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Accumulating evidence suggests that inflammation-related genes may play
key roles in tumour immune evasion. Programmed cell death ligand 1
(PD-L1) is an important immune checkpoint involved in mediating anti-
tumour immunity. We performed multi-omics analysis to explore key
inflammation-related genes affecting the transcriptional regulation of PD-
L1 expression. The open chromatin region of the PD-L1 promoter was
mapped using the assay for transposase-accessible chromatin using sequen-
cing (ATAC-seq) profiles. Correlation analysis of epigenetic data (ATAC-seq)
and transcriptome data (RNA-seq) were performed to identify inflam-
mation-related transcription factors (TFs) whose expression levels were
correlated with the chromatin accessibility of the PD-L1 promoter. Chroma-
tin immunoprecipitation sequencing (ChIP-seq) profiles were used to
confirm the physical binding of the TF STAT2 and the predicted binding
regions. We also confirmed the results of the bioinformatics analysis with
cell experiments. We identified chr9 : 5449463–5449962 and chr9 : 5450250–
5450749 as reproducible open chromatin regions in the PD-L1 promoter.
Moreover, we observed a correlation between STAT2 expression and the
accessibility of the aforementioned regions. Furthermore, we confirmed its
physical binding through ChIP-seq profiles and demonstrated the regulation
of PD-L1 by STAT2 overexpression in vitro. Multiple databases were also
used for the validation of the results. Our study identified STAT2 as a
direct upstream TF regulating PD-L1 expression. The interaction of STAT2
and PD-L1 might be associated with tumour immune evasion in cancers,
suggesting the potential value for tumour treatment.
1. Introduction
Immune evasion is an essential mechanism for cancer cells to circumvent
immune-system mediated destruction and acquire resistance to treatment.
Both laboratory and clinical studies have revealed that PD-L1 plays a key role
in immune evasion. PD-L1, also known as CD274, is a co-inhibitory receptor
expressed on the surface of multiple cell types, including cancer cells [1,2]. It
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can bind to programmed death-1 (PD-1) and inhibit anti-
tumour immune reactions, enabling cancer cells to escape
immunosurveillance.

Based on the importance of the PD-1/PD-L1 axis in
immune evasion,many studies have demonstrated the remark-
able clinical efficacy of anti-PD-1/PD-L1 therapy [3]. However,
the clinical effects of these treatments are less efficient for
certain tumour types, such as non-microsatellite instability
(non-MSI) colorectal cancer [4]. To date, the level of PD-L1
expression in cancer cells is regarded as one of the most impor-
tant factors for determining the effects of immune checkpoint
therapy. Therefore, an improved understanding of PD-L1
regulation in cancer cells might be helpful for clinical
cancer treatment.

Accumulating evidence has demonstrated the upregula-
tion of PD-L1 expression during cancer pathogenesis.
Inflammatory signalling is regarded as a primary mechanism
involved in this complex regulatory network [5]. For instance,
certain pro-inflammatory factors, including type I and type II
interferons, induce PD-L1 expression efficiently. Furthermore,
the expression of PD-L1 could be regulated via multiple
inflammation-related transcription factors (TFs), such as
IRF1, STAT1, STAT3 and NF-κB [6]. Given that cancer-related
inflammation is observed in a substantial proportion of
patients, a better understanding of the relationship between
inflammation and PD-L1 is currently required. Furthermore,
a search for novel inflammatory TFs that regulate PD-L1
expression is warranted.

Assay for transposase-accessible chromatin using sequen-
cing (ATAC-seq) approach uses hyperactive Tn5 transposase
to comprehensively recognize chromatin accessibility at the
genome level and could map open chromatin regions in
gene promoters, reflecting the possibilities of TF binding
[7,8]. Although ATAC-seq analysis only indicates the neces-
sity of TF binding, its results could be further confirmed
through other experiments.

