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Abstract

What makes cognition “advanced” is an open and not precisely defined question. One per-

spective involves increasing the complexity of associative learning, from conditioning to

learning sequences of events (“chaining”) to representing various cue combinations as

“chunks.” Here we develop a weighted graph model to study the mechanism enabling

chunking ability and the conditions for its evolution and success, based on the ecology of

the cleaner fish Labroides dimidiatus. In some environments, cleaners must learn to serve

visitor clients before resident clients, because a visitor leaves if not attended while a resident

waits for service. This challenge has been captured in various versions of the ephemeral

reward task, which has been proven difficult for a range of cognitively capable species. We

show that chaining is the minimal requirement for solving this task in its common simplified

laboratory format that involves repeated simultaneous exposure to an ephemeral and per-

manent food source. Adding ephemeral–ephemeral and permanent–permanent combina-

tions, as cleaners face in the wild, requires individuals to have chunking abilities to solve the

task. Importantly, chunking parameters need to be calibrated to ecological conditions in

order to produce adaptive decisions. Thus, it is the fine-tuning of this ability, which may be

the major target of selection during the evolution of advanced associative learning.

Introduction

In an effort to understand the evolution of cognition, a wide range of studies has been focused

on identifying cognitive abilities in animals that appear “advanced” (a term that is commonly

used but is loosely defined [1]) and exploring the ecological conditions that could possibly

favour their evolution (e.g., [2–7]). Accurate navigation [8], social manipulations [9], or flexi-

ble communication [10], for example, may all be considered advanced cognitive abilities. Yet,

mapping these skills along phylogenetic trees and their relation to social or ecological condi-

tions (e.g., [11,12]) does not explain how such abilities evolved through incremental
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modifications of their mechanistic building blocks. Earlier views of cognitive evolution were

based on some postulated, loosely defined genetic adaptations, such as language instinct

[13,14], mind reading abilities [15], or mirror neurons [16,17], but those are increasingly

replaced by approaches relying on explicit associative learning principles that can gradually

form complex representations of statistically learned information [18–26]. In line with these

recent views, in order to understand the critical steps in cognitive evolution, one should iden-

tify specific modifications that can elaborate simple learning processes and make them better

in some way, so that they can improve decision-making and eventually enhance fitness. In

other words, understanding the evolution of cognition requires to explain cognitive abilities

first in terms of their possible mechanisms (proximate level of explanation) and then in terms

of how such mechanisms could have evolved as a result of gradual modifications that improve

biological fitness (ultimate level of explanation).

A relatively simple and well-understood example is the extension of simple conditioning

through second-order conditioning in a process known as chaining [27,28]. In this process, a

stimulus associated with a primary reinforcer (such as a sound associated with receiving food)

becomes a reinforcer by itself, and then a stimulus reinforced by the new reinforcer may

become a reinforcer, and so on, allowing to represent sequences of statistical dependencies.

Such sequences could, in turn, facilitate navigation [29,30] or even social learning [31], which

can clearly be adaptive.

Further elaborations of associative learning that may allow to construct a detailed represen-

tation of the environment and to support statistical learning and decision-making, such as

those required for learning visual or vocal patterns [32,33], grammatical rules [6,34], or for the

planning of sequential actions [35–37] are less well understood. It has become clear, however,

that a critical requisite for such cognitive skills is the ability to represent 2 or more data units

as a group that has a meaning that is different from (or independent of) the meaning of its

components (as in the word ‘carpet’, which is not related to ‘car’ or ‘pet’). This ability has

appeared in the literature under different names, such as ‘configurational learning’ [38,39],

‘chunking’ [23,40,41], or ‘segmentation’ [42], all of which are quite similar and involve the

learning of configurations, patterns, and hierarchical structures in time and space [43].

In its simple form, known as configurational learning, this ability allows to learn, for exam-

ple, that the elements A and B are associated with positive reward while their configuration AB

is not rewarded and should therefore be avoided (a task known as negative patterning [44]).

Configurational learning of this type is contrasted with ‘elemental learning’, which is based on

the behaviour expected from simple associative learning [45,46]. Research on configurational

learning has been focused mainly on identifying the brain regions supporting this ability (e.g.,

[39,47–49]), giving relatively little attention to the cognitive processes generating configural

representations (but see [39]). More attempts to consider these possible processes has been

made in the context of chunking or segmentation (e.g., [18,42,50]), but only recently, theoreti-

cal work has started to address the question of how chunking mechanisms evolve under differ-

ent ecological conditions, and what is their role in cognitive evolution [23,51,52].

A unique model system that may provide a remarkable opportunity to study the evolution

of chunking is that of the bluestreak cleaner wrasse (Labroides dimidiatus), which feeds on

ectoparasites removed from “client” fish [53]. Field observations and laboratory experiments

have shown that at least some of these cleaner fish are capable of solving a problem known as

the market problem (or the ephemeral reward task) [54–57]. The market problem entails that

if approached by 2 clients, cleaners must learn to serve a visitor client before a resident client,

because the latter waits for service while the former leaves if not attended. In other words, a

preference for a visitor when approached by a visitor and a resident provides the cleaner with

2 meals while failing to do so may result in losing one of them (see details in [54,56,58,59]). In
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order to choose correctly, the cleaner also has to distinguish between residents and visitors

based on their appearance or behaviour (and there might be multiple client species acting as

residents and visitors within a cleaner’s home range [54]). In the lab, clients of different types

were replaced with plates of different colours, each offering 1 food item and acting either a visi-

tor or a resident, which was sufficient for some of the cleaners to solve the problem correctly

[55,60]. These experiments suggest that cleaners can distinguish visitors from residents by

associating certain visual cues with their previous behaviour. Interestingly, individuals cap-

tured in different habitats demonstrated different learning abilities of the market problem in

the lab, and adult cleaners seem to learn better than juveniles [56,58,61,62]. Such intraspecific

variation in cognitive abilities suggests some role for the ecological and the developmental cir-

cumstances in the fish life history.

