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Abstract

Motivation: Ligand–receptor (L–R) interactions mediate cell adhesion, recognition and communication and play essen-
tial roles in physiological and pathological signaling. With the rapid development of single-cell RNA sequencing (scRNA-
seq) technologies, systematically decoding the intercellular communication network involving L–R interactions has be-
come a focus of research. Therefore, construction of a comprehensive, high-confidence and well-organized resource to
retrieve L–R interactions in order to study the functional effects of cell–cell communications would be of great value.

Results: In this study, we developed Cellinker, a platform of literature-supported L–R interactions that play roles in
cell–cell communication. We aimed to provide a useful platform for studies on cell–cell communication mediated by
L–R interactions. The current version of Cellinker documents over 3700 human and 3200 mouse L–R protein–protein
interactions (PPIs) and embeds a practical and convenient webserver with which researchers can decode intercellu-
lar communications based on scRNA-seq data. And over 400 endogenous small molecule (sMOL) related L–R inter-
actions were collected as well. Moreover, to help with research on coronavirus (CoV) infection, Cellinker collects in-
formation on 16L–R PPIs involved in CoV–human interactions (including 12L–R PPIs involved in SARS-CoV-2
infection). In summary, Cellinker provides a user-friendly interface for querying, browsing and visualizing L–R inter-
actions as well as a practical and convenient web tool for inferring intercellular communications based on scRNA-
seq data. We believe this platform could promote intercellular communication research and accelerate the develop-
ment of related algorithms for scRNA-seq studies.

Availability and implementation: Cellinker is available at http://www.rna-society.org/cellinker/

Contact: wubingyi@aliyun.com, zhaoxiaoyang@smu.edu.cn or wangdong79@smu.edu.cn/wangdong@ems.hrbmu.edu.cn

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

It is estimated that �20% and 10% of human genes encode cell-
surface proteins and secreted proteins, respectively (Fonseca et al.,
2016; Wood and Wright, 2019). These proteins and the ligand–re-
ceptor (L–R) interactions they involve are crucial parts of the inter-
cellular communication network (Boisset et al., 2018; Honig and
Shapiro, 2020; Wood and Wright, 2019). However, compare to the
intracellular protein–protein interaction networks (PPINs), the com-
prehensive human cell-surface interactome is still lacking (Özkan

et al., 2013; Wojtowicz et al., 2020). Several recent studies have
begun to screen L–R interactions via high-throughput experimental
methods, providing valuable resources for research on intercellular
communication (Gil et al., 2020; Husain et al., 2019; Verschueren
et al., 2020; Wojtowicz et al., 2020).

In multicellular organisms, cell–cell communication mediated by
L–R interactions is an essential regulatory event coordinating vari-
ous biological processes, such as the immune response, neural trans-
mission and pathogen invasion of host cells (Douam et al., 2015; Li
et al., 2015; Scadden, 2014), and aberrant loss or gain of
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extracellular recognition functions can contribute to multiple dis-
eases (Massagué and Obenauf, 2016; Ning et al., 2020). For in-
stance, the immune checkpoint protein PD1 and its ligand PDL1
have been found to act as accomplices that help tumors resist
immunity-induced apoptosis and to promote tumor progression,
and anti-PD1/PDL1 therapy has achieved great success in the past
decade (Lei et al., 2020; Seliger, 2019). A recent study has identified
11 new protein receptors of the severe acute respiratory syndrome
coronavirus 2 (SARS-CoV-2) capsid spike protein in addition to
ACE2, providing new insight into critical virus–host interactions,
tropisms and SARS-CoV-2 pathogenesis (Gu et al., 2020).
Moreover, due to their accessibility to systematically delivered ther-
apeutics, L–R interactions are tractable drug and vaccine targets
(Uhlén et al., 2015; Wishart, 2006).

Recently, with the rapid development of single-cell RNA
sequencing (scRNA-seq) technologies, systematically decoding the
intercellular communication network mediated by L–R protein–pro-
tein interactions (PPIs) has become a focus of research (Popescu
et al., 2019; Sharma et al., 2020; Vento-Tormo et al., 2018; Wang
et al., 2018; Zhang et al., 2019). Several algorithms have been devel-
oped to decipher cell–cell communications and facilitate intercellu-
lar communication analysis, which has become an essential
bioinformatics pipeline for scRNA-seq processing (Browaeys et al.,
2020; Cabello-Aguilar et al., 2020; Efremova et al., 2020). For ex-
ample, Zhang et al. implicated the regulation of lymphocytes by
LAMP3þ dendritic cells in the immune microenvironment of hepa-
tocellular carcinoma via intercellular communication analysis
(Zhang et al., 2019). Some regulatory interactions between NK cells
and other cells at the maternal-fetal interface have been identified
that can prevent harmful innate or adaptive immune responses
(Vento-Tormo et al., 2018). Hepatocyte-derived VEGFA can acti-
vate PLVAP in tumor endothelial cells and likely promote onco-fetal
reprogramming of the tumor immune microenvironment (Sharma
et al., 2020). Given the above findings, construction of a compre-
hensive, high-confidence and well-organized resource of L–R inter-
actions for research on the functional effects of cell–cell
communications and acceleration of the development of related
algorithms would be of great value.