In this study,we aimed to performamulti-omics analysis to
screen novel inflammation-related TFs involved in PD-L1 regu-
lation, followed by laboratory verification studies. Besides
transcriptomedata (RNA-seq), we also aimed to analyze epige-
netic data (ATAC-seq) to explore the binding of TFs. We
hypothesized that STAT2 (signal transducer and activator of
transcription 2) could directly bind at open chromatin regions
of the PD-L1 promoter and regulate PD-L1 expression in cancer
cells. The predicted binding was then validated physically
through ChIP assay, and its influence in translational
regulation was further confirmed in cell experiments.
2. Material and methods
2.1. Data collection
The Cancer Genome Atlas (TCGA) datasets were accessed
through the UCSC Xena database (https://xenabrowser.net/
). Htseq-count profiles of 514 colon adenocarcinoma (COAD)
samples were retrieved, and the corresponding clinical demo-
graphic information was also acquired. We also downloaded
the Fragments Per Kilobase per Million mapped read
(FPKM) profiles of the aforementioned patients with COAD.
Publicly available ATAC-seq profiles were obtained from the
NCI Genomic Data Commons (https://gdc.cancer.gov/
about-data/publications/ATACseq-AWG). The ChIP-seq
profiles were acquired from the Cistrome database (http://cis
trome.org/) [9]. RNA-seq profiles were obtained from the
Gene Expression Omnibus (GEO, GSE137155, https://www.
ncbi.nlm.nih.gov/geo/).

2.2. Identification of inflammation-related TFs
We first downloaded the list of 1639 transcription factors (TF)
from the Human Transcription Factors database (http://
humantfs.ccbr.utoronto.ca/) [10]. Then, via literature search,
we identified three TF families that were crucial in mediating
inflammation, including nuclear factor-kB (NF-kB), interferon
regulatory factors (IRFs), and signal transducers and activa-
tors of transcription (STATs) [11–13]. Accordingly, a total of
21 TFs were identified as inflammatory TFs: NF-kB 1–2,
RelB, c-Rel, IRF 1–9, STATs 1–4, 5a, 5b and 6.

2.3. Chromatin accessibility analysis of PD-L1
To identify the open chromatin regions of PD-L1, peaks
were visualized using the R package karyoploteR [14] and
ChIPseeker [15], and were annotated using TxDb.Hsapien-
s.UCSC.Hg38. knownGene. The details of the aforementioned
methods have been described in our former study [13,16].

2.4. Identification of potential TFs involved in PD-L1
regulation

In order to analyze transcriptional regulation of PD-L1, we
used the workflow reported by Huang et al. [16,17]. Briefly,
gene expression data of TFs were retrieved from the TCGA
datasets. Then, we performed correlation analysis between
the TF expression and the chromatin accessibility of the
PD-L1 promoter region. The TFs with a p-value < 0.05
were further filtered using the Cistrome database and the
GEO database.

2.5. Cell culture
The human colon cancer cell line DLD-1 and cervical carci-
noma cell line HeLa were obtained from Shanghai Key
Laboratory of Regulatory Biology, East China Normal Uni-
versity, Shanghai, China. Both cell lines were cultured in
DMEM supplemented with 1% streptomycin–penicillin and
10% fetal bovine serum.

2.6. Plasmids and transfection
PcDNA3.1-STAT2 plasmid was purchased from Youbio Bio-
logical Technology Co., Ltd. (China). The transfections were
performed via the calcium phosphate-DNA coprecipitation
method for both DLD-1 and HeLa cells, as described pre-
viously. Equal amounts of empty vectors were transfected
in the negative control group.

2.7. Real-time qPCR
Total RNA was extracted using the TRIzol reagent (Takara).
The PrimeScript RT Master Mix Kit (Takara) was used for
cDNA generation. Then, real-time qPCR was performed
using SYBR Green PCR Master Mix (Yeasen). The primer
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Figure 1. An overview of the study design.
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sequences for each gene are listed in electronic supplementary
material, table S1.

