
Research Article
A Novel Fixed Low-Rank Constrained EEG Spatial
Filter Estimation with Application to Movie-Induced
Emotion Recognition

Ken Yano and Takayuki Suyama

Department of Dynamic Brain Imaging, Cognitive Mechanisms Laboratories, Advanced Telecommunications
Research Institute International, 2-2-2 Hikaridai, Seika-cho, Soraku-gun, Kyoto 619-0288, Japan

Correspondence should be addressed to Ken Yano; yanoken@atr.jp

Received 28 April 2016; Revised 15 June 2016; Accepted 19 June 2016

Academic Editor: Victor H. C. de Albuquerque

Copyright © 2016 K. Yano and T. Suyama. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly
cited.

This paper proposes a novel fixed low-rank spatial filter estimation for brain computer interface (BCI) systems with an application
that recognizes emotions elicited by movies. The proposed approach unifies such tasks as feature extraction, feature selection, and
classification, which are often independently tackled in a “bottom-up” manner, under a regularized loss minimization problem.
The loss function is explicitly derived from the conventional BCI approach and solves its minimization by optimization with a
nonconvex fixed low-rank constraint. For evaluation, an experiment was conducted to induce emotions by movies for dozens of
young adult subjects and estimated the emotional states using the proposed method.The advantage of the proposed method is that
it combines feature selection, feature extraction, and classification into a monolithic optimization problem with a fixed low-rank
regularization, which implicitly estimates optimal spatial filters. The proposed method shows competitive performance against the
best CSP-based alternatives.

1. Introduction

Brain computer interfaces (BCIs) are a rapidly growing
field of research that combines neurophysiological insights,
statistical signal analysis, and machine learning. BCIs are
generally designed based on a pattern recognition approach,
that is, extracting features from EEG signals and using a
classifier to identify the user’s mental state from such features
[1]. Those sequential approaches are called “bottom-up”
schemes; given a large collection of single-trial EEG data, bet-
ter representations of the data are extracted to finally obtain
the classification output at the top. In contrast, discrimi-
native or “top-down” approaches focus on predicting user
intentions and are based on two criteria: the empirical
prediction performance and the regularizer. Suitably chosen
regularizers automatically induce sparse decomposition of
the signal, which corresponds to conventional feature extrac-
tion [2].

This paper proposes a discriminative method using a
low-rank regularizer to estimate spatial filters for extracting
effective features under a study. The advantage of the pro-
posed method is that it combines feature selection, feature
extraction, and classification into a monolithic optimiza-
tion problem with a low-rank regularization, because this
approach includes spatial filter estimation in the optimization
framework of statistical inference model. Under a suitable
chosen regularizer, it induces the best inferencemodel, which
implicitly estimates optimal spatial filters under the regular-
ization assumption.

Emotion classification from EEG data has attractedmuch
attention recently [3, 4]. Emotion also plays an important
role in human-human communication and interaction. The
ability to recognize the emotional states of people is an
important part of natural communication. This field of
research is still relatively new, and there is still much to be
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done to improve on existing elements in BCI but also to
discover new possibilities.

For evaluation of the proposed methods, experiments
were conducted to induce emotions by movies for dozens
of young adult subjects and estimated the emotional states
using the proposed method. The results were compared
with conventional methods using a common spatial pattern
(CSP).

This paper’s contribution is the proposal and the explicit
derivation of the fixed low-rank constrained discriminative
approach and its application to emotion recognition with
comparative analysis with conventional methods. This paper
is organized as follows. Section 2 describes the background
of emotion recognition from EEGs, and Section 3 describes
the proposed method. Section 4 presents the data acquisition
and experimental protocol. Section 5 describes the results
and discussion. Section 6 concludes the paper.

2. Background

2.1. Emotion in the Brain. The limbic system which is like a
cortical ring around the brain stem is responsible for initial
emotional interpretation of the signals from the autonomic
nervous system.Thehypothalamus is responsible for process-
ing the incoming signals and triggering the corresponding
visceral physiological effects like a raised heart rate or
galvanic skin response.

From the hypothalamus the stimuli information is passed
on to the amygdala, which is important for learning to
connect stimuli to emotional reactions (reward/fear) and
for evaluating new stimuli by comparing them to past
experience.

