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This paper firstly proposes a modified human factor classification analysis system

(HFACS) framework based on literature analysis and the characteristics of falling

accidents in construction. Second, a Bayesian network (BN) topology is constructed

based on the dependence between human factors and organizational factors, and the

probability distribution of the human-organizational factors in a BN risk assessment

model is calculated based on falling accident reports and fuzzy set theory. Finally,

the sensitivity of the causal factors is determined. The results show that 1) the most

important reason for falling accidents is unsafe on-site supervision. 2) There are significant

factors that influence falling accidents at different levels in the proposed model, including

operation violations in the unsafe acts layer, factors related to an adverse technological

environment for the unsafe acts layer, loopholes in site management in the unsafe on-site

supervision layer, lack of safety culture in the adverse organizational influence layer, and

lax government regulation in the adverse external environment layer. 3) According to

the results of the BN risk assessment model, the most likely causes are loopholes in site

management work, lack of safety culture, insufficient safety inspections and acceptance,

vulnerable process management and operation violations.

Keywords: falling accidents, human-organizational factors, human factor analysis and classification system

(HFACS), Bayesian network, fuzzy set theory

INTRODUCTION

To improve the legal system for emergency management, standardize the investigation and
handling of production safety accidents, and protect people’s lives and property, China issued the
“Regulations on Reporting and Investigation and Handling of Production Safety Accidents,” which
clearly proposes measures to improve accident investigation mechanisms and the preparation of
accident investigation reports. These measures can be applied to assess responsibility and learn
from accidents over time, which is conducive to promoting the implementation of safe production
measures (1). In recent years, the accident rate in the construction industry has been the highest
among all industrial production sectors, and the safety of construction workers has become a global
problem (2, 3). According to statistics from theMinistry of Housing andUrban-Rural Development
in China, 7,878 construction safety accidents occurred across the country between 2007 and 2019,
resulting in 9,548 deaths (4); these accidents not only generated vast economic losses but also
seriously affected societal stability. Among the reported construction accidents, falling from heights
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was most common for 54.57% of all accidents. Thus, the
occurrence of safety accidents can be potentially limited by
studying falling accidents in construction and implementing
corresponding measures. In terms of the causes of falling
accidents, Martín et al. (5) suggested that many factors can
cause falls in the construction process, but a maximum of
90% of accidents are caused by human-related factors. It is
important to reduce the occurrence of falling accidents, identify
the human factors that contribute to falling accidents and
propose corresponding improvement measures according to the
key influential factors.

An increasing number of high-risk industries have gradually
realized that human factors and organizational factors are the
main causes of accidents (6), and many scholars have conducted
research on the definition of human-organizational factors, the
mechanisms of accidents and influencing factors, the methods
of analyzing human error and other related topics. For example,
Leveson (7) proposed the system-theoretic accident modeling
and processes (STAMP) method, which emphasizes not only
the identification of accident causes from the perspective of
complex social technology systems but also includes coupled and
interactive factors, such as human factors and organizational
factors. Daramola (8) utilized the human factor analysis and
classification system (HFACS), which is a human factor research
tool based on system theory, to analyse human error factors
related to safety accidents. Hollnagel (9) proposed the cognitive
reliability and error analysis method (CREAM), emphasizing
the important influence of the situational environment on
human behavior; the unique cognitive model provides root
cause traceability and human error probability prediction. There
are many methods and tools for human factor analysis in
different fields, among which HFACS is currently one of the
most widely applied tools. Comprehensive and effective accident
analysis results have sparked significant research attention on
HFACs in various industrial fields (10, 11). Although the
HFACS framework provides a reliable tool for the identification
and analysis of human-organizational factors related to safety
accidents, there are limitations in specific research applications
due to the lack of quantitative analysis and the unclear causal
relationships among research factors. To enhance the ability
of the HFACS to assess human factors in detail during the
process of accident investigation, many studies have combined
quantitative analysis with the HFACS framework. For example,
the HFACS framework has been combined with the analytical
network process (ANP) method (12), fuzzy Bayesian network
(FBN) method (13), structural equation model (SEM) method
(14) and other quantitative research theories. Notably, BNs are
considered the most effective for analyzing the dependence
among factors in an uncertain research environment and are
widely employed in the field of security.

There have been many studies of the causative factors of
construction accidents, but few studies have conducted human
factor analysis based on actual historical accident reports. The
non-reproducibility of construction accidents determines that
the investigation of accident causesmainly depends on interviews
and sensing information. Therefore, the investigation of accident
causes has strong uncertainty and subjectivity. How to improve

the accuracy of accident cause investigations through relevant
information after the occurrence of accidents has become a
very important research topic. Therefore, this paper, first, revises
the original HFACS framework according to the characteristics
of falling accidents and establishes a risk assessment model
for falling accidents based on interfactor dependence. Second,
the collected falling accident reports and fuzzy set theory were
combined to infer a BN. Finally, the probability distribution and
human-organizational sensitivity factors in falling accidents are
calculated to identify the potential causes of falling accidents
in construction and to provide theoretical guidance for impact
mechanism analysis, safety risk prevention, and accident report
rectification related to falling accidents.

