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Drug discovery and repurposing against COVID-19 is a highly relevant topic with huge
efforts dedicated to delivering novel therapeutics targeting SARS-CoV-2. In this context,
computer-aided drug discovery is of interest in orienting the early high throughput
screenings and in optimizing the hit identification rate. We herein propose a pipeline for
Ligand-Based Drug Discovery (LBDD) against SARS-CoV-2. Through an extensive search
of the literature andmultiple steps of filtering, we integrated information on 2,610molecules
having a validated effect against SARS-CoV and/or SARS-CoV-2. The chemical structures
of these molecules were encoded through multiple systems to be readily useful as input to
conventional machine learning (ML) algorithms or deep learning (DL) architectures. We
assessed the performances of seven ML algorithms and four DL algorithms in achieving
molecule classification into two classes: active and inactive. The Random Forests (RF),
Graph Convolutional Network (GCN), and Directed Acyclic Graph (DAG) models achieved
the best performances. These models were further optimized through hyperparameter
tuning and achieved ROC-AUC scores through cross-validation of 85, 83, and 79% for RF,
GCN, and DAG models, respectively. An external validation step on the FDA-approved
drugs collection revealed a superior potential of DL algorithms to achieve drug repurposing
against SARS-CoV-2 based on the dataset herein presented. Namely, GCN and DAG
achieved more than 50% of the true positive rate assessed on the confirmed hits of a
PubChem bioassay.

Keywords: deep learning, artificial neural network, SARS-CoV-2, machine learning, graph convoluational networks,
drug discovery and repurposing

1 INTRODUCTION

Discovery and design of effective treatments against COVID-19 is actually an active research field.
Tremendous efforts have been deployed worldwide to find new molecules with therapeutic potential
against its pathogenic agent SARS-CoV-2 (Song et al., 2021). The most forerunner achievements
mainly consisted in drug repurposing attempts of previously described drugs able to affect the SARS-
CoV such as chloroquine and its derivatives (Vincent et al., 2005; Pastick et al., 2020; Yao et al., 2020;
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Galan et al., 2021; Moiseev et al., 2021). Other antivirals or
antibiotics were also assessed for their potential as COVID-19
therapeutics (Pillaiyar et al., 2020; Kelleni, 2021). Still, as of today,
no candidates have been yet retained as a universal COVID-19
treatment (Hoffmann et al., 2020; Dragojevic Simic et al., 2021).
Various approaches were adopted, including computational
methods toward a faster discovery of drugs, given the urge of
the global sanitary situation.

Computational approaches may be split into two
subcategories: Structure-Based Drug Discovery (SBDD) and
Ligand-Based Drug Discovery (LBDD). For SBDD, the
structure of a molecular target is used to perform virtual
screenings of large chemical libraries. The most popular
targets are the Spike protein, known as the S protein, the 3-
Chymotrypsin-Like cysteine protease (3CLpro), also called the
main protease (Mpro), and the Papain-Like protease (PLpro)
(Chellapandi and Saranya, 2020; Trezza et al., 2020; Zhang et al.,
2020; Zhai et al., 2021). These approaches rely on the availability
of structural data of SARS-CoV-2 proteins, which are noticeably
abundant as compared to other organisms. In fact, as of July 14,
2021, the RCSB PDB database accounted for 446 structures of the
S protein and its binding domains, 360 crystal structures of the
3CLpro, 35 for the PLpro, and 505 structures corresponding to
other SARS-CoV-2 proteins (RCSB).

On the other hand, LBDD is more likely dependent on the
availability of data on the biological activity of molecules.
Machine learning (ML) approaches demonstrated their ability
to predict the activity of novel molecules based on such data
(Altae-Tran et al., 2017; Lo et al., 2018; Vamathevan et al., 2019;
Zeng et al., 2019; Korkmaz, 2020). The underlying assumption is
that chemically and topologically similar compounds may have
similar bioactivities and targets (Gfeller et al., 2014; Shi et al.,
2015; Perualila-Tan et al., 2016). These approaches were
extensively used in novel drug discovery (DD) and
repurposing against COVID-19 (Keshavarzi Arshadi et al.,
2020; Bung et al., 2021; Yang et al., 2021). In fact, dedicated
resources have been developed to facilitate and enhance
international efforts toward DD against COVID-19. Namely,
the COVID-19 Moonshot Consortium has deployed
international efforts in tackling data collection and curation of
molecules targeting the 3CLpro of SARS-CoV-2. Their approach
allied with SBDD and LBDD techniques (Achdout et al., 2020). In
fact, data availability is a cornerstone in building reliable ML
models. This being said, data in DD is often sparse,
heterogeneous, noisy, or too few. Multiple efforts have been
made to build ML algorithms able to deal with such
limitations and achieve satisfactory predictions (Duran-Frigola
et al., 2019; Irwin et al., 2020; Yang et al., 2020).