The amygdala is considered vital for emotion processing.
However, since it is an underlying structure like the rest of
the limbic system, it cannot be detected directly in recording
from the scalp. The amygdala is connected to the temporal
and prefrontal cortices, which is thought to be the way
visceral sensations are interpreted cognitively, resulting in a
consciously experienced feeling of an emotion [5].

The temporal lobe is essential for hearing, language, and
emotion and also plays an important role in memory. The
prefrontal lobe is involved in the so-called highest level of
functioning. It is responsible for cognitive, emotional, and
motivational processes. The prefrontal lobe is part of the
frontal cortex, which is said to be the emotional control center
and to even determine personality. It is involved in, among
others, judgment and social behavior. These functions are
very much based on the experience of emotions.

2.2. Valence: Hemispherical Asymmetry. Psychophysiological
research has shown the importance of the difference in acti-
vation between the two cortical hemispheres in the reaction
that subjects show toward stimuli. Left frontal inactivation
is an indicator of a withdrawal response, which is often
linked to a negative emotion. On the other hand, right frontal

inactivation is a sign of an approach response, or positive
emotion.

Harmon-Jones [6] suggests that the hemispherical dif-
ferences are not an indication of affective valence, but of
motivational direction (approach or withdrawal behavior to
the stimulus). Affective valence does seem tightly linked to
motivational direction. Therefore, the hemispherical asym-
metry patterns do indicate the affective valence.

Davidson and Fox [7] found that 10-month-old infants
exhibited increased left frontal activation in response to a
film clip of an actress generating a happy facial expression as
compared to a sad facial expression. Frontal cortical activity
has been found to relate to facial expressions of positive and
negative emotions as well.

3. Method

3.1. General Framework. Given a short high-pass filtered EEG
segment, 𝑋 ∈ R𝐶×𝑇, where 𝐶 is the number of channels and
𝑇 is the number of time points, the data are first band-pass
filtered at a band range being studied. A commonly used form
of a second-order or power oscillation-based linear model
can be written as follows:

𝑓 = 𝑏 +

𝐽

∑

𝑗=1

𝜃𝑗 log (Var (𝑤
𝑇

𝑗
𝑋)) . (1)

Here, {𝑤
𝑗
}
𝐽

𝑗=1
∈ R𝐶×𝐽 is the spatial filters, {𝜃

𝑗
}
𝐽

𝑗=1
are the

weighting coefficients of the 𝐽 features, and 𝑏 is a bias term.
The classifier first projects the signal by 𝐽 spatial filters. Next,
it takes a logarithm of the power of the projected signal.
Finally it linearly combines these 𝐽 dimensional features and
adds bias.

To determine spatial filters {𝑤
𝑗
}
𝐽

𝑗=1
, CSP is often used

[1]. Many variants of the original CSP have been proposed.
[8]. Coefficients {𝜃

𝑗
}
𝐽

𝑗=1
and 𝑏 are determined statistically

from the training examples, that is, the pairs of trials and
labels {𝑋

𝑖, 𝑦𝑖}
𝑛

𝑖=1
collected in the calibration phase. Label 𝑦 ∈

{+1, −1} corresponds to the binary classes being studied.
To briefly summarize CSP to compute spatial filter𝑤, it is

obtained by extremizing the following function:

𝐽 (𝑤) =
𝑤
𝑇
Σ
(+1)

𝑤

𝑤𝑇Σ(−1)𝑤
, (2)

where Σ
(𝑐)

is the spatial covariance matrix of the EEG signals
from class 𝑐 as follows:

Σ
(𝑐)
=

1

I𝑐


∑

𝑖∈I
𝑐

𝑋
𝑖
𝑋
𝑇

𝑖
(𝑐 ∈ +1, −1) , (3)

where we assume a zero mean for the EEG signal.
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Since 𝐽(𝑤) remains unchanged if 𝑤 is rescaled, extrem-
izing 𝐽(𝑤) is equivalent to extremizing 𝑤𝑇Σ

(+1)
𝑤 subject to

the constraint 𝑤𝑇Σ
(−1)

𝑤 = 1. Using the Lagrange multiplier
method, this constrained optimization problem amounts to
extremizing the following function:

𝐿 (𝜆, 𝑤) = 𝑤
𝑇
Σ
(+1)

𝑤 − 𝜆 (𝑤
𝑇
Σ
(−1)

𝑤 − 1) . (4)

The spatial filter𝑤 extremizing 𝐿 is such that the derivative of
𝐿 with respect to 𝑤 equals 0:

𝜕𝐿

𝜕𝑤
= 2𝑤
𝑇
Σ(+1) − 2𝜆𝑤

𝑇
Σ(−1) = 0 ⇐⇒

Σ
(+1)

𝑤 = 𝜆Σ
(−1)

𝑤 ⇐⇒

Σ
−1

(−1)
Σ
(+1)

𝑤 = 𝜆𝑤.