MATERIALS AND METHODS

Research Methods
Human Factors Analysis and Classification System

(HFACS)
The HFACS was proposed by Shappell and Wiegmann (15); its
development was inspired by the “Swiss cheese” model of Reason
(16). The HFACS is currently widely employed in human factor
analyses of safety accidents based on system theory. The “Swiss
cheese”model proposed by Reason divides the causes of accidents
into four levels and visually compares errors to “holes” in the
systems corresponding to different levels. When errors at all
levels yield risks that break through the defence line, a safety
accident occurs. Based on the “Swiss cheese” model, the HFACS
method can be utilized to determine the causes of accidents at
different levels, and the human-organizational factors of safety
accidents can be comprehensively and systematically analyzed.
Notably, the causes of accidents can be traced, and targeted safety
precautions can be established at all levels.

The research related to the HFACS has mainly supplemented
the framework content and expanded HFACS applications.
Specifically, the original HFACS framework has four levels
of human error: adverse organizational influences, unsafe on-
site supervision, preconditions for unsafe acts, and unsafe
acts from top to bottom. With the development of accident
cause theory, research on human factors at the government
and environmental levels has gradually received attention.
Reinach and Viale (17) added “outside factors” to the HFACS
framework for the railway field, which classified causes into
“regulatory oversight” and “other” categories. When Chen
et al. (18) investigated the human-organizational causes of
maritime accidents, a fifth layer that included external factors
and “legislation gap,” “administrative oversight,” and “design
flaw” categories in combination with the International Maritime
Organization (IMO) guidelines, was added. In view of the
increasing emphasis on external factors such as the economy and
environment, the identification of potential influential factors
with the HFACS model must be supplemented and improved
according to actual cases. In the expansion of theHFACS research
scope, Shappell and Wiegmann (19) initially developed an
HFACS model for safety analyses of military aviation accidents.
Similar models have been applied in shipping (20), coal mine
(21), chemical industry (22), railway (23), and construction (24)
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research, as shown in Table 1. Although it has been widely
applied in different fields, the HFACS model has rarely been
applied in studies of the construction industry, potentially due to
the insufficient attention given to the human- and organization-
based causative factors associated with safety accidents in the
construction industry.

Bayesian Networks
ABN is a tool that combines probability theory with graph theory
to perform uncertainty reasoning and data analysis in complex
fields; specifically, a visual network graph is used to visualize the
probability relationships among variables. The composition of a
BN is divided into qualitative parts and quantitative parts. At
the qualitative level, a directed acyclic graph (DAG) is used to
represent the dependent and independent relationships between
two variable sets, and at the quantitative level, a conditional
probability table (CPT) is utilized to describe the dependent
relationships among variables and their parent nodes (25). A
BN can be defined as N =< G, P >, where G is the structure
diagram of the BN, G =< V ,E >, V represents the set
of nodes V1,V2, · · · ,Vn, and each node represents different
random events. There are three types of nodes in BNs: target
node (leaf node), evidence node (parent node) and intermediate
node (child node). E represents the set of directed edges with
dependencies between two nodes, usually from the parent node
to the child node. P represents the parameter set of the BN,
including the prior probability table and CPT of nodes, which are
utilized to represent the dependency strength between two nodes.
The prior probability can be learned from prior knowledge or
data, and the conditional probability distribution of each variable
(Xi) is based on its parent node. The parameter is expressed
as p(Xi

∣

∣π(Xi)) , where π(Xi) is the parent set of the variable
Xi. Semantically, a BN represents the union of the CPTs of all
nodes. By decomposing the joint probability distribution, the
complexity of the probability calculation process is reduced. Via
the independent and dependent relationships among variables, a
BN provides predictions and solutions for uncertain problems.
The essence of BN calculations is to optimize the relevant
parameters by determining the prior and posterior probabilities
for a specific network structure.

Fuzzy Bayesian Networks
Existing construction accident reports focus on identifying
the responsible parties of an accident. The in-depth, human
factor investigation of an accident has a strong uncertainty,
and available historical data are limited, so it is difficult to
express the probability of an event with a definite numerical
value. However, BN analysis that is based on fuzzy theory is
suitable for modeling research in the new field of uncertainty.
Therefore, BNs and fuzzy set theory can be combined to
construct FBNs, which can be employed for the quantitative
treatment of boundary uncertainty and uncertainty problems
at nodes (26, 27). The steps involved in applying a BN for
safety accident risk assessment can be divided into network
topology establishment, probability determination of node
parameters, network learning and reasoning, risk assessment and
sensitivity analysis.