The lab market task may first appear as a two-choice experiment, testing whether animals

can learn to choose the option that yields the largest total amount of food. Nevertheless, while

preferring a larger amount in a simple two-choice task seems almost trivial for most animals

[63], the market version, in which a double amount is a product of a sequence of 2 actions (i.e.,

choosing ephemeral and then approaching the enduring item) has been proven difficult for a

range of species [62,64–66] (but see [67–69]). Follow-up studies on pigeons and rats (reviewed

in [70]) showed that letting the subject make a first decision but delaying the consequences,

i.e., delaying the access to the rewarding stimuli, strongly improves performance [70,71]. One

interpretation of these results is that the delay helped animals to connect their initial choice to

both consequences; the first, and then the second reward, both of which occurred within a

short time span after the relatively long delay.

While delaying the consequences of the initial choice may be helpful under some condi-

tions, recent theoretical work suggests that under natural conditions, basic associative learning

is insufficient for solving the market task, which instead warrants some form of chunking abil-

ity [72]. The reason for that is that the commonly used laboratory task presents a relatively

simple version of the problem compared to the natural situation. It only presents visitor–resi-

dent pairs, for which choosing the visitor first always entails double rewards and choosing the

resident first always entails a single reward. In nature, however, cleaners face also resident–res-

ident as well as visitor–visitor pairs, and most often, only a single client approaches. As a result,

choosing visitor first may not always entail double reward (e.g., in visitor–visitor pairs, the sec-

ond visitor is likely to leave) and choosing resident first may not always result in a single

reward (e.g., in resident–resident pairs, the second resident is likely to stay). Indeed, the theo-

retical analysis carried out by Quiñones and colleagues [72] showed that for solving the natural

market problem, it is necessary to have distinct representations of all different types of client

combinations (visitor (v) + resident (r), r + r, v + v, r, and v), which means the ability to repre-

sent chunks. Yet, the analyses did not explain how such representations are created, and to

what extent ecology causes variation in the cleaners’ ability to create such representations. The

goal of the present paper is to fill up this critical gap.

Following Quiñones and colleagues’ demonstration that chunking is necessary for solving

the natural market problem, here we use the cleaner fish example as a means to study the evo-

lution of an explicit chunking mechanism and the ecological conditions that favour its success.

Thus, we investigate how the very same problem—choosing between 2 options where one

yields the double amount of food—set into an increasingly complex ecology (of facing varying

combinations of these options) selects for the evolution of increasingly advanced associative

learning abilities. Our model is based on a weighted directed graph of nodes and edges, which

initially form a simple associative learning model, and can then be modified to become an

extended credit (chaining-like) model, or a chunking model (see details and definitions

below). This approach allows to compare between clearly defined learning mechanisms and to
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pinpoint the modifications responsible for a presumed evolutionary step that improves cogni-

tive ability. We analyse the 3 learning models’ performance in 3 tasks: the basic quantitative

choice task, the laboratory market task, and the market task embedded in a sequence of vary-

ing configurations (“natural market task”). For the latter, we explored to what extent different

densities and frequencies of client types select for different tendencies to form chunks (a criti-

cal parameter in the model), and how such different tendencies may affect the cleaners’ ability

to solve the market problem.

The core model

Internal representation. Our core model consists of a weighted directed graph G = (N,

E), with nodes N, edges E, and additionally edge weightsW, node weights U, and node values

F (Fig 1A). The basic model includes 3 internal nodes representing 3 behavioural states: N =
{V, R, X}, where: V–serving (feeding on) a visitor–client, R–serving a resident–client, and X–

waiting for clients (empty arena). These are the 3 states (responses to environmental cues)

required to represent the market problem and are therefore available to, and perceived by, the

cleaner fish in our simulations (Fig 2). Note that at this stage, the cleaner does not understand

the behavioural differences between a resident and a visitor, yet we assume it can distinguish

between their external characteristics (e.g., the cleaner can identify their colours as different

colours). Edge weights are updated according to the sequential appearance of the states, i.e.,

whenever nj appears after ni the weight of the edge ni!nj, i.e.,W(ni, nj), increases (by 1 unit, in

our simulations). Thus, edge weights represent the associative strength between nodes experi-

enced one after the other. For simplicity, we ignore weight decay (forgetting) in the present

model (see Discussion section where we address this issue and explain why it should not

Fig 1. Model design—internal representation. (A) The core model contains a network of 3 elements (blue circles)

representing perceived states: V–serving a visitor–client, R–serving a resident–client, X–absence of clients. The value

of each node is represented by the weight of its association (width of green arrows) with the reinforcer (food reward;

green circle). Edge weights (width of black arrows) represent the strength of the associations between sequential states.

This is also the internal representation of the extended credit model. (B) An example of a possible representation in the

chunking model: A new element (VR; purple circle) represents the configuration (the chunk) of “V and then R”.

https://doi.org/10.1371/journal.pbio.3001519.g001
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change significantly the results). Node weights and values are attached to the cleaner’s deci-

sions (see decision-making below) according to their occurrence and association of their out-

come with food, i.e., whenever node ni is chosen, the weight U(ni) increases (by 1 unit, in our

simulations), and the value F(ni) increases by the amount of food reward provided (which,

unless otherwise specified, is assumed to be 1 unit per client if served successfully, and zero

otherwise). The value of a node could be regarded as the strength of its association with food,

which can also be represented as the weight of the edge between the node and a reinforcer

food node (the weights of green arrows in Fig 1A). The weighted directed graph constitutes

the cleaner’s internal representation of the market environment. The cleaner’s decisions

regarding which clients to serve depend only upon this representation (Fig 1A).

Initially, the states are considered unknown to the fish and their corresponding values,

weights, and the weights of their connecting edges are set to zero. Most learning models use

prior values for cues or states, which are commonly set to zero (often implicitly). Here, we

model such a prior by imposing a threshold on the weight of a node before any increase in its

value F can occur. Specifically, F(nk) is initialized to zero and would not change as long as U
(nk)<Q, i.e., at the first Q occurrences of nk. We set Q = 10 throughout all simulations, which

implies that the value of a node will increase above zero only from the 11th serving of a client.