(5)

The spatial filters are the eigenvectors of Σ−1
(−1)

Σ
(+1)

which
correspond to its largest and lowest eigenvalues.

3.2. Proposed Model Calibration. If we ignore the logarithm
in (1), it can be reformulated as follows:

𝐽

∑

𝑗=1

𝜃𝑗 (𝑤
𝑇

j 𝑋𝑋
𝑇
𝑤𝑗) = Tr (Θ𝑇Σ) , (6)

where Θ = ∑
𝐽

𝑗=1
𝜃𝑗𝑤𝑗𝑤

𝑇

𝑗
∈ R𝐶×𝐶 and Σ ∈ R𝐶×𝐶 is the cova-

riance matrix of𝑋. Finally we obtain

𝑓 = 𝑏 + ⟨Θ, Σ⟩ . (7)

Note that ⟨Θ, Σ⟩ is the elementwise inner product of
the two matrices. To determine parameters (Θ, 𝑏), logistic
regression was employed with low-rank regularization of Θ.
This amounts to solving the following optimization problem
with training examples:

min
Θ,𝑏

𝑛

∑

𝑖=1

log (1 + e−𝑦𝑖(𝑏+⟨Θ,Σ𝑖⟩)) +
𝑐

∑

𝑖=1

𝜎𝑖

s.t. rank (Θ) = 𝑐,

(8)

where 𝜎
𝑖 is the 𝑖th singular value of Θ and 𝑐 is the rank

constraint of Θ. The first term is convex. But since the low-
rank constraint term is nonconvex, it is not guaranteed to
find the optimal point. To solve this problem, the alternating
direction method of multipliers (ADMM) [9] is employed
with a hope that it has better convergence properties than
other local optimization methods. For nonconvex problems,
depending on the initial values, the solution can converge to
different points.

The optimization problem is rephrased as follows:

minimize 𝐹 (Θ, 𝑏)

subject to Θ ∈ 𝐶,

(9)

where 𝐶 is the set of matrices with rank 𝑐. To solve it by
ADMM, it can be rewritten as follows:

minimize 𝐹 (Θ, 𝑏) + 𝐺 (Ξ)

subject to Θ − Ξ = 0,

(10)

where 𝐺 is the indicator function of 𝐶. The augmented
Lagrangian (using the scaled dual variable) is

𝐿𝜌 (Θ, 𝑏, Ξ, Υ) = 𝐹 (Θ, 𝑏) + 𝐺 (Ξ)

+ (
𝜌

2
) ‖Θ − Ξ + Υ‖

2

2
,

(11)

where 𝜌 > 0 is called the penalty parameter. So the iterative
optimization of ADMM for this problem is

Θ
𝑘+1

= arg min
Θ,𝑏

(𝐹 (Θ, 𝑏) + (
𝜌

2
)

Θ − Ξ

𝑘
+ Υ
𝑘

2

2
) ,

Ξ
𝑘+1

= Π
𝐶
(Θ
𝑘+1

+ Υ
𝑘
) ,

Υ
𝑘+1

= Υ
𝑘
+ Θ
𝑘+1

− Ξ
𝑘+1
,

(12)

where Π
𝐶 is the projection onto 𝐶. Hence, Π𝐶(Ξ) is deter-

mined by carrying out a singular value decomposition, Ξ =

Σ𝑖𝜎𝑖𝑢𝑖V
𝑇

𝑖
, and keeping the top 𝑐 singular values; that is,

Π𝑐(Ξ) = ∑
𝑐

𝑖=1
𝜎𝑖𝑢𝑖V
𝑇

𝑖
.