In this study, we developed Cellinker (http://www.rna-society.
org/cellinker/), a platform of manually curated L–R interactions for
intercellular communication analysis. We aimed to provide a useful
platform for studies on cell–cell communication mediated by L–R
interactions. The current version of Cellinker documents more than
3700 human and 3200 mouse L–R PPIs, as well as over 400 en-
dogenous small molecule (sMOL) related L–R interactions Cellinker
also includes a webserver for intercellular communication analysis
based on scRNA-seq data. Moreover, to aid research on CoV infec-
tion, Cellinker contains information on 16L–R PPIs involved in
CoV–human interactions (including 12L–R PPIs involved in SARS-
CoV-2 infection). In summary, Cellinker provides a user-friendly
interface for querying and visualizing L–R interactions and is a prac-
tical and convenient platform with which researchers can explore
intercellular communications based on scRNA-seq data.

2 Materials and methods

2.1 Data collection
As shown in Figure 1A, the L–R interactions in Cellinker were
manually curated from the literature (before July 2020) and four
other known databases, including the Database of Ligand–Receptor
Partners (DLRP) (Graeber and Eisenberg, 2001), the Human Plasma
Membrane Receptome (HPMR) (Ben-Shlomo et al., 2003),
International Union of Basic and Clinical Pharmacology (IUPHAR)/
British Pharmacological Society (BPS) Guide to Pharmacology
(Armstrong et al., 2020) and CellPhoneDB (Efremova et al., 2020)
(only literature-supported data were collected). For curation, we
retrieved literature from PubMed, Web of Science, Scopus and
MEDLINE using the following keywords: ‘ligand’, ‘receptor’, ‘signal
transduction’, ‘extracellular signal’, ‘cell communication’, ‘cell-sur-
face protein’, ‘secreted proteins’, ‘extracellular matrix’, and ‘ligand–

receptor interaction’. A total of 3046 experimental supported L–R
interactions were retrieved from 1376 publications. We also
obtained 1501L–R interactions from known databases, including
359 from the DLRP, 713 from the HPMR, 744 from the IUPHAR/
BPS Guide to Pharmacology database (including 316 PPIs and 428
sMOL related L–R interactions), 349 from CellPhoneDB. The en-
dogenous sMOLs were divided into five types: inorganic, metabol-
ite, natural product, peptide and synthetic organic. Moreover, to aid
research on CoV infection, information on 16L–R interactions
involved in CoV–human interactions was collected.

2.2 Transfer of L–R interaction orthology information
The collected L–R PPIs were mapped to two species (human and
mouse) by an orthology majority-voting scheme (Li et al., 2017).
The orthology information for the interactions in Cellinker was
transferred from four orthology resources, Ensembl (Yates et al.,
2020), HomoloGene (Sayers et al., 2019), the KEGG (Kanehisa
et al., 2017) and the eggNOG database (Huerta-Cepas et al., 2019),
on the basis of the following voting scheme: orthology information
were transferred if two or more databases agreed on the orthology
assignment. Ultimately, 3744 human and 3241 mouse L–R PPIs
were identified in Cellinker (see Fig. 1A).

2.3 Annotation and organization
To unify the ligand and receptor information from multiple resour-
ces in an authoritative reference database, the ligand/receptor pro-
teins were mapped to the NCBI gene database (Entrez ID) (Sayers
et al., 2019) and UniProt (Consortium, 2019). The sMOL ligands
were mapping to NCBI PubChem database (PubChem SID and
CID) (Kim et al., 2021). The subcellular localization information
(cell membrane, secreted or ECM) of ligand/receptor proteins was
manually curated from the literature, the KEGG pathway database
and UniProt (Consortium, 2019). Human and mouse gene expres-
sion data across different tissues were collected from The Human
Protein Atlas (HPA) project (62 human tissues) (Uhlén et al., 2015)
and the TISSUES 2.0 database (39 mouse tissues) (Palasca et al.,
2018), respectively. Moreover, we took into account ligand/receptor
complexes in L–R interactions and collected information on such
complexes from the KEGG pathway database and the literature for
inclusion in Cellinker.