Decision-making. When a cleaner fish is presented with 2 clients, it must choose which

one to serve first. If both clients are of the same type (i.e., v (visitor) and v, or r (resident) and

r), the cleaner chooses one with equal probabilities. However, when 2 contrasting types are

present (i.e., v and r), the decision is made according to the values associated with serving each

type, F(R) and F(V). As described by Eq 1, a soft-max function is employed (see [72]) over the

‘normalised values’ f(ni) and f(nj) such that the probability of choosing ni is:

pi ¼
1

1þ e� ðf ðniÞ� f ðnjÞÞ
ðEq1Þ

where f ðnkÞ ¼
FðnkÞ
UðnkÞ

is the average payoff associated with the node nk. Note that the numerator,

F(nk), is the sum of all obtained reward items associated with the state nk (i.e., the accumulated

number of food items obtained after the cleaner has chosen nk), and the denominator is a

count of all occurrences of nk (i.e., the number of times the cleaner has chosen nk, regardless of

whether this choice had been fulfilled).

The probability of choosing nj is πj = 1−πi.
In the market problems presented here, both client types provide the same immediate

reward. Thus, it is quite intuitive that learning only first order associations cannot provide any

Fig 2. Model simulations. The cleaner in our simulations may encounter different combinations of client pairs awaiting its service: (A) the cleaner must

choose between 2 clients of different types according to the model’s decision process; (B and C) the cleaner chooses with equal probabilities between 2 clients of

the same type; (D and E) the cleaner serves the only available client; and (F) the cleaner waits for clients to visit its cleaning station.

https://doi.org/10.1371/journal.pbio.3001519.g002
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discrimination between them and, consequently, would fail in developing a preference for visi-

tors (which is the essence of solving the market problem). Indeed, as we shall see in the Results

section, the core model was never successful in solving the market problem (either in its simple

laboratory version or more complex natural setting). Yet, it serves as a null model and as a

stepping-stone for the more advanced learning models.

A linear operator model. To compare our core model with a similar known benchmark

we used the linear operator learning model [73], which is a basic and widely used learning

model [74] that does not involve chaining or chunking. The learner updates the value f(i) of

state i at time t such that f(i)t = (1−α)f(i)t−1+αφ(i)t, where φ(i)t is the reward attached to state i
at time t and α is a learning rate parameter. To choose between clients based on their updated

values, we used the same soft-max decision-making rule applied by the core model (see

above).

The extended credit model

A straightforward approach to consider higher-order dependencies is to enable association of

states with their “future” rewards. We call this model the “extended credit” model. The net-

work representation of the extended credit model is the same as that of the core model (Fig

1A), but in this model, the learner associates an obtained reward with the current state as well

as with the previous one. Specifically, while encountering a sequence (ni, nj), if ni is rewarding,

then F(ni) increases, and if nj is rewarding, then both F(ni) and F(nj) increase (i.e., the credit

assignment of the reward is extended also to the previous state). Hence, if both states are simi-

larly rewarding, the first one will be associated with double the food by the end of the sequence,

as it was also associated with a delayed reward. Theoretically, credit assignment could be

extended in more than one step backward and the credit could also change (e.g., decrease)

with time (similarly to “chaining” [75]). Note that although the model extends the credit to a

previous state, it does not represent, in the credit extension, the identity of the consecutive

state, which donated the extra reward. Thus, the extended credit model cannot learn to distin-

guish between different sequences (sequential combinations or configurations) of states (e.g.,

V!R, V!X, R!R, etc.). The decision-making process of the extended credit model is the

same as in the core model (see above).

The chunking model

Another way of identifying high-order dependencies is via configurational learning, or chunk-

ing, as mentioned in the Introduction section. To model how acquired experience leads indi-

viduals to create chunks, we employ a chunking procedure in our model in which sequences

occurring more often than expected, according to the distribution of their elements are

“chunked” into a new element (Fig 1B). Specifically, a sequence (ni, nj) would become a new

element “ninj” of the internally represented network (i.e., a new node in the graph G) when-

ever

Wðni; njÞ > M � PðniÞ � PðnjÞ þ Cp � ŝ ðEq2Þ

whereW(ni, nj) is the number of observed occurrences of the sequence ni!nj,M is the total

number of observed states (or pair sequences), P(nk) is the observed frequency of the element

nk, and ŝ is the standard deviation of a binomial distribution, with the probability of an event

ni!nj being P(ni)P(nj):

ŝ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M � PðniÞPðnjÞ � ð1 � PðniÞPðnjÞÞ

q
ðEq3Þ
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Cp� 0 is a chunking avoidance parameter. This parameter is important, as it governs the

behaviour of our model, or in other words, the conditions under which a chunk will be created

(see Discussion section for possible implementations of this parameter in the brain). Note that

when Cp = 0, any slight above chance co-occurrence of ni and nj would result in chunking.

This is probably too much chunking because it can easily happen in nature for almost any 2

elements as a result of stochastic deviations from the frequency expected by chance. Using a Cp
that is greater than zero implies that a chunk will be created only when the co-occurrence is

higher than expected by a certain threshold.

Additionally, chunks would not be created as long asW(ni, nj)<Q, i.e., during the first Q
occurrences of the sequence ni!nj. This rule enforces a minimal sample size before statistical

inference could be done (for chunking).

In this model (see Fig 1B), whenever a chunk is created, it is treated as a new node and is

being associated with food whenever chosen by the cleaner alongside food reward (but only

after its first Q occurrences, as required for other elements). For instance, if the sequence

V!R is chunked into a new element “VR,” further choices of the sequence V!R will increase

the association of the element “VR” with the reward by 2 units (as this is the observed reward

during the processing of the sequence). On the other hand, if the sequence R!V is chunked

into a new element “RV” (which could happen in the ‘natural market problem’; see simulated

environments below), further choices of the sequence R!V will usually increase the associa-

tion of the element “RV” with the reward by 1 unit only (since the visitor leaves if not served

first).

The decision-making process of the chunking model is the same as in the core model (see

above), but here, more choices may become available. For example, after the chunk “VR” is

created, a cleaner faced with a visitor and a resident client simultaneously can choose to serve

the resident (R) or to perceive them as the chunk “VR” and to execute the sequence V!R (i.e.,

approach the visitor and then the resident). On the other hand, if the chunk “RV” was also cre-

ated, an additional option exists, which is the choice of executing the sequence R!V. Impor-

tantly, in this case, soon after approaching the resident, the visitor would leave the arena so the

outcome of choosing and attempting to execute the sequence R!Vmay end up with serving

only R (depending on the simulated environment; see below) and being reward by only 1 unit

(see above). We assume that if a chunk has already been created the cleaner never chooses the

first element alone if presented with both elements (i.e., if “VR” is already represented in the

network, and “RV” is not, the cleaner should only choose between “R” and “VR” when pre-

sented with both client types simultaneously).