Here we can initialize Θ and 𝑏 as zero w.l.o.g. The primal
and the dual residuals at iteration 𝑘+1 are defined as follows:

𝑅
𝑘+1

= Θ
𝑘+1

− Ξ
𝑘+1
,

𝑆
𝑘+1

= −𝜌 (Ξ
𝑘+1

− Ξ
𝑘
) .

(13)

These residuals converge to zero as ADMM proceeds.

3.3. Multiple Frequency Bands. The proposed method can be
extended for estimating the spatial filters for multiple fre-
quency bands. Let 𝑋𝑏,𝑘 = 𝐵𝑘𝑋 be the band-pass filtered data
by filtering operator 𝐵𝑘. The covariance matrix of the signal
denoted as Σ

𝑏,𝑘
= 𝑋
𝑏,𝑘
𝑋
𝑇

𝑏,𝑘
∈R𝐶×𝐶 is obtained separately for

each frequency pass band. Then align them as a large block
diagonal matrix (14). To obtain the spatial filters for multiple
bands, this block diagonal matrix is substituted for Σ in (7).
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The solution is expected to effectively select the optimal
spatial features from multiple frequency bands:

Σ =(

Σ
𝑏,1

Σ𝑏,2 0
0 d

Σ
𝑏,𝐾

). (14)

3.4. Merits of the Proposed Method. CSP estimates spatial
filters based on a criterion that corresponding components
produceminimum variance for one condition andmaximum
variance for the other and thus increase discriminative ability.
However because the spatial filter estimation is decoupled
from the inferencemodel, such as logistic regression, optimal
filters can only be predicted by using cross-validation of the
inference model and select the one which produces the best
empirical inference performance.

On the other hand, our proposed model derived from
“top-down” approach incorporates spatial filter estimation in
the predictive model. Hence by focusing on the prediction
performance with suitably chosen regularizer, such as fixed
low-rank in our model, it induces sparse decomposition of
the signal which corresponds to conventional feature extrac-
tion.Hence, it implicitly estimates optimal spatial filters of the
best inference model under the assumption.

4. Emotion Recognition

To predict the state of emotion experienced by the partic-
ipants from single EEG segments, a predictive model was
employed that estimates from a given short EEG segment
(here 5 sec) the probability that the participant experienced
positive or negative emotions during that period. For the
evaluation, fivefold cross-validation is performed by holding
out one-session dataset for the test and the remaining four-
session datasets with labels were used to estimate parameters
(Θ, 𝑏). For each round, the held-out dataset was used for
tests to evaluate the classification error rate. In each round,
the classification error rate is computed as the ratio of the
number of correctly classified EEG segments divided by the
total number of EEG segments in the trial.

4.1. Data Acquisition. Twenty-three healthy adult volunteers
participated under the informed consent that was approved
by the ethical committee of ATR. Among them, ten sub-
jects (males = 3, females = 7, age = 24.5 ± 6.24) were
selected for analysis. The EEGs were recorded from 32 gel-
based scalp electrodes, as shown in Figure 1, and four EOG
placements around the eyes using an eego amplifier (ANT
Neuro, Enschede, Netherlands) with 24-bit resolution. The
EEGs were sampled at 512Hz. The protocol of the EEG
experiment is described in Figure 2. To elicit emotions, a
set of movie clips that were used in Samson et al. [10] was
used. The movie clip set includes four classes of different
target emotional states: positive, negative, neutral, andmixed.
The average length of each clip was about 20 seconds. For
each trial, to elicit emotions, four randomly selected movie
clips of the same emotional class were played continuously

Fp1 Fpz Fp2

F7 
F3 Fz F4 

F8 

FC5 FC1 FC2 FC6

T7 C3 Cz C4 T8 

CP5 CP1 CP2 CP6

P7 
P3 Pz P4 

P8 

POz

O1 O2 

Figure 1: EEG channel locations. For decoding emotions, we use all
channels except Fp1, Fpz, and Fp2.

without intervals and followed by self-assessment questions.
One session consisted of four trials of four different movie
classes. Before each trial, a random color grating pattern
was displayed for 90 seconds to wash out the emotional
states of the participant. The entire experiment consisted of
seven sessions. For the analysis, however, only the first five
sessions were used because, during the last two sessions, most
participants appeared fatigued or drowsy.