After careful consideration of common perspectives from mul-
tiple review articles (Günther et al., 2018; Guryanov et al., 2016;
Long et al., 2006; Sanes and Zipursky, 2020; Wright, 2009), the
known catalogue in the KEGG pathway database (category: signal-
ing molecules and interaction) and the subcellular localization of the
ligands/receptors, we divided all the L–R PPIs into five categories:
‘secreted protein-to-receptor interaction’, ‘cytokine-to-cytokine re-
ceptor interaction’, ‘ECM-receptor interaction’, ‘secreted protein-to-
ECM interaction’ and ‘cell adhesion’ (see Fig. 1B).

2.4 Pipeline for intercellular communication analysis
Cellinker features a webserver for intercellular communication ana-
lysis based on the expression of ligands/receptors. However, an ex-
pression value cannot exactly represent the specificity of a ligand/
receptor; in other words, a weakly expressed but specific ligand/re-
ceptor in a cell is more valuable than a strongly expressed but less
specific ligand/receptor in that cell type. To resolve this inadequate
representation, we used term frequency-inverse document frequency
(TF-IDF) transformation to improve the expression specificity of
ligands/receptors across the expression matrix (Pliner et al., 2019;
Sparck Jones, 1972). For M, an m by n matrix of input scRNA-seq
data, the formula is as follows:

E ¼ ei;j=
Xm

i¼1
ei;j � logð1þ n=ei;jÞ �m (1)

where ei, j is the expression value of gene i in cell j from M.
To infer the cell–cell communications between different cell

types, the LRscore is defined as the score of an L–R interaction k be-
tween cell types i and j, which is evaluated by the expression of lig-
and and receptor. The formula is as follows:
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LRscore ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L2

i;k þ R2
j;k

q
(2)

where Li, k is the expression value of the ligand in cell i and Ri, k is
the expression value of the receptor in cell j. The ligand and receptor
are from the L–R interaction k.

If the ligand is a complex containing n subunits, L is
defined as the geometric mean of the expression value of all
subunits:

L ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiYn

g¼1
lg

n

r
(3)

where lg is the expression value of subunit g in the ligand complex.
Similar to the case for ligands, if a receptor is a complex contain-

ing n subunits, R is defined as the geometric mean of the expression
value of all subunits:

R ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiYn

h¼1
rh

n

q
(4)

where rh is the expression value of subunit h in the receptor
complex.

To examine the statistical significance of the LRscore, the P value
was estimated by permutation test (by permuted the cell labels).
Moreover, receptors/ligands that were expressed in less than N%
(default: N¼25) of the cells of a certain cell type were removed be-
fore the intercellular communication analysis.

2.5 Architecture
Cellinker is implemented using the HTML and PHP languages with
the MySQL server. The interface component consists of web pages
designed and implemented in HTML/CSS. It has been tested in the
Google Chrome, Firefox and Internet Explorer web browsers.

Fig. 1. Collection, processing and organization of the L–R interaction data. (A) Schematic of the database architecture. (B) Schematic diagram of the categories of L–R

interactions
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3 Results

3.1 Statistics of L–R interactions
Cellinker documents 3744 human L–R PPIs (including 477 ligand/
receptor complex-related interactions) and 3241 mouse L–R PPIs
(including 435 ligand/receptor complex-related interactions). In
addition, 1139 human and 987 mouse L–R PPIs can be annotated
into specific KEGG pathways. The category distributions of the L–R
PPIs are shown in Figure 2A and B. For humans, there are 1743 cell
adhesion interactions (including 46 ligand/receptor complex-related
interactions), 969 secreted protein-to-receptor interactions

(including 287 ligand/receptor complex-related interactions), 740
cytokine-to-cytokine receptor interactions (including 103 ligand/re-
ceptor complex-related interactions), 266 ECM-to-receptor interac-
tions (including 41 ligand/receptor complex-related interactions)
and 26 secreted protein-to-ECM interactions (with no ligand/recep-
tor complex-related interactions). For mice, there are 1468 cell ad-
hesion interactions (including 42 ligand/receptor complex-related
interactions), 795 secreted protein-to-receptor interactions (includ-
ing 259 ligand/receptor complex-related interactions), 691 cytokine-
to-cytokine receptor interactions (including 93 ligand/receptor
complex-related interactions), 261 ECM-to-receptor interactions