1) The establishment of a network topology refers to the
formation of a network association structure based on real
accident scenes and the relationships among security risks and
accidents. The following factors need to be considered in this
process: ① factor identification and status determination, ② logic
structure combination, and ③ BN transformation.

2) Probability determination for node parameters refers to
measuring the prior probability and conditional probability of
each node in the BN based on statistics or expert consultation.
Many data samples need to be collected when node parameters
are calculated based on statistical methods these samples are
obtained according to probability theory and a Bayesian formula.
If the data sample size is insufficient, the expert consultation
method combined with fuzzy set theory is generally adopted to
obtain the prior probability distribution table for evidence nodes
(without parent nodes) and conditional probability distribution
table for intermediate nodes.

① Bayesian parameter estimation with complete data
After construction of the BN topology, the maximum

likelihood estimation (MLE), maximum a posteriori (MAP)
estimation, Bayesian estimation and empirical Bayesian (EB) can
be applied for parameter learning to determine the conditional
probability distribution among the relevant variables (28). MLE
is generally applicable to the parameter estimation of large
sample sizes, and the estimated value shows agreement with
the actual value. In this paper, a large number of construction
falling accident report texts can be collected, so MLE can
be utilized for parameter learning. Conceptually, MLE uses
parameter θ to calculate the value with the highest fitting
degree for data set D (29). The calculation process is expressed
as follows:

Step 1: Construct the likelihood function for θ :L(θ) =
n
5
i=1

P(Xi|θ)

Step 2: Take the logarithm of L(θ), and obtain

the derivative: d ln L
dθ

= 0
Step 3: Solve the likelihood function and obtain theMLE value

θ * for parameter θ .
where Xi is the state value of the dataset D, θ is the parameter

to be estimated, and P(Xi

∣

∣θ) is the conditional probability of
variable Xi based on parameter θ .

②Bayesian parameter estimation in the case of missing data
To overcome issues related to uncertainty and a lack of

sufficient data support, the concept of “linguistic variables”
can be considered in semantic and probability conversion
(30). Based on a fuzzy semantic probability table, experts
give fuzzy scores for different risk states; then, by processing
the obtained data, the BN parameter values for the target
nodes are obtained. In this study, seven language terms
are used to estimate the probability of occurrence of basic
events, and each fuzzy number is processed according
to a triangular fuzzy function. The results are shown in
Table 2.

The probabilities of the parameters can be obtained by
averaging, defuzzifying and normalizing the fuzzy probabilities.
Firstly, the fuzzy probabilities obtained from different experts
are arithmetically averaged, and the formula is expressed
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TABLE 1 | List of HFACSs in continuous improvement in different industries.

Literature

sources

Industry HFACS

version

Key modifications Main findings

Daramola

(8)

Aviation

industry

Modified-

HFACS

The improved framework was more suitable for

the analysis of human factors related to civil

aviation accidents, and the technical

environment was added to the second layer.

Findings from the research highlight the need

to address personnel skills, physical

environment issues (mostly weather-related)

and supervisory competence.

Wrobel

et al. (43)

Shipping

industry

HFACS-

MA

The addition of a fifth level called external

influence includes administration oversights,

design flaws and legislation gaps. In the second

level, the impact of software and hardware on

the safety performance has been added.

Implementation of unmanned ships might

reduce the number of navigation-related

accidents like collisions or groundings.

Kaptan

et al. (44)

Shipping

industry

HFACS-

PV

The addition of a fifth level called operational

conditions includes internal conditions and

external conditions.

Unqualified crew assignment and lack of

training and familiarization were found to be the

most critical factors.

Verma

and

Chaudhari

(45)

Coal

mine

industry

Modified-

HFACS

The addition of a fifth level called outside factors

with the factors of regulatory factors and other.

Skill-based errors are most critical and require

immediate attention for mitigation.

Liu et al.

(14)

Coal

mine

industry

HFACS-

CM

The addition of a fifth level called external

environment includes management factors,

political factors, economic factors and historical

factors.

From the most impactful factor to the least

impactful factor are external environment,

unsafe leadership, preconditions for unsafe

acts, and organizational influences.

Xia et al.

(33)

Chemical

industry

Modified-

HFACS

The addition of a fifth level called emergency

failure includes emergency resource errors; not

timely emergency; inappropriate emergency.

The individual level human factors should be

managed from the perspectives of safety skills,

work attitude and personal health status.

Wang

et al. (46)

Chemical

industry

HFACS-

CSME

The definition of each cause factor in the

original model was retained and supplemented

with corresponding specific manifestations.

Based on the further revision of manifestations

and causes classification, a new model

consisting of 15 cause factors and 56

manifestation forms was obtained.

Zhan

et al. (47)

Railway

industry

HFACS-

RAs

The accident casual factors in the second level

are further changed to Substandard Conditions

of Operators, Substandard Conditions of Team,

Adverse Conditions of Mission and Adverse

Physical Environment.