2.8. Multi-database validation
To minimize the bias in bioinformatics analysis, multiple
databases were used for validation, including the Timer data-
base (http://timer.comp-genomics.org/) [18], Human
Protein Atlas (HPA) database (https://www.proteinatlas.
org/) [19,20], LinkedOmics database (https://linkedomics.
org/) [21] and GEPIA database (http://gepia.cancer-pku.
cn/) [22].

2.9. Statistical analysis
p-values < 0.05 were regarded as statistically significant. Pear-
son and Spearman analysis was used to calculate correlation
coefficients. All statistical analyses were conducted using the
R software (v. 3.5.1; www.r-project.org).
3. Results
3.1. Identification of open chromatin regions of the

PD-L1 promoter
The overview of our study is presented in figure 1. The chro-
matin accessibility landscape of patients with COAD was
gauged from ATAC-profiles using the workflow reported
by Huang et al. [16]. The open chromatin regions were
widely expressed across the genome. The upset plot and
the vennpie plot indicated that a considerable fraction of
open chromatin regions was found in gene promoters (elec-
tronic supplementary material, figure S1A). Furthermore,
we identified chr9 : 5449463–5449962 (Region 1) and chr9 :
5450250–5450749 (Region 2) as reproducible open chromatin
regions in the PD-L1 promoter across 41 patients with COAD.
We also found that PD-L1 expression was significantly corre-
lated with both Region 1 (r = 0.6, p < 0.05, figure 2a) and
Region 2 (r = 0.4, p < 0.05, figure 2b).

3.2. Identification of STAT2 as an upstream factor of
PD-L1 by integrative analysis

In order to explore the upstream factors of PD-L1, we com-
bined transcriptome (RNA-seq) and epigenetics profiles
(ATAC-seq) for co-analysis. Based on the list of TFs associated
with inflammation, we obtained the mRNA expression of 21
inflammtory TFs from RNA-seq profiles in the TCGA data-
base (figure 3a). These TFs were then filtered by correlation
analysis with chromatin accessibilities of Region 1 and
Region 2 (figure 3b). Among the 21 inflammtory TFs,
STAT2 was found to have the strongest correlation with
PD-L1 promoter accessibility. STAT2 demonstrated a remark-
able correlation with both Region 1 and Region 2 (figure 3c).
Additionally, in order to confirm that STAT2 had a high rank-
ing even among all the TFs, we also used correlation analysis
between PD-L1 promoter accessibility and expression of all
database-recorded TFs (electronic supplementary material,
table S2). Among all the TFs, STAT2 was only secondary to
TF MAX with respect to correlation with Region 1 (electronic
supplementary material, figure S2A, left). Similarly, STAT2
also had a significant correlation with Region2 (electronic
supplementary material, figure S2A, right).

Moreover, we performed correlation analysis between
PD-L1 expression and the expression of potential TFs. Interest-
ingly, among the top 5 TFs associated with PD-L1 promoter
Region 1 or Region 2, STAT2 was found to had the strongest
correlation with PD-L1 expression (electronic supplementary
material, figure S2B, figure 4a), which also suggested that
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STAT2 might have a close relationship with PD-L1 expression.
Collectively, STAT2 showed a significant correlation with both
PD-L1 promoter accessibility and PD-L1 expression. Hence, we
proposed that STAT2 might be a potential upstream of PD-L1,
and we chose STAT2 for further validation.
3.3. Validation of the physical interactions between
STAT2 and PD-L1 promoter