Fig. 2. Statistical data for Cellinker. (A) Category distributions of L–R interactions (in humans and mice). (B) Category distributions of L–R interactions involving complexes

(in humans and mice). (C) Subcellular localization distributions of ligands/receptors (in humans and mice). (D) Complex distribution of ligands and receptors (in humans and

mice). (E) Statistics for CoV–human interactions. (F) Statistics for human and mouse sMOL-receptor interactions
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(including 41 ligand/receptor complex-related interactions) and 26
secreted protein-to-ECM interactions (with no ligand/receptor
complex-related interactions). The subcellular localization distribu-
tions of the ligand/receptor proteins are shown in Figure 2C.
Most of the ligand proteins are membrane proteins (human: 644,
mouse: 5561) or secreted proteins (human: 520, mouse: 449), and
most of the receptor proteins are membrane proteins (human:
1002, mouse: 897). In addition, 141 complexes (including 5 lig-
and complexes and 136 receptor complexes) are involved in

human L–R PPIs, and 128 complexes (including 4 ligand com-
plexes and 124 receptor complexes) are involved in mouse L–R
PPIs (see Fig. 2D). Meanwhile, Cellinker documents 16 CoV–
human interactions involving 5 ligands, 14 receptors (four of
which are complexes) and 5 CoVs (see Fig. 2E). Moreover,
Cellinker collects 341 human sMOL related L–R interactions
(refers to 152 sMOL ligands and 176 receptors) and 87 mouse
sMOL related L–R interactions (refers to 50 sMOL ligands and
47 receptors) (see Fig. 2F).

Fig. 3. Screenshot of webserver for intercellular communication analysis. Users could upload scRNA-seq data with proper format and parameter setting to launch the analysis.

The results are presented as a bubble plot in the result page
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3.2 Data querying and result presentation
To make it convenient for users to query and browse data, Cellinker
provides two different search methods on the Search page (see Fig.
S1), including ‘Exact Search’ (which requires users to input the gene
symbol/Entrez ID of the ligand/receptor) and ‘Batch Search’ (which
requires users to input or upload a list of the gene symbols/Entrez
IDs of ligands/receptors). A brief summary of the search results is
presented in a table on the Result page. In addition, to help users
interactively view L–R interactions and their associated subcellular
locations, Cellinker provides an embedded Sankey plot web tool on
the Result page. Users can highlight interactions of interest by mov-
ing the cursor over the diagram. Detailed information on certain L–
R interactions can be viewed on the Detail page by clicking ‘more’.
The Detail page presents more information (see Fig. S1), including
basic information on the L–R interaction (including the interaction
type, species, KEGG pathway annotation, etc.), basic information
on the ligand and receptor (including the gene symbols, gene IDs,
UniProt IDs and subcellular locations), expression information for
the ligand and receptor across different tissues, and references for
the L–R interaction (including literature and/or known databases).
Moreover, if the ligand and/or receptor is a complex, information
on the complex and the corresponding subunits (the gene symbols,
gene IDs and UniProt ID of all subunits) is also presented on the
Detail page. Moreover, Cellinker provided an independent webpage
for querying, browsing and visualizing detailed information about
the sMOL–receptor interactions and CoV–human interaction,
respectively.

3.3 Webserver for intercellular communication analysis
For user convenience, Cellinker launches a webserver for intercellu-
lar communication analysis based on scRNA-seq data (Fig. 3). First,
users can upload scRNA-seq data in the proper format: (1) an
META file containing the cell index with its cell type and (2) an ex-
pression file containing gene expression values (TPM values/counts),
where the rows are the gene symbols and the columns are the cells.
Then, users can specify an ‘N’ to filter out the receptors/ligands
expressed in less than N% of cells of a certain cell type. Users can
also determine the threshold of the p value and the number of statis-
tical iterations for the permutation test. When the analysis is com-
plete, the results are presented as a bubble plot on the Result page.
The color of each bubble represents the LRscore, and the size of the
bubble represents the significance of the LRscore. The results table
containing LRscore values and p values can be downloaded from the
Result page.