Simulated environments

Our simulations provide the cleaner fish with alternating clients awaiting its service (Fig 2).

The simulated arena includes 2 available spots, where each can be occupied by a visitor client,

a resident client, or remain empty (simultaneous encounters with more than 2 clients are rela-

tively rare in nature and are typically not addressed; see [54,55]). Each simulation consists of a

sequence of discrete trials. On each trial, the arena is filled using a random sample according

to the simulation specific setup (i.e., the probabilities of encountering each client type, as will

be explained below). When the cleaner is presented with an empty arena (none of the 2 spots

is occupied), it perceives the corresponding state X (see Fig 1A) and waits for the next trial (the

next occupancy of the 2 spots). When the cleaner is presented with only a single client, it

immediately serves it, perceives the corresponding state (i.e., V for choosing to serve a visitor,

or R for choosing to serve a resident), experiences the associated reward of serving it, and

waits for the next trial. When the cleaner is presented with 2 clients, it chooses one according
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to the decision rule of the model (see above) if the clients are of different types (a visitor and a

resident), or at random (with equal probabilities) if they are of the same type. The cleaner then

serves the chosen one and perceives the corresponding state (i.e., V or R) and its associated

reward. If the second client (not chosen) is a visitor, it leaves and the cleaner waits for the next

trial, but if the second client is a resident, the cleaner serves it as well, perceives the correspond-

ing state (R) and its associated reward, and waits for the next trial. Recall that whenever the

cleaner chooses to serve a client and perceives its associated food reward, it adds 1 unit to the

value F of the corresponding state (to F(V), F(R), F(VR), etc.).

We have simulated 3 different environments: (i) A laboratory environment with a “basic

two-choice task,” where a cleaner has to choose between 2 clients offering a reward of 1 and 2

units, respectively, and no further approach to clients is allowed after this initial choice within

a trial (only in this simulation, both client types are ephemeral). This two-choice task is

expected to be solved by all types of cleaners (i.e., preferring the client offering the double

amount of food), thus serving as a ground-level associative learning test. (ii) A laboratory envi-

ronment with a “laboratory market problem,” where the cleaner faces a resident and a visitor

client together (Fig 2A), in each feeding trial, and after it finishes feeding it faces a single trial

of empty arena (Fig 2F; i.e., perceives the state X). (iii) A natural setting, henceforth termed

“the natural market problem,” in which the cleaner may face all possible combinations (Fig

2A–2F): a visitor and a resident, 2 residents, 2 visitors, a single client (resident or visitor), and

no clients. In addition, in the natural setting, the cleaner does not necessarily have to wait

between trials. This environment simulates more faithfully the situation in the wild, where

each of the 2 spots is filled using an independent random sample, with a probability PV for a

visitor, a probability PR for a resident, and a probability P0 for an empty spot (PV+PR+P0 = 1).

When examining ‘the natural market problem’, we consider the distribution of the different

client types and their combinations as resulting from 2 ecological parameters: the (relative) vis-

itor frequency,
PV

PVþPR
(the fraction of visitors out of all clients), and the overall client density, 1

−P0 (ranging from zero—when there are no clients and the cleaner always faces an empty

arena—to one, the arena is always full).

Simulations were performed using Matlab 9 (the code is provided in S1 File).

Results

We examined how the 4 learning models fare in the 3 simulated tasks: the basic two-choice

task, the laboratory market problem, and the natural market problem.

The basic two-choice task

All learning models solved successfully the basic two-choice task, as expected, exhibiting clear

preference for the client offering double amount of reward and showing virtually no differ-

ences in speed and accuracy of learning (Fig 3A). In this task, there are no sequences of

rewarding states (as only the chosen client is consumed and the other leaves), thus the

advanced models are practically reduced to the core model. Thus, the extended credit and the

chunking model confer no extra benefit when facing a basic two-choice test between options

that differ in the amount of reward.

The laboratory market problem

Facing the laboratory market problem, the core model and the equivalent linear operator

learner did not develop a preference towards any of the given clients and thus failed to solve

the problem (Fig 3B, orange and blue lines, respectively). In contrast, both the extended credit
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model and the chunking model were capable of solving the ‘laboratory market problem’, i.e.,

to develop a strong preference towards the visitor client (Fig 3B, yellow and purple lines,

respectively). The inability of the core and linear operator models to solve the laboratory mar-

ket problem is reflected in their indifferent ‘normalised values’ of R, f(R), and V, f(V), both of

which approach 1 (Fig 3C). This result is expected since the value of each state is updated inde-

pendently of any past and future state or reward, and both states (client types) provide the

exact same immediate reward. In the extended credit model that solves the problem success-

fully, the ‘normalised value’ of R, f(R), approaches 1, while the ‘normalised value’ of V, f(V),

approaches 2 (Fig 3D, top panel). This was made possible because serving a resident always

provides a single food item in this setup (as the visitor leaves) while the credit of choosing a

Fig 3. Simulating laboratory environments. Four types of learners are compared in the ‘basic two-choice task’ (A)

and the ‘laboratory market problem’ (B): blue–A linear operator learner (α = 0.1; see text); orange–the core model;

yellow–the extended credit model; purple–the chunking model (with Cp = 2); black dashed line–the expected choices

with no preference (0.5). The preference towards a visitor client, measured as the proportion of choosing a visitor out

of all visitor–resident encounters, is plotted as a function of time (iterations), in bins of 40 trials. Both laboratory

environments were simulated using 1,000 feeding trials (with an empty trial after each feeding trial). The plots depict

the mean of 100 simulations for each learner (shades–standard error of the mean). (C) The value of the different states

as perceived by the nonsuccessful models, the linear operator (top) and the core model (bottom), in a single simulation

of the ‘laboratory market problem’: blue–V; red–R. (D) The values perceived by the successful models, the extended

credit model (top) and the chunking model (bottom) in a single simulation of the ‘laboratory market problem’: blue–

V; red–R; magenta–VR. Note that the chunking model, in this task, quickly creates the VR chunk, even before any

value is attached to V itself. (Underlying data in S1 Data).

https://doi.org/10.1371/journal.pbio.3001519.g003
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visitor is extended to the resident that waits to be served (thus crediting V with 2 food items).