Considering that the TF binding motif is an important index
for predicting TF binding, we used the online Human Tran-
scription Factor Database (http://bioinfo.life.hust.edu.cn/
HumanTFDB/) to explore the STAT2 binding motifs on
Region 1 and Region 2. As shown in electronic supple-
mentary material, table S3, STAT2 binding motifs could be
found in both two regions, indicating that STAT2 might phys-
ically bind at Region 1 and Region 2. To confirm the physical
binding, we further obtained STAT2 ChIP-seq profiles of
colon cancer cells for validation. Figure 4b shows that
STAT2 protein could specifically bind at Region 1 (high-
lighted in dark blue) and Region 2 (highlighted in light
blue), confirming the physical interaction between STAT2
and PD-L1 promoter. Furthermore, we obtained the RNA-
seq data of colon cancer cells with STAT2-knockdown from
the GEO dataset GSE137155. PD-L1 expression was signifi-
cantly downregulated in the STAT2-knockdown group
(figure 4c). The analysis of the protein-protein interaction net-
work also supported the correlation observed between STAT2
and PD-L1 (electronic supplementary material, figure S3A).
Collectively, the integrated analysis indicated that the TF
STAT2 could physically bind at the open chromatin regions
of the PD-L1 promoter and might regulate PD-L1 expression.
3.4. Validation of the results of bioinformatics analysis
in colon cancer cells

To minimize the bias, we also confirmed the results of the
aforementioned bioinformatics analysis with colon cancer
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which had a strong correlation with both STAT2 and PD-L1 (r > 0.4, p < 0.05), were displayed. (d ) The dot plots showed the correlation between STAT2 expression,
and the GOBP_cellular_response_to_interferon_alpha pathway (marked in green, r = 0.57, p < 0.05) or GOBP_regulation_of_lymphocyte_chemotaxis pathway
(marked in blue, r = 0.56, p < 0.05).
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cell line DLD-1. As expected, the transfection and over-
expression of STAT2 resulted in significant upregulation of
PD-L1 expression (figure 4d ). Similar results were also
observed with HeLa cells (electronic supplementary material,
figure S3B). Thus, via in vitro experiments, we validated that
overexpression of STAT2 could upregulate PD-L1 expression
in cancer cells, which was in line with the results of the
bioinformatics analysis.
3.5. Identification of significant pathways and immune
cells associated with STAT2 and PD-L1

Considering that STAT2 could be a direct upstream factor of
PD-L1, we further explored associated pathways in COAD.
We used the gene set variation analysis algorithm [23] to
identify the expression level of genes enriched in the
GO and KEGG pathway analysis (figure 5a–d). Correlation
analysis was applied to explore significant pathways that
were correlated with both STAT2 and PD-L1 expression
(figure 5a,c). We found that ‘KEGG_antigen_processing_and
presentation’ and ‘GOBP_cellular_response_to_interferon_al-
pha’ pathways were most significantly correlated (figure 5b,
d ). Therefore, we hypothesized that the interaction of
STAT2 and PD-L1 might influence colon cancers in an
immune-related way.