Beyond COVID-19 research, ML and deep learning (DL)
were applied to a variety of DD projects. Applications can be
split into two types: 1) activity prediction through regression
and 2) classification of molecules into classes, mostly active vs.
inactive (Rifaioglu et al., 2019; Vamathevan et al., 2019). ML
algorithms are implemented and trained on binary or float
values descriptors of a fixed length, generated using a chemical
structure encoding system. The most popular encoding
systems are either the physicochemical descriptors

(molecular weight, H-bond donors, H-bond acceptors,
rotatable bonds, etc.) or molecular fingerprints (Jing et al.,
2018). The latter correspond to a variety of algorithms that are
able to capture topological features and properties within
chemical structures. Most of them calculate a series of
binary digits that encode the presence or the absence of
particular substructures in the molecule. More recently,
there was a rising interest in graph convolution networks as
chemical structure encoding systems in the frame of DL
applications in LBDD (Micheli, 2009; Lusci et al., 2013;
Duvenaud et al., 2015; Kearnes et al., 2016; Altae-Tran
et al., 2017). A molecular graph is the most common
machine-readable representation (David et al., 2020).
Chemical representations in these schemes lie in mapping
the atoms and bonds of a molecule into sets of nodes and
edges. Spatial relationships between the nodes are then
encoded through network embedding. This leads to a low-
dimensional vector representation of the molecular graph,
preserving both network topology structure and node
content information (Wu et al., 2020). Graph convolutional
networks (GCN) apply then a series of convolution layers to
construct the whole molecule encoder. Graphs have irregular
designs and sizes; there is no spatial order attached to the
nodes. As a result, traditional convolution on regular grid-like
structures cannot be applied directly to graphs. In the
literature, efforts have been made to generalize the
convolution operator to non-Euclidean structured data,
resulting in convolutional graph networks (CGNs). GCNs
have emerged as the state-of-the-art encoding when it
comes to DD (Sun et al., 2020), especially when one seeks
to extract features with respect to the data structure. This
extraction is done automatically from raw inputs (Lavecchia,
2019). Duvenaud et al. presented a graph convolution method
to encode molecule structures using a differentiable neural
network (NN) that generalizes fingerprint-based features via
backpropagation on an undirected graph representation of the
molecule (Duvenaud et al., 2015). The authors demonstrated
that applying graph convolution enhances property
predictions as compared to conventional circular
fingerprints. Kearnes et al. also described a graph
convolution approach that learns from a graph
representation of the molecule while taking into account its
structure and composition (Kearnes et al., 2016).

Here, we present a dataset of molecules validated for their
effects on SARS-CoV-2 and/or SARS-CoV through viral growth
inhibition, cell-based, or enzymatic experiments. Data were
collected through an extensive search of the literature and
databases, curated and formatted for cheminformatics
simulations toward LBDD against COVID-19. Chemical
structures of the molecules were then encoded through
multiple systems to be readily useful as input to conventional
ML algorithms or for GCN. We run an extensive set of
simulations under different splitting and formatting conditions
of the data to identify the ML and DL algorithms that could
achieve satisfactory results. Most promising models were then
optimized, and their performances were validated through cross-
validation. An external validation step was performed to assess
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the potential of these algorithms to achieve drug repurposing
using experimental data on the FDA-approved drugs collection.

2 MATERIALS AND METHODS

2.1 Data Collection
The data collection process included three distinct approaches.
The first consisted in literature mining. We collected data on
molecules described in peer-reviewed papers as anticoronavirus
effectors. Two beta-coronavirus species were considered: SARS-
CoV (Severe Acute Respiratory Syndrome Coronavirus, 2003)
and SARS-Cov-2 (Severe Acute Respiratory Syndrome
Coronavirus, 2019). The second approach consisted in
retrieving data on molecules deposited in the RCSB PDB as
cocrystals with SARS-CoV and SARS-CoV-2 proteins, mainly
the 3CL-protease and the Papain-Like protease. When available,
activity data on these cocrystallized inhibitors were fetched from
corresponding scientific publications. The third approach
consisted in retrieving data from bioassays deposited in the
PubChem database (Kim et al., 2020). Priority was given to
bioassays targeting SARS-CoV-2 or related molecular targets,
with a special interest in large bioassays on other
coronaviruses. Data collected from these bioassays correspond
to viral growth inhibition or cell-based tests targeting a given viral
enzyme. In total, data from 10 COVID-19 bioassays were
included. These were complemented by four bioassays
targeting SARS-CoV. PubChem IDs of the bioassays, their
types, and sizes are listed in Supplementary Table S1.
Bioassay datasets were then formatted to be merged with the
literature dataset previously collected. Data collected on each
molecule included chemical structure, name, chemical name if
indicated, activity, target virus, and any additional information
such as identifiers in the PubChem database, in vitro IC50 values,
cellulo IC50 values, and any other valuable biological data (in vivo
EC50, inhibition rate at a given concentration, etc.). The chemical
structure of the molecules was encoded using the Simplified
Molecular Input Line Entry System (SMILES). For compounds
with a graphical description of their structure in the literature, we
used the Optical Structure Recognition Application (OSRA) tool
(Filippov and Nicklaus, 2009) to correctly infer the corresponding
SMILES. For compounds referred to in the literature using a
common name, SMILES were directly retrieved from the
PubChem database. Duplicates were removed using a
similarity threshold of 97% based on the Tanimoto coefficient.
Each molecule was assigned an activity status that can be “active,”
“inactive,” or “inconclusive.” For molecules retrieved from
PubChem bioassays, these status values were provided from
the experimentalists’ data. For molecules fetched in the
literature, these status values were deduced from the authors’
conclusions. For the molecules retrieved from the PDB records,
these status values were assigned to “active” by default. In fact, we
considered that the ability of a molecule to bind to a given protein
receptor encloses valuable information on potential active
moieties, although no biological activity is reported for these
molecules. Any data point with inconclusive or blurry value was
discarded for robustness sake.

2.2 Datasets Construction
The benchmark datasets used herein were split using two
different approaches. First, a random split with no
consideration for chemical equilibration among the training,
validation, and test sets was applied. Then, a scaffold split
(Ramsundar et al., 2019) was applied. The scaffold split
method would cluster molecules based on the Murcko scaffold
calculated using RDkit. Compounds with different scaffolds are
placed into different sets (Ramsundar et al., 2019). This
significantly reduces the overlap of chemical scaffolds between
the training and the test sets (Ramsundar et al., 2019).