The success of the chunking model is based on a different process: It creates the chunk VR
early and f(VR) quickly approaches 2 as the complete chunk provides 2 food items (Fig 3D,

bottom panel), pushing the preference towards a visitor client (the model choses the sequence

VR, i.e., V and then R).

The natural market problem

For the natural market problem, we only present the results of the learning models that were

successful in solving the laboratory market problem (as expected, the core and the linear oper-

ator models that failed to solve the laboratory problem also fail to solve the more complex nat-

ural problem).

The extended credit model that was sufficient for solving the laboratory market problem

failed to solve the natural market problem (i.e., to prefer a visitor client) regardless of the over-

all client density or the relative frequencies of different clients (see examples in Fig 4A, yellow

lines). The reason for that is that in the ‘natural market problem’ all pair sequences can occa-

sionally appear, including a resident after a resident (and thus R is credited with 2 food items),

a visitor after a visitor (and thus V is credited with 1), and even a resident and then a visitor

(when there is no empty trial after serving the resident, which again credit R with 2). Thus,

assigning credit for a state for the value of the next state causes the differences between f(R)
and f(V) to vanish. Still, the sequence V!Rmay occur more often than the sequence R!V (at

least as long as the cleaner do not prefer R), since whenever the 2 types of clients appear simul-

taneously, V!R occurs if the cleaner chooses to serve the visitor first, and R!V occurs only

when a visitor appears by chance in a new trial after the cleaner has served a resident. As a

result, f(V)might be slightly greater than f(R) in some situations. However, in order to respond

to such slight differences, the model’s soft-max decision rule should be “hardened” (become

more similar to a maximum-based rule). This would suppress exploration and make the

Fig 4. Simulations of the ‘natural market problem’. (A) The preference for a visitor by the extended credit model (yellow) and the chunking model

(purple) are presented for client density (1-P0) of 0.5 and for 3 different distributions of client types: PR = 0.12 and PV = 0.38 (dotted lines), PR = 0.25 and

PV = 0.25 (solid lines), and PR = 0.38 and PV = 0.12 (dotted dashed lines). Black dashed line–no preference (0.5). Cp = 2 (for the chunking model). (B)

Four simulations of the chunking model in the ‘natural market problem’ (with PR = 0.25 and PV = 0.25). Note how the preference towards a visitor

sharply increases after the creation of the VR chunk (depicted with an arrow of a corresponding colour for each simulation). (C) The internal

representation of the chunking model at the end of a simulation as in (B). Blue–basic (initial) elements, red–chunk elements, filled nodes–the relevant

elements for the decision process. The size of the circle is relative to the value (association with food reward) of the element. The width of the directed

edges (black arrows) is relative to the weight (W) of the transitions between elements. (Underlying data in S1 Data).

https://doi.org/10.1371/journal.pbio.3001519.g004
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model always choose the most frequent client type (as its value increases faster), which is the

resident in most cases since the visitor leaves if not served.

In contrast to the extended credit model, the chunking model solved the ‘natural market

problem’ successfully in a wide range of client distributions (Fig 4A, purple lines). To solve

this task, the chunking model only needs to create the chunk VR, which, in turn, imposes a

preference for the visitor, as VR is always associated with 2 units of food reward. The time of

creating the VR chunk may vary according to the stochastic order of the trials experienced by

each individual (see examples in Fig 4B). But on average, as the simulation advances, the

chances of a cleaner using the chunking model to create the VR chunk and thus to choose a

visitor increases (Fig 4A, purple lines). Fig 4C depicts an example of the internal representation

of the chunking model at the end of a simulation of the ‘natural market problem’. Note that

the chunking model creates chunks regardless of the reward, and depending only on the statis-

tics of state occurrence. Thus, it may also create chunks containing the state for an empty

arena (X), or for other various combinations (XR, XV, RR, VV, etc.). In most cases, these

chunks do not influence the cleaner’s decisions as they represent states that require no choice

(see Fig 2). However, as we shall see below, in the natural setting, there is also a risk of creating

the RV chunk (rather than VR chunk), which can bias the cleaner’s decision, implying that

chunking should be limited to avoid overchunking.

The fine-tuning of chunking behaviour and the effect of ecological

conditions

The behaviour of the chunking model is controlled by the chunking avoidance parameter Cp
(Eq 2). Large values of Cp prevent any chunking and the model is reduced back to the core

model (which do not develop a preference towards the optimal choice). On the other side, too

low values of Cp cause “overchunking.” Therefore, the optimal value of Cp will depend on the

ecological conditions: the overall client density and the frequency of the different client types.

If there are many clients per cleaner, cleaners will often be solicited. Therefore, a visitor may

regularly appear right after a resident—not because the visitor waits for service, but because a

new visitor client enters into the arena by chance. Thus, there is a risk that the misleading

chunk RVmight be created, as well as the beneficial chunk VR. The reason we view the RV
chunk as misleading is that faced with a choice between a visitor and a resident, the cleaner

can now consider both sequences of actions, V!R and R!V, and choose between them

according to their expected values. Although the value of the chunk VR, f(VR), would

approach 2 and hence be higher than the value of the chunk RV (with f(RV) lower than 2), the

decision rule allows some proportion of choosing the RV chunk (exploration), which result in

serving the resident first. In other words, overchunking reduces the strength of the preference

for the optimal choice. The balance between underchunking and overchunking implies the

existence of optimal Cp values (balancing between the need to create the VR chunk but not the

RV chunk). Importantly, these optimal Cp values depend on 2 ecological conditions: the overall

client density and the frequency of the different client types, which determine how frequently

the sequences V!R and R!V are likely to be encountered. The effect of these ecological con-

ditions on Cp and on the success of solving the ‘natural market problem’ is shown in Fig 5. It

can be seen that in some extreme ecological conditions (of high client densities), it would be

difficult for a cleaner fish using the chunking model to solve the market problem with any Cp
(Fig 5A, black dots, and Fig 5B, blue shades representing low preference for visitors), since

empty spots are rare events and most choices of the chunk RV result in obtaining 2 units of

food (from the resident and the subsequent served client from the next trial). Fortunately for

the cleaners, solving the market problem under these high client density conditions is not
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important in nature as high client densities lead to near permanent demand for cleaning. Yet,

in most simulated ecological conditions where solving the market problem is important, an

optimal Cp value (Fig 5A) that induced a preference towards a visitor (Fig 5B) was found.