4.2. Preprocessing. The EEG signals were downsampled from
512 to 128Hz and high-pass filtered at 0.5Hz. The EOG and
the muscle artifacts were automatically removed using AAR
[11]. Among the 32 channels, only 26 channels were used
excluding the reference and prefrontal channels, Fp1, Fpz, and
Fp2, which were contaminated severely by the EOG artifacts.
The EEG signals were rereferenced by the M1 andM2means.
All the trial data were extracted from the onset of the first
movie clip until the offset of the last clip. Then all the trial
data were band-pass filtered at 4–47Hz. Finally, the length of
all the trial data was identically set to 80 seconds. Training
and testing data were generated by using a sliding window
over each bit of trial data. The length of the window was five
seconds, and the overlap between windows was two seconds.

5. Results

Figure 3 shows the variabilities of the classification error rate
for all participants due to the change of the rank constraints.
The classification error rate was computed by averaging over
folds. It reached plateau after some rank constraints. This
figure suggests that an optimal rank constraint exists between
1 and 10 regardless of the participants.

The elapsed time of convergence of the low-rank con-
strained optimization is shown in Figure 4. The time grad-
ually decreases reciprocally as the rank increases and reaches
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Self-assessment

Trial 1
positive

Session 2Session 1 Session 3 Session 7

Trial 2
negative

Trial 3
neutral

Trial 4
mixed

Rest
90 sec

Movie clips
20 sec × 4

· · ·

Figure 2: Protocol of the EEG experiment. For each session, we randomly changed the sequence of trials of four movie clip types: positive,
negative, neutral, and mixed.
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Figure 3: Classification error rate of binary classes (positive or
negative) for all subjects. Mean classification error rate changed by
increasing low-rank constraint from 1 to 26 (full-rank).

plateau at some rank constraint. The trend is very similar to
that of mean classification error rate in Figure 3. It is also
perceived that subject data with higher classification error
rates tend to have longer convergence times.

Figure 5 shows the change of mean classification error
rate by changing the frequency band of band-pass filter to
theta (4–7Hz), alpha (8–13Hz), beta (14–29Hz), gamma (30–
47Hz), and wide band (4–47Hz) in the preprocessing step.
We use rank 6 for all the frequency bands. On average,
better performance was obtained for beta and gamma bands
compared with lower bands, that is, theta and alpha bands.
The best performance was obtained when wide frequency
band was used.

For comparative analysis with other methods, the spatial
filters were calculated by CSP using identical preprocessed
data. Since the proposed method used rank 6 constraint
for analysis, six CSP filters were used for the alternative
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Figure 4:The change of elapsed time of convergence of optimization
due to the change of low-rank constraint from 1 to 26 (full-rank) for
all subjects.
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Figure 6: Comparative analysis of classification error rate to fix
different methods; the proposed method with low-rank 6 (LR-
6), elastic net (ElasticNet), linear discriminant analysis (LDA),
quadratic discriminant analysis (QDA), linear SVM (L-SVM), and
SVM with RBF kernel (R-SVM).

Table 1: Comparative results of classification error rate. LR-6 spec-
ifies the proposed method with rank 6 constraint. In the leftmost
column, avg. and std. var. specify mean and standard deviation of
classification error rate over folds and subjects.

LR-6 ElasticNet LDA QDA L-SVM R-SVM
Avg. 0.302 0.304 0.473 0.435 0.450 0.426
Std. var. 0.103 0.116 0.179 0.190 0.204 0.218

methods. CSP filters were selected automatically by three
eigenvectors with the highest/lowest eigenvalues. We per-
formed fivefold cross-validation with different classification
algorithms, namely, ElasticNet, LDA, QDA, linear SVM (L-
SVM), and SVMwith RBF kernel (R-SVM). For all methods,
we used identical feature vectors by employing selected CSP
filters. Note that, for each round, the spatial filters were
recalculated using only the training data.

Figure 6 describes subjectwise comparison of the mean
classification error rates of the proposed method with rank 6
constraint (LR-6) and the six conventionalmethodswithCSP.
Except subject “S1,” the proposed method achieved better or
comparative results compared with the other methods.

Table 1 describes the comparison results. The classifica-
tion error rates were obtained by averaging over subjects.
The proposed method outperforms CSP-based LDA, QDA,
L-SVM, and R-SVMmethods and shows comparative perfor-
mance against ElasticNet, the state-of-the-art method.