Considering this hypothesis, we analysed tumour-infil-
trating immune cells in colon cancers. With the clustering
function of R package corrplot, we found that macrophages
might be potentially associated with both STAT2 and PD-L1
(figure 6a). Furthermore, besides clustering function, we
also explored the estimated immune cells using correlation
analyses. And we found that algorithm-estimated macro-
phages and T cells were statistically correlated with both
STAT2 and PD-L1 (r > 0.4, p < 0.05, figure 6b). Thus, based
on the analysis above, macrophages might play a role in
the interaction between STAT2 and PD-L1. However, limited
to bioinformatics methods, we only observed a correlation
among macrophages, STAT2, and PD-L1. The underlying
mechanisms still required further elucidation through
laboratory experiments.
3.6. Multi-database validation
To confirm the bioinformatics results, we used multiple data-
bases for validation. Profiles from Xena database showed that
STAT2 was widely expressed in multiple cancer types, includ-
ing colon cancers (figure 7a). Moreover, the HPA database
indicated that in the tumour microenvironment of colon can-
cers, STAT2 could be detected in multiple cell types,
including cancer cells. Although there is no significant differ-
ence of STAT2 protein expression between colon cancer
tissues and normal tissues, we found that the expression
level of STAT2 in normal endothelial cells was relatively
lower ( p < 0.05, figure 7b). In addition, the LinkedOmics
database demonstrated that the STAT2 expression was signifi-
cantly lower in patients with MSS (non-MSI) colon cancer
compared to that in patients with MSI-H colon cancer
(figure 7c). To confirm the direct binding of TF STAT2 and
PD-L1 promoter, we also obtained STAT2 ChIP-seq profiles
of multiple types of cancer cell lines, including GM12878,
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K562 and LoVo. The TF STAT2 were confirmed to directly
bind to the predicted regions of PD-L1 promoter (figure 7d ).
4. Discussion
With the understanding of immune evasion mechanisms,
immune checkpoint therapy has been developed as an
important clinical strategy for cancer treatment. Among var-
ious such strategies, anti-PD-1/PD-L1 therapy is one of the
most extensively examined strategies. Considering that the
level of PD-L1 expression in cancer cells is closely associated
with clinical efficacy, there is an urgent need to elucidate
mechanisms underlying PD-L1 regulation. Cancer-induced
chronic inflammation is very common among patients and
affects PD-L1 expression via multiple pathways, including
transcriptional regulation. However, to date, its regulatory
mechanism has not been fully clarified. Therefore, we
aimed to screen undiscovered inflammatory TFs that were
direct upstream factors of PD-L1 and to further confirm the
results via laboratory validation.

The integrated analysis of transcriptome and epigenetic
profiles was applied for screening the potential inflammatory
TFs. First, we performed correlation analysis between PD-L1
promoter accessibility and expression of inflammtory TFs.
Among the 21 database-recorded inflammtory TFs, STAT2
was found to be most correlated with PD-L1 promoter
accessibility. Then, we performed correlation analysis between
PD-L1 promoter accessibility and expression of all the data-
base-recorded TFs, confirming that STAT2 had a high
ranking even among all the database-recorded TFs. Moreover,
we further performed correlation analysis between PD-L1
expression and the expression of several TFs, which were
also significantly correlated with PD-L1 promoter accessibility.
Among these TFs, STAT2was found to had the strongest corre-
lation with PD-L1 expression. Collectively, the inflammtory TF
STAT2 was found to be significantly correlated with both PD-
L1 promoter accessibility and PD-L1 expression. Hence, we
proposed that STAT2 might be a potential upstream of
PD-L1, and chose STAT2 for further validation.

Based on the integrated analysis of transcriptome and epi-
genetic profiles, we proposed that the TF STAT2 might
directly bind at the PD-L1 promoter. We also identified the
potential binding sites chr9 : 5449463–5449962 and chr9 :
5450250–5450749. Upon analysing ChIP-seq profiles of
STAT2, we confirmed the physical binding within the pre-
dicted region. Subsequently, we further verified our results
at the cellular level. We demonstrated that the overexpression
of STAT2 can significantly upregulate PD-L1 expression in
cancer cell lines DLD-1 and HeLa. Based on the GEO data-
base, we found that STAT2-knockdown could significantly
inhibit PD-L1 expression. Taken together, based on the results
of this study, we propose that STAT2 is a direct upstream
factor of PD-L1.
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STAT2 is known for its role in immunomodulatory reac-
tions and anti-viral immunity. It is significantly different
from other members of the STAT family. For instance,
although other members can be activated by multiple cyto-
kines, including type I and II interferons, STAT2 is
primarily activated by type I interferon. Moreover, it is
involved in mediating inflammatory pathways and acts as a
cofactor [24]. Thus, the regulation of STAT2 might not have
a significant impact on anti-tumour immunity. Therefore, if
PD-L1 expression is regulated via STAT2, the combination
therapy targeting STAT2 might be more effective.