To visualise the importance of the overchunking problem, S1 Fig presents the frequency of

appearances of each possible chunk (among 100 simulations) in 4 different ecological condi-

tions, showing that when the chances of generating both the VR and RV chunks are similar

(S1B Fig), the preference towards visitors vanishes (compare with the relevant point of 0.5 visi-

tor frequency and 0.9 client density in Fig 5B).

Finally, our simulations show a significant positive correlation (linear regression: R2 = 0.78,

p< 0.001) between the frequency of simultaneous arrival of a visitor and a resident to the

arena (hereafter: r + v; Fig 6A) and the optimal Cp value (Fig 6B). That is, when the combina-

tion of client density and visitors’ relative frequency increases the frequency of r + v pairs, a

higher value of Cp should be used by the cleaners in order to increase the threshold of statistical

significance allowing a chunk to be created. In contrast, when r + v pairs are rare, the probabil-

ity of creating the misleading chunk RV is low so that lowering Cp is adaptive: It increases the

likelihood of creating the beneficial chunk VR with almost no risk of creating the misleading

chunk RV, which allows a strong preference for visitors to develop. Note that when the fre-

quency of r + v pairs is especially high (above 0.3; Fig 6), there appears to be no Cp value that

could balance between over and underchunking and the preference for visitors goes below 0.6

(only black dots appear at this range in Fig 6B). More generally, a tendency to chunk too soon

(e.g., Cp = 0.5) or too late (e.g., Cp = 2.5) resulted in poor performance under most combina-

tions of client densities and visitor frequencies (S2 Fig).

Fig 5. The link between ecological conditions, optimal Cp, and the success of the chunking model in the ‘natural market problem’. (A) Optimal Cp values

(that provide the strongest preference towards a visitor), indicated by colour, as a function of 2 ecological conditions: the visitor frequency,
PV

PVþPR
(the fraction of

visitors out of all clients), and the overall client density, 1−P0. The Cp values were estimated by running the simulations with 1,000 values equally distributed

between 0 and 5, fitting a Gaussian to the resulting visitor’s preferences, and finding its peak. Black dots depict conditions in which even the optimal Cp values

resulted in a preference of less than 0.6 towards the visitor client. (B) The preference (colour) towards the visitor client when the optimal Cp values are used in

different ecological conditions. (Underlying data in S1 Data).

https://doi.org/10.1371/journal.pbio.3001519.g005
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Discussion

Chunking mechanisms are essential to represent structured data in the brain and have proba-

bly played a pivotal role in the evolution of cognition [38,40,43,51,52]. Yet, a possible challenge

in the evolution of chunking is that incorrect chunking and overchunking may lead to mal-

adaptive behaviours and to cognitive impairments [76,77]. Indeed, the problem of under or

overchunking arises whenever sensory input has to be chunked or segmented (reviewed in

[43]). Normally, the problem is difficult to track because incoming data can be chunked in

multiple ways and the number of possible chunks grows exponentially with the amount of

data. This problem is well appreciated, for example, in the case of word segmentation during

language learning in humans [42,78] or in the representation of behavioural sequences by ani-

mals [79]. Our analyses show that the market problem solved by cleaner fish in the wild offers

a relatively simple model system to study the evolution of chunking. It is not only simple and

tractable, but it involves a case where the function of chunking and its fitness consequences are

well understood and are ecologically relevant, the adaptive and maladaptive chunks can be

clearly identified (i.e., VR versus RV), and it can be studied experimentally and in relation to

variable ecological conditions (e.g., [54,60,61]).

We implemented this approach by placing the same general problem of making a decision

that doubles food intake in different sequential contexts that cleaners face in the wild. We

show how solutions depend on increasingly complex learning rules. A simple two-choice task

can be solved with basic reinforcement learning models such as the linear operator or our

equivalent core model. A more challenging task where doubling the amount of food is consis-

tently due to consequences of an initial choice (i.e., the ‘laboratory market task’) requires an

Fig 6. Correlation between optimal Cp values and the frequency of resident and visitor pairs. (A) The frequency of simultaneous appearance of resident and

visitor (r + v pairs) in the arena, indicated by colour, out of all simulation trials (including empty and half empty trials) in the ‘natural market problem’. These

are not stochastic values, but a feature of the simulated environment. (B) The optimal Cp value (as in Fig 5A) as a function of the frequency of r + v pairs. Black

dots–values obtained from simulations that achieved a preference towards a visitor lower than 0.6 (corresponding to the black dots in Fig 5A). Blue line–linear

regression of the optimal Cp values, which achieved successful solutions (red dots; R2 = 0.78). (Underlying data in S1 Data).

https://doi.org/10.1371/journal.pbio.3001519.g006
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extended credit learning model that picks up a consistent chain of events. Finally, if cleaners

face diverse sequences of events, as in the ‘natural market problem’, relevant causal chains of

subunits that lead to doubling the food intake must be identified and chunked so that the ani-

mal can optimise food intake.

We also demonstrate that when facing diverse sequences of events, having the ability to

chunk may not be sufficient. It is critical that the tendency to create chunks, captured by the

chunking parameter Cp, be adjusted to ecological conditions. Moreover, our simulations also

show that under some extreme conditions, even the optimal chunking parameter may not be

sufficient for developing a preference for the ephemeral reward. In the cleaners’ market prob-

lem, it happens when the probability of encountering the sequences of the useful and mislead-

ing chunks, VR and RV, respectively, is so similar that no chunking parameter can allow the

creation of VR while preventing the creation of RV. As mentioned earlier, in the case of the

cleaner fish, this may not be a problem because it happens under conditions of high client den-

sities where preferring the ephemeral reward (i.e., visitors) is not necessary. It is yet to be stud-

ied how common are such conditions in other problems animals face in nature, and to what

extent using the right chunking parameter is sufficient for successfully balancing the trade-off

between under and overchunking.