The critical problem existing in organization

level indirectly such as insufficient training

quality and management.

Hale

et al. (48)

Construction

industry

Modified-

HFACS

Combine the content of the third and fourth

levels and increase a fifth level called

environmental influences, including political,

regulatory, market and social influences.

The underlying factors associated with

inadequacies in planning and risk assessment,

competence assurance, hardware design,

purchase and installation, and contracting

strategy.

Ye et al.

(49)

Construction

industry

I-HFACS The addition of a fifth level with the two

categories called regulatory factors and

economic/political/social/legal environment. In

level 4, the factors of organizational climate

were replaced with safety culture.

Seven key factors were regulatory factors,

organizational process, supervisory violations,

adverse spiritual state, skill underutilization,

skill-based errors, and violations.

as follows:

Pij =
Pij

1 + Pij
2 + · · · + Pij

m

m
=

(

aij, nij, bij
)

(1)

where Pij is the fuzzy probability that the state of the i-th node
is j; Pij

m is the fuzzy probability given by the m-th expert for the
i-th node status of j; and (aij, nij, bij) are the parameters of the
triangular fuzzy function.

Then, the probability of occurrence for different events
is converted into a precise value through the process of
defuzzifying. In this paper, the “mean area method” is utilized in
the defuzzifying process, and the formula is expressed as follows:

Pij
′

=
aij + 2nij + bij

4
(2)

Finally, the accurate probability values of the nodes in different
risk states are normalized, and the sum of the probabilities for
the same node in different states is 1. The corresponding process
can be expressed as follows:

Pij = Pij
′

/

k
∑

j=0

Pij
′

(3)

3) Network learning and reasoning
Network learning and reasoning involve calculating the
probability of a target node based on the prior probability
table and CPT associated with a known node. According to
the different directions of reasoning and the roles of node
variables, the Bayesian reasoning process can be divided into two
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TABLE 2 | Semantic terms and corresponding triangular fuzzy numbers.

Number Semantic term Triangular fuzzy numbers

1 Certain (0.85,1,1)

2 Probable (0.75,0.85,1)

3 Expected (0.5,0.75,0.85)

4 Fifty-fifty (0.25,0.5,0.75)

5 Uncertain (0.15,0.25,0.5)

6 Improbable (0,0.15,0.25)

7 Impossible (0,0,0.15)

modes. The first mode is 1) positive causal reasoning, that is,
the reasoning process from cause to effect. Given the probability
values of all root nodes at different risk levels, the BN topology
and parameter values are combined to obtain the probability
results. The second mode is 2) reverse diagnostic reasoning,
that is, the reasoning process from result to cause. Given the
probability values of the target node at different risk levels, the
probability of each cause can be determined for a given event.

4) Risk assessment and sensitivity analysis
Risk assessment refers to the identification of accident risk levels
and key causal factors under different conditions based on the
reasoning process. In a positive causal reasoning network, the
grade corresponding to the maximum probability value in the
target probability distribution is selected as the risk probability
grade, and the key causative factors of accidents can be
determined by combining this approach with a reverse diagnostic
reasoning network. Sensitivity analysis involves identifying the
factors that have the greatest impact on the occurrence of
accidents and quantifying them considering the degree of
influence and the parameters of the target node (31). The
sensitivity factor is denoted as α and expressed as follows for the
i-th basic event:

αi =
(PT − PTi)/P

T

max
{

(PT − PTi)/PT
} (4)

where PT is the probability of a risk event; PTi is the probability
of a risk event when the i-th basic event does not occur; and i =
1, 2, · · · ,m.

Data Sources
This paper mainly collects safety accident reports through
network screening to obtain original data related to the
human-organizational causative factors of falling accidents in
construction. Safety accident reports were mainly collected
from the Ministry of Housing and Urban-Rural Development,
State Administration of Production Safety Supervision and
Management, websites of various administrative departments,
safety management network, municipal governments and
various safety supervision bureaus. A total of 432 reports
of construction falling accidents in China from 29 to 29
were collected (32), focusing on the major production safety
accident reports and general production safety accident reports.
The cases judged as non-liability accident or near misses

were excluded from the analysis. In addition, the text of the
accident report mainly included the following four aspects:
general situation of the accident unit, process of the accident,
casualties and direct economic losses caused by the accident,
causes and nature of the accident, and identification of the
accident responsibility.

Research Framework
To clearly describe the overall research process of the human-
organizational factor analysis of falling accidents by integrating
the HFACS and BN methods, the research framework is shown
in Figure 1.