In addition, we tested how the size of the validation and test
sets would affect the algorithms’ performances. Thus, we tested
two scenarios: 80/10/10 and 60/20/20 split. An additional
splitting method of the original dataset that permitted the
generation of category-specific subsets for validation purposes
was applied. Undersampling and oversampling were applied in
order to obtain equilibrated datasets in each case. Undersampling
consisted in reducing the inactive molecules subset to achieve
equilibrated classes. Oversampling consisted in artificially
generating additional SMILES of the active molecules in order
to reach the inactive subset size.

2.3 Molecular Structure Embedding
Based on the SMILES, we calculated either molecular fingerprints
or graph convolution-based features that consist in binary or float
values vectors to be used as input to the ML and DL algorithms,
respectively. As fingerprints, we chose the extended-connectivity
fingerprints with a radius of two atoms (ECFP4), also known as
the circular Morgan fingerprints (Rogers and Hahn, 2010), to
encode the molecule structures for ML algorithms. We used the
RDkit library to generate 2,048-bit length ECFP4. Molecules with
erroneous SMILES or chemistry were removed at this stage. We
used these fingerprints to calculate the Tanimoto coefficient of
similarity in a pairwise fashion. This metric consists of the
fraction of the intersection over the union of the set of
chemical substructures between two molecules. It is one of the
most used to assess the chemical similarity between molecules
(Chung et al., 2019). As for the graph convolution-based features,
depending on the DL architecture requirement, two featurizers
were used:

• The ConvMolFeat featurizer (Duvenaud et al., 2015) to
generate input for the Graph Convolutional (GraphConv)
(Duvenaud et al., 2015) and the Directed Acyclic Graph
(DAG) (Lusci et al., 2013) models.

• The MolGraphConvFeat (Kearnes et al., 2016) to generate
input for the GAT (Velickovic et al., 2018) and the GCN
(Kipf and Welling, 2016) models.

Graphical convolutional models map molecules as undirected
graphs whose vertices and edges represent individual atoms and
bonds, respectively. Graphical convolutions extract meaningful
patterns from basic descriptions of graph structure (atom and
bond properties and graph distances) to form molecule-level
representations. They are considered fully integrated
approaches to virtual screening. The output of the model is
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invariant to the order in which the atom and bond information is
encoded in the input. The graph represents class similarity
information and is fed into DL classification models.

2.4 ML and DL Algorithms
We implemented multiple artificial intelligence (AI) algorithms
to develop classification models: ML, ensemble learning
methods (EL), and DL. We implemented seven ML
algorithms, out of which two are simple ML algorithms,
namely, Logistic Regression (LR) and Support Vector
Machine (SVM). Five additional EL algorithms were
implemented, namely, Random Forests (RF), Multitask
Classifier (MTC), IRV-MTC, Robust MTC, and Gradient
Boosting (XGBoost). EL are learning algorithms that
construct the first set of classifiers and then construct a new
one by taking a weighted vote of data predictions from the
previous classifiers (Dietterich, 2000). These algorithms were
implemented under Scikit-learn, an open-source python library
(Pedregosa et al., 2011). LR measures the relationship between a
categorical dependent variable and one or more explanatory
variables. This is performed by estimating probabilities using a
logistic function, which is the cumulative logistic distribution,
thus predicting the probability of certain outcomes. The SVM is
one of the most popular supervisedML algorithms. It is effective
in high-dimensional spaces. The hyperplane learning in the
SVM algorithm can be performed using different kernel
functions for the decision function. The RF method is an
ensemble method, based on decision trees. The model fits on
various subsamples of the dataset and uses averaging to improve
predictive accuracy and control overfitting. The Gradient
Boosting model implemented herein is called XGBoost (Paul
et al., 2020). It is an extremely gradient boosting algorithm and a
decision tree-based boosting integration algorithm (Ericksen
et al., 2017). Further ensemble methods have been tested:
Multitask Classifier (MTC), IRV-MTC, and Robust MTC.
These are fully connected NN, where various
hyperparameters are optimized. They operate like EL
algorithms, where they integrate data from different tasks to
achieve classification. When used on a single task data, they are
a nonlinear classifier that performs repeated linear and
nonlinear transformations on one single task (Ramsundar
et al., 2017).

Then, four DL architectures were implemented under the
DeepChem library (Ramsundar et al., 2019): the Graph
Convolutional Model (GraphConv), the DAG model, the
Graph Attention Networks model (GAT), and the GCN
model. The GraphConv Model (Duvenaud et al., 2015) learns
a vector representing the compound from the graph-based
representation of the molecule. It predicts the target value
directly through graph convolution operations. Convolutional
networks operate the same operation locally and globally and
combine the information in a common pooling step. Feature
extraction involves computing an initial feature vector and a list
of neighbors for each atom. The feature vector summarizes the
local chemical environment of the atom, including atomic types,
hybridization types, and valence structures. The neighbor lists
map the connectivity of the entire molecule and are then

processed in each model to generate graph structures (Wu
et al., 2018). The DAG model is an ensemble of recursive NN
that associate all vertex-centered acyclic orientations of the graph
representation of the molecule. It is slightly dependent on the
molecular descriptors since suitable representations are learned
from the DAG representation (Lusci et al., 2013). The graph
attentional layer (GAT) model (Velickovic et al., 2018) is a
convolutional NN that operates on graph-structured data,
taking advantage of self-attention hidden layers. The attention
mechanism is applied in a shared manner to all edges of the graph
and thus does not depend on prior access to the overall structure
of the graph or to (characteristics of) all its nodes. It allows
assigning (implicitly) different importance to the nodes of the
same neighborhood. GCN is an implementation of graph
convolutional NN (Kipf and Welling, 2016). It learns hidden
layer representations that are able to encode both individual
features of nodes and their respective environments. It computes
a weighted sum of the node representations in the graph, where
the weights are computed by applying a gating function to the
node representations, and then applies a max pooling of the node
representations. It perform the final prediction using a multilayer
perceptron (MLP) over a concatenation of the last convolution
layer output. It differs from the GraphConv model by the fact
that, for each graph convolution, the learnable weight in this
model is shared across all nodes. The GraphConv model
computes separate learnable weights for nodes.