Demonstrating the trade-off between adaptive chunking and overchunking yields a new

perspective on the cognitive basis of cleaner fish “cleverness” in their choices of clients. Solving

the natural market problem does not represent an “all or none” cognitive ability but rather the

ability to correctly adjust a more basic cognitive ability, which is the ability to create chunks.

As it stands, many animals are capable of creating chunks and configurations in their memory

representation (see Introduction), but only those applying the chunking parameters suitable to

the required conditions will solve the natural market problem. The trade-off between chunk-

ing and overchunking may also explain why chunking (and configurational learning) takes

time and may thus be viewed as difficult. Our model suggests that there is nothing really diffi-

cult in creating chunks quickly but that the process of chunking evolved to be slow in order to

prevent overchunking. Note that the idea that learning may evolve to be slow as a result of a

trade-off is not new. It is implied in the optimization of learning rate parameters to balance

between exploration and exploitation in reinforcement learning models [80,81] and was also

suggested as a way to minimise recognition errors [82,83].

The mechanism of chunking

Our chunking model specifies the statistical conditions required for the formation of chunks

and describes how chunks are represented in the network (Eqs 2 and 3; Fig 1B). Yet, it does

not explain how chunks are actually created. In other words, it does not explain how it happens

that under the conditions specified by Eqs 2 and 3, a chunk in the network suddenly appears.

While the neuronal coding of such information is still poorly understood [39], a fairly explicit

implementation of the process of chunk formation using neuronal-like processes may be pos-

sible (see also [84]). We can think of the required number of co-occurrences of V and R that is

represented by the left side of Eq 2 as the weight of their associative strength. Accordingly, a

chunk representing the sequence VR is created when the weight of the edge leading from V to

R passes a certain threshold. The formation of a chunk may be a result of another node in the

network that receives signals from both neuronal units (or more precisely, from R soon after

V) and thus increases in weight and becomes the “chunk node” representing the repeated

occurrences of the sequence VR (as in Fig 1B). The threshold weight required for the creation

of a chunk can thus act as the chunking parameter Cp in our model and be optimised in line

with Eq 2.
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In our model, which was kept as simple as possible, we assumed that weight increases by 1

unit per observation and does not decay over time. Realistically, however, different combina-

tions of weight adjustment rates (increase and decrease) determine the timing of crossing the

threshold for chunk formation. For example, slow increase in weight with a relatively fast

decay require frequent co-occurrences in order to reach the threshold, creating a test for the

chunk’s statistical significance [23,43,51,85]. Thus, the chunking parameter in our model can

be implemented by several mechanisms. We can, hence, view this parameter (or parameters)

more generally as those effecting the tendency to form chunks (or the tendency to use configu-

rational rather than elemental learning). In that sense, the value of these parameters could be a

derivation of mechanistic elements such as the rates of weight increase and decrease (decay) as

previously suggested [23,51,52]. Note, however, that although increasing the decay rate can

minimise overchunking, it also, at the same time, acts against the creation of relatively rare but

adaptive chunks, so the trade-off between adaptive chunking and overchunking still remains

(see, e.g., [23,51,52,77], where both memory and forgetting were considered as the basis for

chunking).

The optimization of the chunking parameters to ecological conditions may occur over

generations through selection acting directly on parameter values, or instead (or in addi-

tion) cleaners may have evolved phenotypic plasticity with respect to the chunking param-

eter. For example, a systematic loosening of the chunking parameters (i.e., varying them

more freely) when in poor conditions, and fastening the parameters (i.e., stop altering

them) when in good conditions may bring the chunking parameters to get fixated around

the values associated with best performance. Another possibility is that cases where a visi-

tor is leaving without waiting are experienced by the cleaner as aversive (a loss of a meal)

and the aversive saliency of such events has evolved to reduce the chunking threshold

(which increases the likelihood of chunking when solving the market problem is indeed

necessary).

Implications of our results for the interpretation of empirical studies

A major insight from our model in comparison to Quiñones and colleagues [72] is that ani-

mals only need the ability to detect chains of events (rather than chunking) in order to solve

the laboratory market problem. Accordingly, it is not at all clear that differences between spe-

cies in performance in the laboratory market task are due to different chunking abilities or dif-

ferent values of chunking parameters. It is hence important to use a more complex design of

the market task (which resemble the natural setting for which chunking is necessary) on spe-

cies that have solved some form of the laboratory task, i.e., cleaner fish, African grey parrots,

and capuchin monkeys [64,69]. Truskanov and colleagues [86] designed such a task, exposing

cleaner fish to 50% of presentations of visitor and resident (r + v) plates as well as to 25% r + r
and 25% v + v presentations. While a few cleaners solved this task, overall performance tended

to be lower than in the standard laboratory market task. Applying our learning models to this

nonstandard (complex) market task showed that the extended credit model yields at best a

slight preference for visitors, while the chunking model yields high performance (see S1 Text

and S3 Fig). The study by Truskanov and colleagues thus yields experimental evidence that

(some) cleaner fish can chunk. The task could also be adapted to test whether imposing “early

commitment” that helped pigeons in solving the standard laboratory market problem [70] can

also help to solve the natural problem, for which chunking ability is needed. Alternatively,

“early commitment” can only help in extending the credit given to the initial choice (to the sec-

ond reward as well as to the first one), which can solve the laboratory market problem but not

the natural one.
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Based on our model and simulations, there are currently multiple ways to explain the docu-

mented intraspecific variation in cleaner fish performance in both the standard and the com-

plex laboratory market tasks [56,58,61,86]. First, variation in the laboratory market task may

be related to whether individuals solve the problem by chunking or by chaining (extended

credit) mechanisms and to individual variation in the fine-tuning of the parameters of each

mechanism. Second, assuming that cleaners use chunking to solve the tasks, variation in their

performance may be attributed to some limitations or time lags in optimising the chunking

parameters to current conditions in the field or to the specific conditions in the lab. Such limi-

tations and time lags are expected for both genetic and phenotypically plastic adjustments

because in the cleaners’ natural habitat, client densities and visitor frequencies can vary greatly

across years and microhabitats [58,61], causing both inter and intraindividual variation within

individual lifetimes.

Importantly, these interpretations make related assumptions amenable for future testing.