REVISED DESIGN OF THE HFACS
FRAMEWORK FOR FALLING ACCIDENTS
IN CONSTRUCTION

Constructing the Corrected HFACS
Framework for Falling Accidents
The original HFACS framework was proposed for human factor
analyses of aviation accidents without considering the influence
of external factors. As the application of HFACS has gradually
expanded, it has become necessary to modify the general model
accordingly. Garrett and Teizer applied the HFACS in the
construction industry for the first time in conjunction with the
human error awareness training (HEAT)model to investigate the
causes of human errors in construction. Xia et al. (33) adjusted
the HFACS framework according to the specific characteristics
of the construction industry to effectively analyse construction
safety performance. In addition to adding to and deleting some of
the original components, external environmental impact layers,
including stakeholders, social and industrial environments,
legislation and enforcement, were added. In this paper, the
HFACS framework is applied to falling accidents in building
construction. Based on the collected accident cases and an
analysis of the existing literature, the original HFACS framework
is modified, and an HFACS framework suitable for falling
accidents in building construction is proposed, as shown in
Figure 2.

L1: Unsafe Acts
Reason proposed that in analyses of safety accidents, human
factors can be divided into errors and violations. Errors indicate
that a person’s ability or psychological level did not achieve
the expected results. Zhang and Fang (34) proposed that errors
can be divided into cognitive, decision-making and skill errors.
According to the different forms of deviation, decision-making
errors will occur when the available information and knowledge
is insufficient; cognitive errors will occur when the concept of
personal safety is not prioritized or does not conform to realistic
requirements; and skill errors will occur when individuals who
engage in the work do not understand or remember the skills
required. A violation is a deliberate deviation from the defined
safety rules and operating procedures, and violations can be
habitual or accidental (35). For example, individuals working at
high altitudes need to wear protective equipment correctly, but
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FIGURE 1 | Research framework.

some personnel deliberately do not wear or improperly wear
protective equipment during climbing, thus creating a potential
safety hazard.

In summary, the unsafe acts of construction workers
are influenced by three factors: perception and decision-
making errors (L1R1), skill errors (L1R2), and operational
violations (L1R3).

L2: Preconditions for Unsafe Acts
Liang (36) noted that unsafe acts are usually the result
of a combination of individual status, operating machinery
and the operating environment. Individual status issues are
mainly related to a poor physical state, poor mental state, or
physical intelligence deficiency. Based on the characteristics of
construction industry personnel, it is proposed that individual
state problems are mainly manifested through poor physical
and mental states and insufficient skill levels. There are many
situations in which mechanical equipment is employed in
construction at high altitudes, and there are potential unsafe

factors related to the specification, configuration and proper
operation of mechanical equipment. Therefore, the factors that
influence machinery are mainly considered from the aspects of
mechanical model configuration and operation standardization.
According to the traditional HFACS framework, the factors that
influence the working environment are related to the technical
environment and the physical environment. In the technical
environment, protection during work and personnel safety are
emphasized. In the physical environment, surface cleanliness,
good lighting and suitable weather will affect employee risk.

In summary, the preconditions for unsafe acts include the
employee mental state (L2R1), physiological state (L2R2), and
skill level (L2R3); mechanical equipment (L2R4); equipment
operation and maintenance (L2R5); physical environment
(L2R6); and technical environment (L2R7).

L3: Unsafe On-Site Supervision
Aksorn and Hadikusumo (37) verified the 16 key success factors
identified in the safety literature and existing studies. The
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FIGURE 2 | HFACS framework for falling accidents in construction.
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survey results showed that the factor that had the greatest
impact on the safe production of construction projects was on-
site safety management behavior. A construction site requires
not only strict management but also timely inspection and
acceptance, real-time assessments of the on-site conditions and
employee behavior, and timely correction of unsafe phenomena
(38). Supervisors of construction projects face severe penalties
if regulations are violated, such as authorizing unqualified
personnel to perform special operations and deliberately
directing operators to perform dangerous work (39).

In summary, unsafe on-site supervision includes design work
(L3R1), on-site management work (L3R2), safety inspection and
acceptance (L3R3), and violations of regulations (L3R4).

L4: Adverse Organizational Influences
In the construction industry, it is necessary to rationally allocate
relevant personnel, funds and supplies, and resource allocation
has an important influence on organizational safety management
(40). Yang and Fu (41) proposed that the internal safety culture
of an enterprise will influence the behavior and attitude of
employees through different channels and ultimately reduce the
occurrence of safety accidents. Based on analyses of the factors
that influence organizational success, strengthening process
management at the enterprise level can ensure the smooth
development of safe production activities. Additionally, decision-
making and daily supervision at the organizational level can
guide the scientific approach and standardized behavior at a
project site.

In summary, the main adverse organizational influences
include resource management (L4R1), safety culture (L4R2), and
process management (L4R3).

L5: Adverse External Environment
Compared with the levels in the original HFACS framework,
this level is new; it focuses on the influential factors outside
an enterprise organization. Yang and Li (42) suggested that
improving government supervision capabilities can effectively
reduce the occurrence of construction safety accidents. Through
expert consultation, it was found that external factors such
as policy support, legal improvement, economic stability, and
cultural penetration have a positive effect on construction safety.