Under the DeepChem library, both the GraphConvModel and
the DAG model were implemented to learn from MolConv
featurizer (Duvenaud et al., 2015) that corresponds to GCN
that learns from circular morgan fingerprints-like
representation of the molecule. On the other hand, the GAT
and GCN models have been implemented in a way that they can
learn from the MolGraphConv featurizer (Kearnes et al., 2016).
Data were split into training, validation, and test sets. The
hyperparameters of the DL models were tuned using the loss
of the validation sets.

2.5 Model Evaluation and Selection
We performed the first comparison of all models’ performances
with hyperparameters set to the optimal values obtained through
theMoleculeNet benchmarks (Wu et al., 2018). To better evaluate
the different models, we calculated multiple performance metrics,
including the ROC-AUC, accuracy, F1-score, Matthews
correlation coefficient (MCC) (Matthews, 1975), and Cohen’s
Kappa coefficient (κ). Then, we performed a cross evaluation of
the model performances when trained and tested on stratified
subsets of the data based on the different categories of targets.
Accuracy, F1-score, Recall, and specificity were used as evaluation
metrics for these simulations.

For the metric definitions, the following abbreviations are
used: the number of true positives (TP), the number of false
positives (FP), the number of true negatives (TN), and the
number of false negatives (FN). Specificity, also called the
False Positive Rate (FPR), is the model’s ability to correctly
reject an inactive molecule. Specificity of a test is the
proportion of molecules that are truly inactive, which are
classified as is. It is defined as follows:
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Specificity � TN
TN + FP

. (1)

Model Recall can be thought of as the percentage of true class
labels correctly identified by the model as true. It is equal to the
model sensitivity in binary classification and is also called the
True Positive Rate (TPR). It is defined as follows:

Recall � TP
TP + FN

. (2)

The F1-score is the harmonicmean of the Recall and precision:

F1 − score � 2p
RecallpPrecision
Recall + Precision

. (3)

where precision is the probability of a predicted true label is
predicted as true and is defined as follows:

Precision � TP
TP + FP

. (4)

Accuracy is the percentage of correctly identified labels out of
the entire population.

Accuracy � TP + TN
TP + FP + TN + FN

. (5)

The ROC-AUC score tells how much the model is capable of
distinguishing between classes. It varies between 0 and 1, where 1
means a perfect prediction. The MMC is a correlation coefficient
between the observed and predicted binary classifications. It is
between −1 and +1, where +1 indicates a perfect prediction, 0
indicates no better than random, and −1 indicates prediction and
observation are totally different.

MMC � (TPpTN) − (FPpFN)
��������������������������������������(TP + FP)p(TP + FN)p(TN + FP)p(TN + FN)√ . (6)

Cohen’s Kappa method measures interclassifier agreement in
qualitative classification tasks. It evaluates the agreement between
two classifiers and takes into account the random occurrence of
the agreement. A value close to one denotes better agreement
between the results and ground truth.

κ � 2p(TPpTN − FNpFP)
(TP + FP)p(FP + TN) + (TP + FN)p(FN + TN). (7)

The best performers were then selected for hyperparameter
optimization on the particular anticoronavirus dataset collected
through the present study. Their performances were mainly
assessed through ROC-AUC, F1-score, Recall, Accuracy, MCC,
and Cohen’s Kappa scores, which are a set of popular metrics in
evaluating ML algorithms in a variety of applications (Le et al.,
2019; Le and Huynh, 2019; Le and Nguyen, 2019). ML algorithm
optimization included all optimizable parameters for the
respective model. For DL architectures, the number of epochs,
the batch size, the learning rate, the dropout, or the number of
graph features when they apply were optimized. We selected the
configuration that maximizes the ROC-AUC of the model on the
validation set. The accuracy, the F1-score, the MCC, and Cohen’s
Kappa coefficient were also calculated for all combinations.

Tenfold cross-validation was performed, and the mean ROC-
AUC, F1-score, and Recall values were reported. A stratified
validation was also applied in order to assess the ability of the
algorithms trained on the heterogeneous dataset to correctly
predict active molecules from different categories of
experiments. The sensitivity (Recall) and specificity were
herein used as performance indicators. The optimized models
were then subject to an external validation using an unseen set of
molecules. We used a PubChem bioassay that consisted in a
primary screen of 1,518 FDA-approved molecules against SARS-
CoV-2-infected cells (AID_1409594). A total number of 17 hits
were retained as potentially active molecules, and their antiviral
efficacy was further confirmed through a second assay
(AID_1409595). We performed a prediction of these
1,518 FDA-approved drugs as anti-SARS-CoV-2 inhibitors
using the best performing algorithms.