5.1. Discussion. If all the 23 subjects’ data are used for analysis,
the mean classification error rate was dropped from 0.302
(±0.103) to 0.412 (±0.131) when using the proposed method
(LR-6). This is because the results of excluded subjects
show below or just above chance level. The degradation of
these results was common irrespective of methods including
conventional methods. Therefore, these subjects data were

deemed untrustworthy, so we manually select ten subjects
for the analysis. The training/test data are non-i.i.d. because
of the sliding window approach; that is, there are temporal
correlations among neighboring data. But our assumption
is that even if i.i.d. assumptions are violated, the proposed
method would work well in practice.

The low-rank constrained linear model in (7) can be
transformed as follows:

𝑓 = 𝑏 + ⟨Θ, Σ⟩ (15)

= 𝑏 +

𝑐

∑

𝑖=1

𝜎
𝑖
Tr (V
𝑖
𝑢
𝑇

𝑖
𝑋𝑋
𝑇
) (16)

= 𝑏 +

𝑐

∑

𝑖=1

𝜎
𝑖
(𝑢
𝑇

𝑖
𝑋𝑋
𝑇V
𝑖
) . (17)

The last equation indicates that the spatial filters, {𝑢
𝑖}
𝑐

𝑖=1
and

{V
𝑖
}
𝑐

𝑖=1
, are applied to the covariant matrix of 𝑋 from left and

right, and the inner product of the spatially filtered signals
is used to form the feature vector. The weighting coefficients
of the feature vector correspond to singular values {𝜎

𝑖
}
𝑐

𝑖=1
.

Note that spatial filters 𝑢
𝑖
and V
𝑖
are almost identical, possibly

with different signs, due to the nature of the original linear
model denoted by (7). Hence, it corresponds to computing
the power of spatially filtered signals, similarly to CSP-based
methods.

The topographies in Figure 7 represent the scalp maps
of six representative spatial filters, which are obtained by 𝑘-
mean clustering of estimated spatial filters for all subjects as
shown in Figure 12. The spatial filters are defined by the left
singular vectors of Θ. The color of topography is mapped
from +0.5 (red) to −0.5 (blue).

Figure 8 shows the difference of mean spectral power
density (PSD) between positive and negative over all subjects.
Themean PSD is calculated by averaging PSDs of all spatially
filtered signals by using six spatial filters estimated over
all subjects. Hence the mean PSD represents total average
PSD of spatially filtered EEG signals. The dotted plots show
the deviation from the mean. From this figure, we can
observe that positive tends to have larger power than negative
especially over beta and gamma frequency bands.

5.2. Valence versus Neutral. In order to further examine the
differences between positive/negative valence and neutral,
two-way binary classifications were conducted for positive
versus neutral and negative versus neutral. For the analysis,
we employed the proposed method with rank 6 constraint
as described above for positive versus negative analysis.
The preprocessing is exactly the same as before except for
training/test data which is relevant to the target two classes.
The data were band-pass filtered at 4–47Hz.

Figure 9 describes the classification error rates of the two
cases: positive versus neutral and negative versus neutral for
the same subjects as before. The mean and std. variation of
classification errors were as follows: positive versus neutral
(0.483 ± 0.131) and negative versus neutral (0.384 ± 0.119).
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Figure 7: (Positive versus negative) topographies of six significant spatial filters obtained by 𝑘-mean clustering of all spatial filters estimated
for all subjects by using rank 6 constraint. The color is mapped from −0.5 (blue) to +0.5 (red).
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Figure 8: Comparison ofmean PSDs between positive and negative.
The mean PSD is calculated over all spatially filtered channels and
subjects.

From this result, we notice that subjects with high classifica-
tion performance for positive versus neutral case tend to have
low performance for negative versus neutral case.

Figure 10 shows the scalp maps of six representative
spatial filters for (a) positive versus neutral and (b) negative
versus neutral, which are obtained by 𝑘-mean clustering of
estimated spatial filters as described for Figure 7. Figures 13
and 14 show the estimated spatial filters for all subjects for
positive versus neutral and negative versus neutral, respec-
tively.