3.4 Comparison of Cellinker with other L–R databases
We compared Cellinker with other literature-supported databases/
datasets including CellPhoneDB (Efremova et al., 2020),
SingleCellSignalR (Cabello-Aguilar et al., 2020), CelltalkDB (Shao
et al., 2020) and L–R interaction dataset collected from Ramilowski
et al. (Ramilowski et al., 2015) (see Table 1). For data collection,

Cellinker collected the most L–R PPIs from literatures and data-
bases, and only Cellinker and CelltalkDB provided mouse L–R PPIs.
Meanwhile, only Cellinker and CellPhoneDB take account into the
ligand/receptor complex, which should not be ignored because
many ligands/receptors act as multisubunit complexes. For data an-
notation, Cellinker provides subcellular location and gene expres-
sion across tissues of ligands/receptors, and divided all the L–R
interactions into five categories. These annotations and organization
offered important references to cell–cell communication analysis.
Moreover, Cellinker and CellPhoneDB provide a web tool, and
SingleCellSignalR provides a R package for exploration of intercel-
lular communications based on scRNA-seq data, respectively.
Besides, Cellinker also documents 341 human and 87 mouse sMOL
related L–R interactions. In summary, compared with other L–R
databases, Cellinker collected the most L–R interactions for both
human and mouse, and provided well-organized data with more
varied and valuable annotations.

4 Discussion

Cell-to-cell communication in multicellular organisms plays essen-
tial roles in various biological processes that extensively rely on
interactions of extracellular/surface molecules (such as proteins/pep-
tides, RNA molecules and metabolites) between cells, such as the
immune response, development and viral infection (Huang et al.,
2021; Husted et al., 2017; Lin et al., 2020; Pires-daSilva and
Sommer, 2003; Ramilowski et al., 2015; Zhang et al., 2019).
Therefore, investigation of intercellular communications can facili-
tate understanding of the dynamics, mechanisms and effects of sig-
nal transmission between cells (Özkan et al., 2013). Notably, the
rapid development of scRNA-seq technologies has provided an ex-
cellent foundation for systematic deciphering of intercellular com-
munication networks based on the cell-surface protein interactome.
Therefore, construction of a comprehensive and high-confidence re-
source of L–R interactions for research on the functional effects of
cell–cell communications will be of great value. Here, we developed
Cellinker, a manually curated resource of L–R interactions involved
in cell–cell communication, and provide a practical and convenient
platform with which researchers can explore intercellular communi-
cations based on scRNA-seq data.

First, Cellinker documents over 3700 human and 3200 mouse
L–R PPIs with high-confidence. Most L–R interactions are curated
from the peer-reviewed literature. And it is larger than other
literature-supported databases [CellPhoneDB (Efremova et al.,
2020), SingleCellSignalR (Cabello-Aguilar et al., 2020) and
CelltalkDB (Shao et al., 2020)]. Moreover, Cellinker takes into ac-
count ligand/receptor complexes in L–R interactions; over 400
human and mouse ligand/receptor complex-related interactions are
recorded in Cellinker. Second, for user convenience, Cellinker
launches a webserver for exploration of intercellular communica-
tions based on scRNA-seq data. The algorithm is based on the

Table 1. Comparison of Cellinker with other L–R databases

Cellinker CellPhoneDB SingleCellSignalR CelltalkDB Ramilowski et al.

Data collection Human L–R PPI 3744 1396 3251 3398 1894

Mouse L–R PPI 3241 No No 2021 No

Human sMOL-receptor L–R interaction 341 No No No No

Mouse sMOL-receptor L–R interaction 87 No No No No

Data source Literatures

þ databases

Literatures

þ databases

Literatures

þ databases

Literatures Databases

Complexes Yes Yes No No No

Data annotation Classification Yes No No No No

Subcellular location Yes No No No No

Gene expression across tissues Yes No No No No

Tool Inferring intercellular communication Yes Yes Yes No No
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expression of the ligand/receptor (also taking into account ligand/re-
ceptor complexes) combined with a statistical significance test. In
addition, the TF-IDF transformation is used to improve the expres-
sion specificity of ligands/receptors across the expression matrix.
Third, Cellinker also documents 341 human and 87 mouse sMOL
related L–R interactions. Forth, Cellinker provides an independent
webpage for querying, browsing and visualizing detailed informa-
tion about the 16L–R interactions involved in CoV–human interac-
tions (including 12 SARS-CoV-2-related L–R interactions); thus, it
may be a useful resource for research on critical virus–host interac-
tions, tropisms and viral infection pathogeneses.

5 Conclusion

Cellinker is a platform of L–R interactions involved in cell–cell com-
munication that provides a practical and convenient webserver with
which researchers can explore intercellular communications based
on scRNA-seq data. Meanwhile, Cellinker documents 341 human
and 87 mouse sMOL related L–R interactions. Moreover, to aid re-
search on CoV infection, Cellinker also contains information on
16L–R interactions involved in CoV–human interactions. In sum-
mary, we believe this platform will promote intercellular communi-
cation research and accelerate the development of related algorithms
for scRNA-seq data.
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