and emergence of antiviral resistance in immunocompromised
patients and ferrets. PLoS Pathog. 2013, 9, e1003343. [CrossRef]

27. Man, Z.; Jing, Z.; Huibo, S.; Bin, L.; Fanjun, Z. Viral shedding prolongation in a kidney transplant patient with COVID-19
pneumonia. Am. J. Transplant. 2020, 9, 2626–2627. [CrossRef] [PubMed]

28. Vega, E.; Donaldson, E.; Huynh, J.; Barclay, L.; Lopman, B.; Baric, R.; Chen, L.F.; Vinjé, J. RNA Populations in Immunocompromised
Patients as Reservoirs for Novel Norovirus Variants. J. Virol. 2014, 88, 14184. [CrossRef] [PubMed]

29. Chan, K.H.; Peiris, J.S.M.; Lam, S.Y.; Poon, L.L.M.; Yuen, K.Y.; Seto, W.H. The Effects of Temperature and Relative Humidity on
the Viability of the SARS Coronavirus. Adv. Virol. 2011, 2011, 734690. [CrossRef]

30. Sagripanti, J.-L.; Lytle, C.D. Inactivation of Influenza Virus by Solar Radiation. Photochem. Photobiol. 2007, 83, 1278–1282.
[CrossRef]

31. Darnell, M.E.R.; Subbarao, K.; Feinstone, S.M.; Taylor, D.R. Inactivation of the coronavirus that induces severe acute respiratory
syndrome, SARS-CoV. J. Virol. Methods 2004, 121, 85–91. [CrossRef]

32. Marr, L.C.; Tang, J.W.; Van Mullekom, J.; Lakdawala, S.S. Mechanistic insights into the effect of humidity on airborne influenza
virus survival, transmission and incidence. J. R. Soc. Interface 2019, 16, 20180298. [CrossRef] [PubMed]

33. Eccles, R. An Explanation for the Seasonality of Acute Upper Respiratory Tract Viral Infections. Acta Oto-Laryngol. 2002, 122,
183–191. [CrossRef]

34. Salah, B.; Dinh Xuan, A.T.; Fouilladieu, J.L.; Lockhart, A.; Regnard, J. Nasal mucociliary transport in healthy subjects is slower
when breathing dry air. Eur. Respir. J. 1988, 1, 852–855. [PubMed]

35. Yang, W.; Elankumaran, S.; Marr, L.C. Relationship between humidity and influenza A viability in droplets and implications for
influenza’s seasonality. PLoS ONE 2012, 7, e46789. [CrossRef] [PubMed]

36. Smith, G.S.; Messier, K.P.; Crooks, J.L.; Wade, T.J.; Lin, C.J.; Hilborn, E.D. Extreme precipitation and emergency room visits for
influenza in Massachusetts: A case-crossover analysis. Environ. Health 2017, 16, 108. [CrossRef]

37. Hayashi, O.; Kikuchi, M. Time relationship between ambient temperature change and antigen stimulation on immune responses
of mice. Int. J. Biometeorol. 1989, 33, 19–23. [CrossRef]

http://doi.org/10.1073/pnas.2008590117
http://www.ncbi.nlm.nih.gov/pubmed/33051302
http://doi.org/10.1101/2020.04.10.20060459
http://doi.org/10.1101/2020.04.14.20064923
http://doi.org/10.1016/S1473-3099(09)70069-6
http://doi.org/10.1038/srep35839
http://doi.org/10.2807/1560-7917.ES.2020.25.5.2000062
http://doi.org/10.1097/01.ede.0000249522.75868.16
http://www.ncbi.nlm.nih.gov/pubmed/17149141
http://doi.org/10.1136/bmj.322.7280.226
http://doi.org/10.1128/JCM.02614-05
http://www.ncbi.nlm.nih.gov/pubmed/16757599
http://doi.org/10.1093/infdis/jiaa185
http://www.ncbi.nlm.nih.gov/pubmed/32296837
http://doi.org/10.1371/journal.ppat.1003343
http://doi.org/10.1111/ajt.15996
http://www.ncbi.nlm.nih.gov/pubmed/32400931
http://doi.org/10.1128/JVI.02494-14
http://www.ncbi.nlm.nih.gov/pubmed/25275120
http://doi.org/10.1155/2011/734690
http://doi.org/10.1111/j.1751-1097.2007.00177.x
http://doi.org/10.1016/j.jviromet.2004.06.006
http://doi.org/10.1098/rsif.2018.0298
http://www.ncbi.nlm.nih.gov/pubmed/30958176
http://doi.org/10.1080/00016480252814207
http://www.ncbi.nlm.nih.gov/pubmed/3229484
http://doi.org/10.1371/journal.pone.0046789
http://www.ncbi.nlm.nih.gov/pubmed/23056454
http://doi.org/10.1186/s12940-017-0312-7
http://doi.org/10.1007/BF01045892

	Introduction 
	Materials and Methods 
	Results 
	Coronavirus Infections Followed a Seasonal Pattern 
	Low Ambient Temperature, Minimum Sunlight Hours per Day, High Relative Humidity, Wind Speed, Cloud Cover and Precipitation Were Each Associated with Higher Detection Rates of Coronavirus 
	Temperature, Relative Humidity, Precipitation and Cloud Cover Were Independently Associated with the Coronavirus Detection Rate 
	The Seasonality of Coronavirus Infections Was Less Pronounced in Immunosuppressed Patients 
	“Off-Season” Coronavirus Detection Was More Frequent in Immunosuppressed Patients 

	Discussion 
	References