As we described in Section 2, many researches suggest
that hemispherical asymmetry over the frontal cortex is
implicated for emotions andmotivations. If the assumption is
true, our hypothesis is that the scalpmaps of estimated spatial
filters for valence versus neutral will likely show asymmetrical
patterns over the frontal lobe, as such spatial filters should
increase inference accuracy.

Among the topographies in Figure 10, about half of them
do show asymmetrical patterns over the frontal and left/right
temporal lobe area. It is difficult but slightly observable that
left or right lateralization corresponds to positive or negative
valence as indicated by previous works [6, 7].

Figures 11(a) and 11(b) show the difference of mean
PSD between positive/negative and neutral over all spatially

filtered channels and subjects. The mean PSD is obtained
similarly as positive versus negative case as shown in Figure 8.

From these figures, we can observe that positive has
larger power than neutral in beta and gamma bands. On the
other hand, negative has similar or slightly lower power than
neutral in those bands.

6. Conclusion

In this paper, a fixed low-rank spatial filter estimation for
BCI systems was proposed with an application of emotion
recognition induced by movies. The proposed approach
unifies such tasks as feature extraction, feature selection, and
classification, which are often independently tackled in a
“bottom-up” manner, under a regularized loss minimization
problem. We explicitly derived the loss function from the
conventional BCI approach and solved its minimization by
optimization with a nonconvex fixed low-rank constraint.

The proposed method derived from “top-down”
approach incorporates spatial filter estimation in the
predictive model. Hence by focusing on the prediction
performance with suitably chosen regularizer, such as fixed
low-rank in our model, it induces sparse decomposition
of the signal which corresponds to conventional feature
extraction. Hence, it implicitly estimates optimal spatial
filters of the best inference model under the assumption.
The result of comparative analysis shows that the proposed
method is competitive and has equivalent performance to
the best CSP-based alternative.

In the discussion, we show that about half of the signifi-
cant scalp maps of spatial filters estimated for positive versus
negative do show asymmetrical patterns over the frontal
and temporal lobe, which agree with the previous research
works; that is, asymmetrical patterns over frontal cortex are
implicated for emotions and motivations. We also observe
that positive state tends to exhibit larger power than negative
state over beta and gamma frequency bands. The opposite
lateralization of hemispherical activity is weakly admitted for
positive and negative cases.

There are some directions for future work and some
suggestions for improving performance. First, extending the
proposed method to multiclass classification is required to
recognize variety of emotional states. Second, source space
analysis might be useful to further investigate subcortical
activities of emotions. Lastly, obtaining genuine training/test
data is of primal importance especially for BCIs depending
on interoceptive inputs like thoughts and emotions. One
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Figure 9: The figures show binary classification error rate of ten subjects in two cases: (a) positive versus neutral and (b) negative versus
neutral. Mean classification error rates are (a) 0.483 ± 0.131 and (b) 0.384 ± 0.119.
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Figure 10: Topographies of six significant spatial filters obtained by 𝑘-mean clustering of all spatial filters estimated for all subjects by using
rank 6 constraint. The color is mapped from −0.5 (blue) to +0.5 (red). (a) Positive versus neutral and (b) negative versus neutral.
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Figure 12: (Positive versus negative) scalp maps of spatial filters obtained by the proposed method with rank 6 constraint for all subjects.The
row specifies subjects “S1”–“S10” from top to bottom.The column specifies six spatial filters defined by left singular vectors ofΘ corresponding
to the highest six eigenvalues from left to right. The number above each topography is the percentile of corresponding singular value. The
superscript (∗) indicates that the pair of left and right singular vectors differs in sign.
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Figure 13: (Positive versus neutral) scalp maps of spatial filters obtained by the proposed method with rank 6 constraint for all subjects. The
row specifies subjects “S1”–“S10” from top to bottom.The column specifies six spatial filters defined by left singular vectors ofΘ corresponding
to the highest six eigenvalues from left to right. The number above each topography is the percentile of corresponding singular value. The
superscript (∗) indicates that the pair of left and right singular vectors differs in sign.
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Figure 14: (Negative versus neutral) scalp maps of spatial filters obtained by the proposed method with rank 6 constraint for all subjects.The
row specifies subjects “S1”–“S10” from top to bottom.The column specifies six spatial filters defined by left singular vectors ofΘ corresponding
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possible solution is to evaluate labels based on ratings of
participants.
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