In summary, the adverse external environment includes
government supervision (L5R1) and the effects of politics, the
economy, law and culture (L5R2).

Manifestations of the Components of the
Revised HFACS Framework
Based on a literature analysis and the opinions of 5 experts,
the preliminary manifestations of the various components of the
HFACS framework for construction falling accidents were sorted
and revised. A total of 432 accident cases were utilized to assess
the specific influence of each human-organizational factor. The
open-loop analysis method was utilized to test the consistency of
the description accuracy of the extracted factors, and expressions
were obtained, as shown in Table 3.

ANALYSIS OF THE INFLUENCE OF
HUMAN-ORGANIZATIONAL FACTORS ON
FALLING ACCIDENTS IN CONSTRUCTION

Bayesian Network Model Construction and
Parameter Calculations
Based on the revised HFACS model, the initial topological
structure of the BN is constructed according to the dependence
and independent relationships among factors. The model is
adjusted in combination with the opinions of field experts to
establish the human-organizational factor-BN risk assessment
model for falling accidents in construction, as shown in Figure 3.
According to the sample data obtained from the accident reports
and fuzzy set theory, combined with Netica software and a
Bayesian formula, the prior probabilities of root nodes and
conditional probabilities of intermediate nodes in the network
graph are calculated. Notably, there are two main methods for
parameter estimation. For the nodes that have been fully reflected
in the accident report, MLE is performed to obtain the BN
parameter values. For the nodes that are not fully reflected in
the accident report, fuzzy set theory is used to estimate the
corresponding values. After sorting and coding the human-
organizational factors involved in the falling accident reports,
the parameter values for nodes L1R1, L1R2, L1R3, L2R3, L2R4,
L2R5, L2R6, L2R7, L3R1, L3R2, L3R3, L4R1, L4R2, and L4R3
were calculated from accident reports, and the parameter values
for nodes L2R1, L2R2, L5R1, and L5R2 were estimated with fuzzy
set theory. The probability table of all nodes in the BN structure
was obtained. Due to the limitation of content length, certain
calculation details of the node parameters in BN are given in
Appendix A.

Bayesian Network Reasoning
Inference Analysis Process of the Bayesian Network
Under the condition that the BN topology and parameter values
are determined, it is necessary to perform subsequent inference
analysis on human-organizational factors of falling accidents
of construction. The relevant data based on historical accident
reports and expert consultations are collated and input into
Netica for inference calculations, and the risk probability values
at the nodes when a falling accident occurs are calculated. The
calculation results are shown in Figure 3.

As shown in Figure 3, the following conclusions can be drawn
when a falling accident occurs during construction.

1) As a five-layer defensive barrier for accident risks,
unsafe on-site safety supervision (L3) has the greatest influence
on the occurrence of falling accidents, followed by adverse
organizational influence (L4), unsafe acts (L1), adverse external
environment (L5), and preconditions for unsafe acts (L2). This
result suggests that the on-site supervision of projects and the
influence of the organization have a substantial roles in the
occurrence of accidents. In addition, unsafe personal behavior
has an important influence on risk prevention.

2) In the unsafe acts layer (L1), the number of falling accidents
related to operation violations (L1R3) is the highest, accounting
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TABLE 3 | Components and manifestations of the HFACS framework for falling accidents.

Level serial

number

Level contents Human factor Manifestation

First layer L1

(Phenomenon

layer)

Unsafe acts Perception and

decision-making errors

(L1R1)

A: The risk perception is inconsistent with the actual situation; B:

Encountering problems beyond the scope of ability; C: The measures

implemented to address the problem are incorrect; D: Employee safety

awareness is limited

Skill error (L1R2) A: Insufficient safety skills and literacy; B: The method used in the

implementation process is incorrect

Operation violation (L1R3) A: Habitual violations; B: Accidental violations

Second layer L2

(Influence layer)

Preconditions for

unsafe acts

Poor mental state (L2R1) A: There are random, habitual, and exploitative psychological behaviors, as

well as the effects of being tired, in high office work; B: Inner pressure in daily

work; C: Negative emotions in the process of getting along with co-workers

Poor physiological condition

(L2R2)

A: Overtired; B: Work with illness; C: Work after alcohol abuse; D: Physical

impairment of hearing or vision

Poor skill level (L2R3) A: Insufficient construction experience; B: Lack of safety knowledge and

safety training

Mismatched work machine

design (L2R4)

A: Safety warning label design for mechanical equipment is not obvious; B:

Specifications and models of the equipment are inconsistent with the plan

Irregular operation of

equipment (L2R5)

A: The equipment is not used in strict accordance with the operation

instructions; B: When the equipment fails, it is still used; C: The equipment

is not regularly maintained

Poor physical environment

(L2R6)