3 RESULTS

3.1 Integration Efforts Led to a Curated
Dataset of Anticoronavirus Molecules
We collected data on molecules with anticoronavirus effects, out
of which 533 were retrieved from literature. All remaining
compounds were collected from 14 PubChem bioassays. Since
activity types were different from one source to the other, we
considered the activity as a binary variable. Initially, four classes
of activity status were listed: active, inactive, unspecified, and
inconclusive. Only molecules within the first two classes were
retained in the frame of the present work. The combined set of
active and inactive molecules was subject to redundancy check,
and duplicates were removed. The number of active molecules
was equal to 1,305 at this stage. We then looked to obtain an equal
number (1,305) of inactive molecules, which were in larger
numbers, namely, within large bioassays. Thus, from some
SARS-CoV bioassays, only a subset of inactive molecules was
randomly selected (see Supplementary Table S1). Ultimately,
2,610 nonredundant compounds were obtained. We performed a
structural similarity analysis to assess the chemical diversity of the
dataset (Figure 1). Based on the circular Morgan fingerprints, we
calculated the pairwise distance between all compounds using the
Tanimoto similarity coefficient. The similarity distribution
demonstrated too few values higher than 60%. This indicates a
high chemical diversity within the dataset. Also, experiments that
revealed these molecules included enzymatic activity assays
against one of the viruses proteases 3CLpro and PLpro,
inhibition assays targeting the whole virus, and cell-based
assays. We defined most relevant experiment categories as
follows: 3CLpro_cov, 3CLpro_cov2, PLpro-cov, PLpro_cov2,
and viral_cov2. Each category presents a specific count in
terms of active and inactive molecules (Figure 1), revealing
unbalanced and insufficient data within some categories.
Within the molecules with known molecular targets, only 0.7%
were targeting the PLpro of SARS-CoV-2, while 40.6% were
targeting PLpro of SARS-CoV (Figure 1). The remaining
molecules were targeting the 3CLpro of SARS-CoV-2 (6.3%)
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and 3CLpro SARS-CoV (52.4%). This bias reflects the higher
interest toward the 3CLpro as a therapeutic target against
coronaviruses (Yang et al., 2021; Zhai et al., 2021).

3.2 Graph Convolution-Based Models
Compete With Baseline ML Algorithms
At this stage, we disposed of 2,610 anticoronavirus molecules. We
used a random and a scaffold split of the dataset using two
splitting proportions of the training, validation, and test sets as
follows: 80/10/10 and 60/20/20. We seek to identify which
scenario is overall optimal. The final datasets, ready for the
upcoming experiments, are available on GitHub.

We first run preliminary simulations of seven ML algorithms
and four DL algorithms using the hyperparameter values released
by the MoleculeNet authors (Wu et al., 2018). These optimized
values were tuned on multiple types of datasets related to DD
tasks. Test set representing 10% of the dataset derived
significantly better results than test sets of size 20%
(Supplementary Table S2). This highlighted the need to keep
the training set at its higher size in order to reach satisfying levels
of training. Such proportions also demonstrated the highest
scores of few-shot learning algorithms (Liu et al., 2021).

To better understand to which extent the heterogeneity of our
dataset may be influential, we considered a subset of
homogeneous data from the largest PubChem bioassay on
SARS-CoV within our dataset: AID_1706. It is a biochemical
assay targeting the enzymatic activity of the 3CLpro of SARS-
CoV, through which 290,893 compounds were tested. A total of
405 molecules showed an inhibitory effect on the 3CLpro-
mediated peptide cleavage. Based on this bioassay, we
generated one undersampled (810 molecules) and one
oversampled (2,430 molecules) homogeneous datasets. On
randomly split data, ROC-AUC scores on the heterogeneous
dataset were the most stable across the different algorithms. The
best results were exhibited by RF and SVM on the oversampled
homogeneous dataset. For the DL algorithms, GraphConvmodel,
DAG, and GCN demonstrated satisfying performances (> 80%)

on the oversampled and heterogeneous datasets, with comparable
values. Overall, six out of eleven presented similar ROC-AUC
scores between the heterogeneous and the oversampled
homogeneous datasets (Figure 2A). Noticeably, these datasets
had comparable sizes and were larger than the undersampled
homogeneous dataset. This confirms the sensitivity of the AI
models’ performances to the dataset’s size (Yang et al., 2020).

On scaffold-based split datasets, ROC-AUC scores were
lower than those obtained with the randomly split data
(Figure 2B). Moreover, the lowest values were observed for
the oversampled homogeneous data, while the highest were
obtained with the undersampled homogeneous data. The
heterogeneous dataset achieved scores comparable to the
undersampled dataset varying between 61 and 80%. This
scheme was observed in overall simulations (Figures
2C,D). The difference between scores obtained with the
oversampled and the heterogeneous datasets, at equal sizes,
indicated a lower chemical diversity (number of scaffolds)
within the homogeneous dataset. Thus, scaffold splitting
induced lower diversity across the train and the test sets,
which points out the interest of using a random split of the
heterogeneous dataset in building performing ML/DL
models. For the upcoming simulations, we will report
results on the heterogeneous dataset using an 80/10/10
random split.

The scores of the training, the validation, and the test sets
obtained with all splitting combinations showed little to no
overfitting, as no significant differences were observed between
these sets’ scores overall (Table 1). According to the ROC-
AUC scores on the test set, RF and SVM were the best
classifiers within the ML/EL algorithms (Figure 2).
Although the Multitask Classifier (MTC) and its variants
IRV and Robust MTC exhibited higher Recall, they
exhibited lower values of ROC-AUC and F1-score. We
concluded that RF and SVM were the most likely to
correctly predict the active molecules as being active. In the
set of DL architectures, the DAG and the GCNmodels were the
best performers. They both achieved ROC-AUC scores of 87%,

FIGURE 1 | Anticoronavirus dataset composition. (A) Distribution of the pairwise chemical similarity among the molecules based on the Tanimoto coefficient. (B)
Proportions of “active” and “inactive” molecules within each experimental category.