For example, that fast-solving cleaners use chunking even in the laboratory market task even

though chaining would suffice, and that cleaners apply their field experience and developed Cp
value to the lab task. Some empirical results are already in line with the second assumption.

First, the best predictor of high cleaner performance in the laboratory task is high cleaner fish

density in the field [56], which in terms of our model implies low client density (per individual

cleaner) and therefore low optimal Cp that promotes faster chunking (see Figs 5A and 6). Sec-

ond, although it has been found that on the average individuals with relatively larger forebrains

are more likely to be found in areas where they frequently face the market problem [87], on a

local scale, individuals with relatively larger forebrains performed according to what appears

to be the locally best strategy: to solve the task if living in a high-cleaner density area and to fail

the task if living in a low-cleaner density area [88]. In terms of our model, such high and low

cleaner densities correspond to relatively low and high client densities that favour low and

high Cp values, respectively (see Fig 5A). Thus, bringing such cleaners to the lab implies that

those who adaptively developed low Cp in their natural habitat are more likely to pass the test

than those who developed high Cp (that was also adaptive to their natural habitat), which may

explain Triki and colleagues’ results [88]. It would certainly be interesting to explore the rela-

tionship between solving the ephemeral reward task and brain neuroanatomy also in other

species. Yet, the fine-tuning of the chunking process demonstrated by our model suggests that

experiments in each species should be calibrated to the natural frequency of stimuli in nature.

Otherwise, a failure to solve the task may only indicate a mismatch between laboratory and

natural conditions.

Conclusions and implications for the study of advanced cognitive

abilities

The cleaner fish ability to solve the market problem has presumably evolved on the back-

ground of its unique ecology and may be rightfully viewed as a surprisingly advanced cognitive

ability for a (small brain) fish. However, by modelling the learning mechanisms required for

this remarkable ability, we tried to put the cleaner fish story within the broader context of cog-

nitive evolution, viewing it as a potential model for the evolution of chunking mechanisms.

While the importance of chunking is usually considered within cognitive systems that are

already highly advanced, the simple setting of the market problem allowed us to explicitly ana-

lyse the process of chunk formation, elucidating the trade-off between creating useful and mis-

leading chunks, and demonstrating the importance of adjusting the chunking parameters to

ecological conditions. We hope that the approach taken here could eventually be applied in the

study of other cognitive abilities, identifying the learning mechanisms and the fine-tuning of
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their parameters required for their success, and mapping them not only along phylogenetic

trees but also along evolutionary axes of explicit incremental changes in learning and cognitive

mechanisms.

Supporting information

S1 File. SimuFish.m—A Matlab function for running a simulation of the model in the

cleaner fish market problem. See documentation inside.

(M)

S1 Data. Underlying data for Figs 3–6 and S1–S3.

(XLSX)

S1 Text. Details of the simulations of the laboratory complex market problem.

(PDF)

S1 Fig. Creation of different chunks as part of the internal representation of the model in

different ecological conditions. Four examples of ecological conditions are presented: (A) vis-

itor frequency of 0.5 and client density of 0.6; (B) visitor frequency of 0.5 and client density of

0.9; (C) visitor frequency of 0.8 and client density of 0.5; and (D) visitor frequency of 0.2 and

client density of 0.4. A total of 1,000 simulations were executed using the optimal Cp value for

each condition (see Fig 5A). The frequency of simulations, out of all simulations, in which the

chunk was created by the end of the simulation, is presented for each chunk. Black bars–

chunks that are relevant for the decision process; grey bars–chunks that are irrelevant for the

decision. (Underlying data in S1 Data).

(EPS)

S2 Fig. The link between ecological conditions, the success of the chunking model in the

‘natural market problem’ using high and low Cp values, and overchunking. (A) The prefer-

ence (colour) towards the visitor client when the Cp = 0.5 (low value) is used in different eco-

logical conditions: the visitor frequency,
PV

PVþPR
(the fraction of visitors out of all clients), and the

overall client density, 1−P0. The preference at each point is the mean of 100 simulations. Light

colours with black dots depict conditions in which the preference towards the visitor client is

less than 0.6. (B) The percentage of simulations, which ended up with the model generating

the maladaptive RV chunk (overchunking), when Cp = 0.5. Computed using 100 simulations

for each point. (C) The preference towards the visitor client when the Cp = 2.5 (high value) is

used in different ecological conditions. (D) The percentage of simulations, which ended up

with the model generating the maladaptive RV chunk (overchunking), when Cp = 2.5. Note

that low Cp and high Cp are beneficial under different conditions. Overchunking is the cause of

failure in the low Cp case. On the other hand, in the high Cp case, overchunking is responsible

to failures only in some conditions (high client density), but underchunking fails the model in

other conditions (low visitor frequency). (Underlying data in S1 Data).

(EPS)

S3 Fig. Simulating the ‘lab complex market problem’. (A) Four types of learners are com-

pared in the ‘lab complex market problem’: blue–A linear operator learner (α = 0.1; see text);

orange–the core model; yellow–the extended credit model; purple–the chunking model (with

Cp = 2); black dashed line–the expected choices with no preference (0.5). The preference

towards a visitor client, measured as the proportion of choosing a visitor out of all visitor–resi-

dent encounters, is plotted as a function of time (iterations), in bins of 40 trials. Simulations

are of 1,000 feeding trials (with an empty trial after each feeding trial). The plots depict the

mean of 100 simulations for each learner (shades–standard error of the mean). (B) Four
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simulations of the chunking model. Note how the preference towards a visitor sharply

increases after the creation of the VR chunk (depicted with an arrow for each simulation). (C)

The value of the different states as perceived by the extended credit model (top) and the

chunking model (bottom): blue–V; red–R; magenta–VR; in a single simulation. Note how the

extended credit model (top) converges towards a value of approximately 1.5 for V and 1.25 for

R, giving rise to a slight preference (approximately 0.6) towards a visitor (indicated by the yel-

low line in A; see text for discussion). (D) The internal representation of the chunking model

at the end of the simulation presented in (C, bottom). Blue–basic (initial) elements, red–chunk

elements, filled nodes–the relevant elements for the decision process. The size of the circle is

relative to the value (association with food reward) of the element. The width of the directed

edges (black arrows) represents the relative frequency of the transitions between states (nor-

malisedW). (Underlying data in S1 Data).

(EPS)
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