A: Dirty, chaotic, and poor working environment; B: Inadequate lighting in

the workplace; C: Limited working surface space

Poor technical environment

(L2R7)

A: Safety protection equipment is not utilized; B: No safety warning signs

Third layer L3

(Action layer)

Unsafe on-site

supervision

Unreasonable design work

(L3R1)

A: There is a lack of safety consideration in the design of the operation

process; B: Too many tasks must be performed; C: Mismatched team

members

Loopholes in site

management work (L3R2)

A: Safety rules and regulations are not implemented; B: Failure to quickly

correct workers’ incorrect behaviors; C: Failure to perform production safety

management; D: Lack of timely and adequate technical disclosure

Insufficient safety inspection

and acceptance (L3R3)

A: Daily safety inspections are not performed; B: Insufficient investigations of

hidden dangers; C: Lack of phased acceptance of a project

Violation of regulations

(L3R4)

A: Safety management personnel are not qualified to practice; B:

Supervisors violate safety rules and regulations; C: False reporting and

concealment of safety incidents

Fourth layer L4

(Root layer)

Adverse

organizational

influences

Inadequate resource

management (L4R1)

A: Insufficient number of safety management personnel; B: Insufficient

investment in safety production; C: Poor quality of purchased machinery

and equipment

Lack of safety culture (L4R2) A: Management personnel do not pay attention to safety procedures; B:

Lack of safety production regulations; C: Inadequate safety training

Vulnerable process

management (L4R3)

A: Lack of emergency plans; B: Unsound production safety responsibility

system; C: Untimely work feedback; D: Inadequate safety precautions

Fifth layer L5

(Environmental

layer)

Adverse external

environment

Lax government supervision

(L5R1)

A: Few on-site inspections by competent authorities; B: Insufficient

punishment for illegal acts; C: Overlap of regulatory responsibilities and

mutual prevarication in certain cases

Influence of politics,

economy, law and culture

(L5R2)

A: Nonoptimal building safety laws and regulations; B: Unsound building

safety policies and systems; C: Inadequate safety policy publicity; D: Overly

formalized public supervision, public opinion supervision and social group

supervision

for 67.4% of all accidents, followed by perception and decision-
making errors (L1R1), accounting for 47.5%. The number of
accidents related to skill level errors (L1R2) is the lowest,
accounting for 19.4% of all accidents. The results are consistent
with those of Fogarty and Shaw in their study of unsafe behaviors:
although the frequency of operational violations in daily work is

much lower than the frequency of errors, the accident risk caused
by violations is higher, and the potential harm is more serious.

3) In the preconditions of the unsafe acts layer (L2), the
number of falling accidents related to the technical environment
(L2R7) is the highest, accounting for 44.4% of all accidents,
followed by poor physiological conditions (L2R2), which

Frontiers in Public Health | www.frontiersin.org 9 January 2022 | Volume 9 | Article 783537

https://www.frontiersin.org/journals/public-health
https://www.frontiersin.org
https://www.frontiersin.org/journals/public-health#articles


Luo et al. Influence of Human-Organizational Factors

FIGURE 3 | Reverse diagnosis and reasoning results of the BN for falling accidents.

accounted for 43.3% of accidents. Poor skill level (L2R3),
poor mental state (L2R1), irregular operation of equipment
(L2R5), poor physical environment (L2R6), and mismatched
work machine design (L2R4) had comparatively small impacts
on the occurrence of accidents, accounting for 19.2, 18.1,
11.5, 5.24, and 3.16% of accidents, respectively. The results
indicate that the occurrence of falling accidents in construction
is closely related to construction safety protection measures
and employee physiological factors; therefore, high-altitude
operation requires rigorous and meticulous management of
employees with appropriate climbing qualifications and the use
of mechanical equipment.

4) In the unsafe on-site supervision layer (L3), the number of
falling accidents related to loopholes in site management work
(L3R2) is the highest, accounting for 95.4% of all accidents,
followed by insufficient safety inspection and acceptance (L3R3),
accounting for 87.5%. Violations of regulations (L3R4) and
unreasonable design work (L3R1) factors were noted in only
41.7% and 17.6% of accidents, respectively. The results indicate
that management and supervision factors at the field level have
a decisive role in the occurrence of falling accidents, and the
prevention of falling accidents should focus on these two factors.

5) In the adverse organizational influences layer (L4), the
number of falling accidents related to the lack of safety culture
(L4R2) is the highest, accounting for 72.9% of all accidents,
followed by the vulnerable process management (L4R3) factor,
accounting for 63% of all accidents. Inadequate resource

management (L4R1) accounts for the smallest proportion of
accidents at 24.7%. The results suggest that falling accidents are
greatly affected by the safety culture of the enterprise, and cultural
penetration and process management at the organizational level
need to be considered by the internal management personnel
of enterprises.