Frontiers in Genetics | www.frontiersin.org November 2021 | Volume 12 | Article 7441706

Harigua-Souiai et al. Deep Learning for COVID-19 Therapeutics

https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


F1-scores of 73 and 79%, and Recall values equal to 68 and
82%, respectively (Table 1). Noticeably, the DAG model had
quite higher performances on the train set (99% for all
metrics). This was not the case for the GCN. This indicated
that the herein used hyperparameters for the DAG model were
close to the optimal configuration for our case study. We may
expect better results for the GCN algorithm after the
optimization step. For the upcoming steps, we will consider

the RF, the DAG, and the GCN models for hyperparameters
tuning and optimization.

3.3 Optimization Led to Comparable
Performances of all Models
Hyperparameters tuning of the selected models led to the
identification of the combination of parameters that

FIGURE 2 |ROC-AUC scores of all models for three different datasets (heterogeneous, undersampled homogeneous, and oversampled homogeneous). (A)ROC-
AUC scores achieved by all models under the random 80/10/10 split. (B) ROC-AUC scores achieved by all models under the scaffold 80/10/10 split. (C) Boxplots of the
ROC-AUC scores achieved by each model on all validation subsets (heterogeneous, undersampled homogeneous, and oversampled homogeneous included) and with
both splitting proportions (80/10/10; 60/20/20). (D) Boxplots of the ROC-AUC scores achieved by each model on all test subsets (heterogeneous, undersampled
homogeneous, and oversampled homogeneous included) and with both splitting proportions (80/10/10; 60/20/20).

TABLE 1 | Performances of 11 algorithms in predicting activity class of the anticoronavirus dataset. Optimized settings based on the MoleculeNet benchmarks were
considered for all models.

Model Train Validation Test Train Validation Test Train Validation Test

ROC-AUC ROC-AUC ROC-AUC F1-score F1-score F1-score Recall Recall Recall

GraphConv 0.99 0.80 0.86 0.98 0.75 0.79 0.98 0.75 0.80
DAG 0.99 0.82 0.87 0.99 0.72 0.73 0.98 0.68 0.68
GAT 0.75 0.77 0.82 0.62 0.65 0.69 0.54 0.55 0.61
GCN 0.94 0.82 0.87 0.86 0.75 0.79 0.88 0.75 0.82
LR 0.99 0.81 0.89 0.97 0.76 0.82 0.97 0.77 0.82
SVM 0.99 0.86 0.90 0.97 0.80 0.82 0.97 0.79 0.82
RF 0.99 0.86 0.90 0.99 0.78 0.81 0.99 0.80 0.81
MTC 0.81 0.77 0.84 0.67 0.71 0.68 0.99 0.99 0.99
IRV-MTC 0.82 0.82 0.85 0.75 0.78 0.76 0.88 0.89 0.90
Robust MTC 0.83 0.80 0.85 0.71 0.73 0.71 0.97 0.96 0.99
XGBoost 0.93 0.84 0.88 0.85 0.76 0.80 0.82 0.73 0.84
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maximizes the model’s ROC-AUC score. The detailed
optimization results, the retained configurations for each
model, and the corresponding performances in terms of ROC-
AUC, accuracy, F1-score, MCC, and Cohen’s Kappa coefficient

were reported in Supplementary Table S3. Learning rates,
dropout, and the number of learned features appeared to be
the most influential parameters on model performances. In fact,
the optimal thresholds for the GCNmodel were a learning rate of

FIGURE 3 | Performances of the optimized models. (A) Radar plots of the models’ performances assessed on the train set (left) and the test set (right) through
ROC-AUC, F1-score, Accuracy, Cohen’s Kappa, MCC, and Recall. (B) The ROC curve of all three models. (C) The Precision-Recall (PR) curve of all three models.

FIGURE 4 | ROC-AUC scores of the best classifiers tested on stratified subsets of the data (homogeneous, heterogeneous, and mixed).
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0.001 and a dropout of 0.1. For the DAG model, the optimal
learning rate was 0.0005, and the number of learned features per
atom in the graph was equal to 30. The optimal batch size and
number of epochs for both models were 64 and 40, respectively
(Supplementary Table S3).

Radar plots representing all computed scores for each model
on the train and test sets were generated (Figure 3). None of the
algorithms presented an overfitting trend. They all exhibited
round-shaped radar plots indicating no differential
performance based on the different scoring metrics. Overall,
the RF algorithm slightly outperformed both DL algorithms.
All three models presented MCC values higher than 0.5,
indicating their ability to provide a satisfying class prediction
for anticoronavirus molecules (Supplementary Table S3). The
RF and DAG models exhibited Cohen’s Kappa coefficient higher
than 0.6, which indicates the substantial power of these
algorithms in distinguishing both classes. The GCN model
presented a coefficient value equal to 0.56, indicating a fair
interrater power.

The Receiver Operating Characteristic (ROC) curves exhibited
smooth exponential-like shapes for all models, indicating
satisfying classification power. The Precision-Recall (PR)
curves also presented fair shapes for a balanced dataset
(Figure 3). At last, we performed a tenfold cross-validation.
The average values of ROC-AUC, the F1-score, and the Recall
over ten iterations were reported with the standard deviation
values in Table 2. RF kept exhibiting the highest scores, although
values were comparable across the three models. GCN achieved a
higher ROC-AUC score as compared to the DAG model, an
equivalent F1-score, and a lower Recall. Our results so far
indicated that DL models kept achieving scores slightly lower
than those of RF, despite being comparable.