In this study, we demonstrated the regulation of PD-L1
expressionmediated by STAT2 viamulti-omics analysis and lab-
oratory validation. Over past decades, the regulation of PD-L1
expressionbyvarious inflammatoryTFshasbeen reported;how-
ever, our study is the first to report that the TF STAT2 could
directly regulate PD-L1 expression.We also confirmed the phys-
ical binding of the TF STAT2 and PD-L1 promoter based on
ChIP-seq results. Interestingly, a study performed by Angel
Garcia-Diaz et al. [25] used mutagenesis to delete the predicted
binding sites of STAT2 in a firefly luciferase reporter plasmid
comprising the PD-L1 promoter. The results demonstrated that
interferon-induced luciferase expression was remarkably
decreased in the transfected cells. To some extent, the results of
this experiment supplemented the findings of our study, which
provided strong evidence for the direct binding of the TF.

In addition, Angel Garcia-Diaz et al. [25] not only found
that the deletion of STAT2 putative binding site could affect
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luciferase expression but also observed similar results upon
deletion of IRF1 putative site. Indicating the importance of
the JAK1/JAK2-STAT1/STAT2/STAT3-IRF1 axis, they
revealed that IRF1 was the potential TF that regulated PD-L1
directly. In our study, we focused on the direct regulation of
PD-L1 expression by STAT2, providing an improved under-
standing of the JAK1/JAK2-STAT1/STAT2/STAT3-IRF1 axis.
As a direct upstream factor of both PD-L1 and IRF1, STAT2
showed great promise for anti-PD-1/PD-L1 immunotherapy.

Despite the increasing number of studies examining
STAT2, the effects of STAT2 in anti-tumour immunity
remain controversial [26]. For instance, Yue et al. [27] demon-
strated the acceleration of tumour growth in mice with STAT2
knockout. Wang et al. [28] confirmed the anti-tumour activity
of STAT2 in a mouse model. Gamero et al. [29] used models of
inflammation-induced cancers to demonstrate that STAT2
might promote colorectal and skin carcinogenesis. Consider-
ing the controversial roles of STAT2, our study might provide
further clarifications with respect to the role of STAT2 in
cancer. We found that since STAT2 can upregulate PD-L1
expression on the surface of cancer cells, it can aid the
cancer cells in escaping immunosurveillance.

Currently, the anti-PD-1/PD-L1 treatment demonstrates
low efficiency for patients with non-MSI colon cancers [4,5].
Based on the LinkedOmics database, we found that the
STAT2 expression was significantly lower in no-MSI colon can-
cers. Thus, we hypothesized that the combination treatment
targeting STAT2 might increase the efficacy of anti-PD-1/PD-
L1 treatment in patients diagnosed with this cancer subtype.

Certain limitations of this study need to be addressed.
First, most of our bioinformatics results were based on the
data on colon cancers, which were used to perform integrated
analysis. On the one hand, the multi-omics analysis would be
more reliable when using profiles from the same cancer type.
On the other hand, these results might be specific to colon
cancers. To minimize the bias, we used multiple databases
to validate our results at the pan-cancer level, and we also
used other types of cell lines in subsequent experiments.
Second, the association between the differential TF binding
and the changes in PD-L1 promoter accessibility could be
influenced by many potential events, such as the dynamics
of histone modification, DNA methylation, and promoter-
enhancer looping. This study did not include all these factors
into consideration. However, although we were not able to
provide evidence for all the potential factors, we provided
the evidence that there was a significant association between
PD-L1 promoter accessibility and PD-L1 expression.
Despite the aforementioned limitations, our study was the
first to highlight the direct regulation of PD-L1 expression
mediated by the TF STAT2. We performed both bioinfor-
matics and laboratory analysis to validate our results.
Future studies should further validate the interaction of
STAT2 and PD-L1 with larger data sizes, different cancer
cell lines, and the STAT2 knockdown mouse model. The
potential therapeutic value of the combination treatment
should also be analysed further.

Our study identified STAT2 as a direct upstream TF that
regulates PD-L1 expression, suggesting its potential to be
used as a therapeutic target for tumour treatment.
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