6) In the adverse external environment layer (L5), the number
of falling accidents related to lax government supervision (L5R1)
is the highest, accounting for 77.2% of all accidents, while the
politics, the economy, law and culture (L5R2) factor accounts for
a relatively small proportion of accidents at 43.3%. Government
supervision problems occur not only in the preliminary bidding
stage of a project but also in the acceptance stage, and the
relevant law enforcement agencies must strictly comply with the
management requirements throughout the project life cycle.

Sensitivity Analysis
With Netica software and relevant calculation formulas, the
changes in target node probabilities caused by changes in
parent node factors were quantified, and the key factors in
the Bayesian risk assessment model were identified based on
the measured sensitivity of human-organizational factors, as
shown in Figure 4. Based on the calculation results in the
figure, the sensitivity factors corresponding to loopholes in site
management work, lack of safety culture, insufficient safety
inspection and acceptance, vulnerable process management, and
operation violations are relatively large, that is, these factors are

Frontiers in Public Health | www.frontiersin.org 10 January 2022 | Volume 9 | Article 783537

https://www.frontiersin.org/journals/public-health
https://www.frontiersin.org
https://www.frontiersin.org/journals/public-health#articles


Luo et al. Influence of Human-Organizational Factors

FIGURE 4 | Sensitivity of human-organizational factors related to falling accidents.

the key causal factors of falling accidents in construction. It is
necessary to focus on the management of these factors during
risk identification and control at the human-organizational level
to reduce the occurrence of falling accidents in construction.

CONCLUSION

As the accident type accounting for the largest proportion of
construction safety accidents, reducing the number of falling
accidents by assessing the key causes and proposing control
and defensive measures can effectively decrease financial and
personnel losses. Due to the lack of adequate description of
certain human factors, it is difficult to obtain an exact estimation
of their occurrence possibility. Therefore, a BN risk analysis based
on fuzzy theory under uncertainty is proposed to calculate the
system reliability and identify the most sensitive factors of an
accident. The final conclusions are presented as follows:

1) Based on the HFACS framework, characteristics of falling
accidents in construction and existing literature, a revisedHFACS
framework for falling accidents was established. This framework
encompasses the human-organizational factors that can cause
falling accidents. A systematic structural framework including 5
layers (L1 phenomenon layer, L2 influence layer, L3 action layer,
L4 root layer, and L5 environment layer) and 19 detailed causal
factors was obtained to assess the causes of falling accidents.

2) With the BN inference analysis method, the revised HFACS
framework was converted to a BN topology, and the probability
value of each node in the network diagram was calculated
based on the collected accident reports and fuzzy set theory.
Through BN reasoning, the following results were obtained. In
the five-layer falling accident prevention system, on-site safety
supervision, organizational factors and unsafe acts of employees
have vital roles in the occurrence of accidents. At the level
of on-site safety supervision, lack of on-site management and
insufficient safety inspection have the largest impacts on the
occurrence of accidents. A lack of safety culture and vulnerable
process management at the organizational factor level highly
influence the organization and management of enterprises. At
the level of unsafe acts, operation violations and perception and
decision-making errors directly cause the occurrence of major
falling accidents.

3) By combining BN reasoning with relevant formulas, a
sensitivity factor analysis of the nodes in the BN risk assessment
model was performed. The results indicate that when falling
accidents occur, the most likely human-organizational factors
are loopholes in site management work, lack of safety culture,
insufficient safety inspection and acceptance, vulnerable process
management, and operational violations. The calculated values
of the corresponding sensitivity factors were relatively large,
indicating that these factors are the key human-organizational
factors of falling accidents.
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4) Through sorting and coding of the collected accident
reports, it was determined that management, inspection and
education should be prioritized. Moreover, employee skill
level, physiological state, psychological state, external politics,
economy, law, and other factors had relatively minimal influence
on falling accidents. Thus, in-depth investigations of specific
scenarios are necessary. In addition, during the analysis of
causal factors, illegal supervision behavior and a poor technical
environment account for small proportions of the total number
of falling accidents, but they have a considerable impact on
project safety risks. Additionally, a single factor may create
considerable safety hazards for a project, and influential factors
should be fully considered by construction safety and risk
management personnel.

In this paper, the combination of HFACS and BN is applied
to the analysis of the impact of human-organizational factors
of falling accidents in construction, which not only expands the
application of BN in the field of safety but also helps to realize the
quantitative analysis of accident human factors based on accident
investigation data. However, this paper has limitations. BN
reasoning based on historical accident texts is helpful for accident
investigators to more accurately and comprehensively investigate
the human-organizational factors that cause accidents. However,
the existing accident investigation reports focus more on the
description of accident responsibility identification, and the in-
depth human factor investigation of the accident is insufficient.
Therefore, it is necessary to rely on field experts in the process of
risk identification and BN model construction. Our subsequent

research objectives will focus on the collection of multisource
data for security performance prediction and the use of more
intelligent knowledge analysis technology to realize automatic
knowledge management.
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