3.4 GCN Model Demonstrated Noticeable
Generalization Power
The last validation step was performed on the three optimized
algorithms in order to assess their predictive power in identifying
lead compounds against coronaviruses in general and SARS-
CoV-2 in particular. Considering the heterogeneity of our dataset
in terms of experiments and targets, it is important to assess the
ability of the AI algorithms to generalize when tested on unseen
datasets. To this end, we split our dataset into category-based
subsets. Only categories 3CLpro_Cov and PLpro_Cov presented
sufficient data points (Supplementary Table S1) to be used for a
stratified validation of the algorithms’ performances.

Homogeneous training denotes all experiments where models
were trained and tested on one category subset. Heterogeneous

training denotes all experiments where models were trained on
the mixed dataset and tested on one category subset. Finally, we
called mixed training the experiments where models were trained
and tested on the dataset consisting of a mix of categories.
Performances in terms of accuracy, F1-score, Recall/sensitivity,
and specificity were reported in Supplementary Table S4.

Algorithms’ performances on the 3CLpro_cov category
presented comparable values with the mixed training results.
On the other hand, low Recall values were obtained with the
PLpro_cov category trained on homogeneous and heterogeneous
data (Supplementary Figure S1). It is noteworthy to report that
the 3CLpro_cov subset constitutes 41.6% of the mixed dataset
and presents equivalent proportions between the “active” and
“inactive” classes. This was not the case for the PLpro_cov subset,
which constitutes 35.8% of the mixed dataset but presented
nonequilibrated class distribution (71.0% of inactive
molecules). This can explain the low Recall scores obtained for
this particular category (Supplementary Figure S1).

Noticeably, RF and GCN models could achieve comparable
Recall scores through the homogeneous and heterogeneous
training experiments. This means that these algorithms
exhibited a similar ability to correctly predict active molecules
if trained either on the mixed dataset or on the subset of the
3CLpro_cov category and then tested on the 3CLpro_cov test set.
In addition, the GCN scores were maintained close to those
obtained on the mixed dataset and in comparison with cross-
validation results (Figure 4). This revealed a generalization power
of this particular DL algorithm superior to the other models.

In order to confirm such findings, we performed an
external validation of the three algorithms’ ability to
predict potential inhibitors targeting SARS-CoV-2 out of
the FDA-approved drugs collection. We used a PubChem
bioassay that consisted in a primary screen of 1,518 FDA-
approved molecules against SARS-CoV-2-infected cells, out
of which 17 molecules were retained as potentially active. Out
of our mixed dataset, we removed all molecules included
within this external validation set. We retrained all three
models on our mixed dataset using its full content. Then,
we predicted for all FDA-approved molecules from the
validation set their activity class. We assessed the
classification outcome in comparison with the experimental
data and calculated the confusion matrix elements (TP, TN,
FP, and FN) for each model under two scenarios (Table 3).
First, we calculated the confusion matrix elements while
comparing the predicted activity class without regard to the
classification confidence (Supplementary Table S5). Then,
we applied a threshold of 80% confidence to select the
molecules that would be prioritized by each algorithm.
Examining this set of prioritized molecules shall assess the
usefulness of our classifiers in providing a successful
subselection of molecules for experimental validation.

For each algorithm, we first observed the TP and FN counts
out of the 17 active molecules. Overall, the GCN model achieved
the highest TP count of 8/17 and the lowest FN count of 9/17. The
next best performer was the DAG model with TP counts of 7/17,
while RF demonstrated the lowest TP count of 4/17 (Table 3).
Interestingly, when considering the prioritized list of molecules

TABLE 2 | Tenfold cross-validation results for the best classifiers. Scores are
presented as mean values ± SD based on 10 iterations.

Model ROC-AUC F1-score Recall

RF 0.85 ± 0.026 0.78 ± 0.027 0.76 ± 0.032
DAG model 0.79 ± 0.013 0.73 ± 0.052 0.74 ± 0.103
GCN model 0.83 ± 0.026 0.73 ± 0.037 0.70 ± 0.082
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using the 80% selection threshold, the GCN model achieved the
best performances with most of the TP being within the priority
list (5 out of 8). The same trend was observed for the TN count
with 835/877 being correctly classified as inactive with confidence
higher than 80%. Less satisfying rates were achieved by the DAG
model (3/7 of TP and 3/10 of FN within the 80% confidence
threshold selection) and RF (1/4 of TP and 8/13 of FN within the
80% confidence threshold selection). Thus, the GCN model
demonstrated a higher ability to correctly classify both active
and inactive molecules within the FDA-approved drugs
collection.

4 DISCUSSION

AI, precisely ML and DL, have now demonstrated high potential
of delivering successful research outcomes in the field of DD
(Achdout et al., 2020; Gupta et al., 2021). The application of ML
algorithms to cheminformatics and DD is heavily dependent on
the rise of molecular encoding systems. The early descriptors
consisted in a series of physicochemical properties of the
molecules that rapidly demonstrated their limitations. Thus,
chemical structure encoding appeared as a promising venue
with the underlying hypothesis that the activity of a molecule is
heavily correlated with its chemical structure (Gfeller et al.,
2014; Shi et al., 2015; Perualila-Tan et al., 2016). Multiple
approaches dedicated to calculate molecular fingerprints were
then proposed (Bero et al., 2017). These consist in capturing
topological and connectivity information within the molecule
structure for an enhanced description as compared to simple
physicochemical descriptors. Other groups proposed graph
convolution-based algorithms that consider the molecule
structure as an undirected graph where atoms are nodes and
bonds are vertices. These methods were readily useful to
implement DL architectures toward DD (Zitnik et al., 2018;
Li et al., 2019; Zhang et al., 2019). Conventional ML methods
such as RF, SVM, and simple NN demonstrated their ability to
predict the inhibitory activity of molecules (Heikamp and
Bajorath, 2014; Cano et al., 2017) in the particular case
where datasets are limited to a few hundred molecules. On
the other hand, DL algorithms achieved interesting results on
larger datasets (Unterthiner et al., 2014; Aliper et al., 2016;
Lenselink et al., 2017). This reflects the consistent dependency
of DL algorithm performances on data size, although they are
noticeably gaining ground, exhibiting as high performances as

classic ML algorithms (Gupta et al., 2021; Walters and Barzilay,
2021). As DD is a low-data domain, adapted DL approaches
were proposed such as one-shot (Altae-Tran et al., 2017) and
few-shot (Liu et al., 2021) learning methods based on structure-
activity relationships for activity predictions. Compared to more
classical approaches, they demonstrated higher predictive
power using a small number of positives in their training
sets. However, they showed poor capability of generalization
to distinct datasets.

In the present work, we assessed the performances of seven
ML algorithms and four DL algorithms in predicting the activity
of molecules against the COVID-19 viral agent. The training
data is a unique collection of 2,610 data points integrated from
different sources. It includes molecules presenting inhibiting
actions against SARS-CoV and SARS-CoV-2 through multiple
and heterogeneous experiments. Our results demonstrated the
usefulness of such a dataset in building ML algorithms for
activity prediction tasks toward DD against COVID-19. Best
performing algorithms, namely, GCN and RF, demonstrated
stable performances across different training/testing
simulations on stratified subsets of the data. Through
external validation on unseen data, the GCN model
demonstrated the highest predictive power overall. The
MoleculeNet authors performed an extensive benchmarking
of multiple ML/DL algorithms, including those studied
herein on different tasks and datasets (Wu et al., 2018). RF
and the GCN model were tested on multiple datasets
(biophysics, physical chemistry, physiology, and quantum
mechanics) and were often identified as the best performing
algorithms within the conventional methods and the graph-
based methods, respectively (Wu et al., 2018). This is in line with
our findings, although no direct comparison is possible due to
the difference in the datasets used and the tasks on which
performances were evaluated.

Data have always been a determinant factor in delivering
robust ML. In the field of DD, it is a constant challenge to
overcome. Many groups made considerable efforts in constituting
dedicated datasets for DD (Gaulton et al., 2012; Yang et al., 2021).
The interest in merging data from multiple sources (projects,
experiments, etc.) was explored by other groups (Duran-Frigola
et al., 2019; Zeng et al., 2019; Irwin et al., 2020). Irwin et al.
demonstrated the ability of the Alchemite, a state-of-the-art DL
algorithm, to outperform the RF-based QSAR model in property
prediction (Irwin et al., 2020). A recent work described a database
called D3Similarity that contains 603 molecules with a validated

TABLE 3 | External validation of the three models’ performances in comparison with experimental results from the PubChem bioassay AID_1409594. Columns 2–5 report
TP, TN, FP, and FN counts based on the overall predictions of the algorithms. Columns 6–9 report the TP, TN, FP, and FN counts based on the subselection of molecules
with prediction confidence higher than 80%.

Activity criterion All molecules: no confidence threshold Subselection of molecules above the 80% confidence
threshold

TP TN FP FN TP TN FP FN

RF 4 490 119 13 1 425 12 8
DAG 7 719 340 10 3 359 99 3
GCN 8 877 182 9 5 835 147 9

Frontiers in Genetics | www.frontiersin.org November 2021 | Volume 12 | Article 74417010

Harigua-Souiai et al. Deep Learning for COVID-19 Therapeutics

https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


activity against coronaviruses or human receptors (Yang et al.,
2021). The database has a web interface that allows for the
screening of novel ligands to predict their potential to affect
one of the main targets of SARS-CoV-2, namely, the 3CLpro and
the PLpro. The activity prediction is performed through a direct
assessment of the 2D or 3D similarity of a target molecule to the
database elements. In this context, we have deployed important
efforts in collecting and curating a dataset that can serve in
training and validating different ML and DL approaches in
tackling the search for therapeutics against SARS-CoV-2. Our
dataset is larger than the D3Similarity dataset and yet ready for
use in ML/DL applications against SARS-CoV-2. Conversely, it
does not account for quantitative activity information.

It seems important to engage further efforts to integrate more
information in our dataset toward its use for a quantitative
prediction of molecules activity. Moreover, a deeper analysis of
the dataset content may reveal important knowledge for DD
projects. Further tuning of the dataset will aim to integrate
valuable knowledge on what to expect from effective anti-
SARS-CoV-2 molecules (Tummino et al., 2021). In fact, it has
been demonstrated that the cationic amphiphilic nature of some
drugs may induce phospholipidosis rather than actual antiviral
effects (Tummino et al., 2021). Such properties should be further
examined to enhance the relevance of our dataset to the
development of COVID-19 therapeutics.

5 CONCLUSION

In the present study, we collected and curated a dedicated
dataset of 2,610 molecules having anticoronavirus effects. This
valuable resource was formatted and used to perform different
simulations and optimization of eleven ML and DL algorithms
toward the classification of molecules into active and inactive
classes. We were able to obtain three highly accurate classifiers
that were validated through cross-validation and on an
external set of data. The DL algorithms demonstrated the
best performances.
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