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Abstract
Bacteria compete for resources in diverse environments using an array of
antagonistic strategies, including the production of narrow-spectrum protein
antibacterials termed bacteriocins. Although significant research has
focused on bacteriocin-mediated dynamics in culture environments, little
research has explored bacteriocin-mediated dynamics within a host context,
particularly in plant environments. Here, we show that a bacterial plant path-
ogen, Pseudomonas syringae pv. syringae (Psy), expresses a bacteriocin
both in culture and in leaf apoplast when co-inoculated with a bacteriocin-
sensitive competitor, P. syringae pv. phaseolicola (Pph). Although there is
an observable negative effect of the bacteriocin on the Pph population at
most time points both in culture and in the leaf apoplast, a bacteriocin-
mediated benefit to Psy was only observed when the producing strain was
co-infiltrated at a low population frequency (1:9) into the leaf apoplast. At
6 days post-infiltration, Psy achieved an eightfold population increase com-
pared to a bacteriocin-deficient mutant in the apoplast. No bacteriocin-
mediated benefit for Psy was observed under the culture conditions tested.
Additionally, we found that the bacteriocin-mediated benefit for Psy was
dependent on the Type III Secretion System. Taken together, our results
demonstrate that the fitness benefit of bacteriocin-mediated antagonism is
influenced by interactions within the host plant.

INTRODUCTION

Microbial competition is pervasive throughout the
microbiological world. Populations with overlapping
niche requirements often engage in both direct (interfer-
ence) and indirect (exploitation) competition (Ghoul &
Mitri, 2016; Granato et al., 2019). Outcomes of micro-
bial competition have numerous consequences at the
population and community levels and can also be
harmful for plant and animal hosts by causing disease.
For bacteria, one of the most intensively studied forms
of competition is interference competition mediated by
the production of antimicrobials, including protein toxins
called bacteriocins (Ghequire & De Mot, 2015;
Kommineni et al., 2015; Majeed et al., 2011; Riley &

Wertz, 2002). Most bacteriocins are narrow spectrum
within an individual species, where they target strains
closely related to the producer (Mills et al., 2017;
Riley & Chavan, 2007). A group of bacteriocins known
as tailocins are multi-protein complex bacteriocins that
are morphologically and evolutionarily related to the
tails of Caudovirales bacteriophages (Ghequire & De
Mot, 2014; Hockett et al., 2015; Scholl, 2017). Due to
their large size, tailocins particles must be released via
cell lysis resulting in a cost to the individual producing
bacterium (Scholl, 2017).

In silico and in vitro work has demonstrated the ben-
efit of bacteriocin production is dependent on the envi-
ronmental context. Initial studies examined competition
with two populations of a producer and a sensitive
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strain in a physically unstructured environment such as
liquid broth (Chao & Levin, 1981). When both
populations are at equal frequencies, they can reach
equilibrium as the sensitive population is able to
exploit the resources made available from the killing
activity by the producer (Durrett & Levin, 1997). In this
scenario, there is no fitness benefit for the producer
as its population remains the same. However, when
the environment is spatially structured (e.g. agar
plate) the two species form microcolonies, which
results in local interactions where bacteriocins only
affect cells that are physically close to the producing
cells, as well as resources made available by killing
(Chao & Levin, 1981; Kerr, 2007). This allows the pro-
ducer to preferentially gain a fitness benefit, an
increase in population size, from the available
resources and space.

Competition within host environments can add an
additional level of complexity compared to a static lab
culture setting, given the host’s potential to sense and
respond to microbial invaders. In mice models, bacteri-
ocin production by the human pathogen Salmonella
enterica in the gut provides a competitive advantage
against Escherichia coli, but only if S. enterica is able
to induce inflammation (Nedialkova et al., 2014). The
change in the gut environment results in both increased
bacteriocin production by S. enterica as well as expres-
sion of the bacteriocin surface receptor in E. coli. Other
in vivo studies in animal systems have also shown that
bacteriocin production can result in the reduction or
elimination of targeted populations (Corr et al., 2007;
Kommineni et al., 2015; Sassone-Corsi et al., 2016; Yu
et al., 2020), though it is not clear to what extent inter-
action with the animal host was important for the com-
petitive outcomes in these studies. Indeed, there have
been very few studies that have explicitly assessed the
role of the host in affecting bacteriocin-mediated
interactions.

Bacteriocins have also been shown to promote
invasion of the producer into another population. Inva-
sion into a sensitive population by six E. coli colicin pro-
ducers was positive-frequency dependent (Riley &
Gordon, 1999). When the number of E. coli producing
cells increased, resulting in a higher toxin particle num-
ber, the time needed for invasion decreased. Whereas
the growth of another E. coli bacteriocin producing pop-
ulation was negative-frequent dependent, in that bacte-
riocin production was beneficial when the producer’s
population was small relative to the competitor (Chao &
Levin, 1981). Furthermore, higher bacteriocin produc-
tion rates aided invasion into a bacteriocin-sensitive
population, especially at low initial cell frequencies
(Ghazaryan et al., 2019). Contrary to these findings,
modelling predicts a different outcome where the bene-
fits for the producer at low frequency are reduced as
resources liberated by bacteriocin killing will be as likely

to benefit the sensitive population as it will the bacterio-
cin producing population (Inglis et al., 2009; Weber
et al., 2014).

Beyond basic ecological questions, understanding
the fitness benefit of bacteriocins has implications for
the creation of biological control agents. For plant
health, we have relied on antagonist mechanisms
such as toxins and antibiotics; however, it could be
useful to also think about when and where it is benefi-
cial for the agent to antagonize a target pathogen.
Bacteriocins are of increasing interest as they could
reduce non-target effects as observed with chemicals
(McEvoy, 1996; Montesinos, 2007). On the surface of
plant cells within the apoplast, bacteria can form
microcolonies of single or multiple species where they
can interact and compete (Bogino et al., 2013;
Morris & Monier, 2003). In addition, bacteria have to
evade host defences to successfully populate using
virulence factors or by in trans effector-mediated plant
defence suppression for example (Dodds &
Rathjen, 2010; Rufian et al., 2018; Singh &
Singh, 2018; Xin et al., 2018). To date, there are few
studies that have investigated the role of bacteriocin-
mediated antagonism in a plant context, let alone in
the apoplast, thus it is not clear how much dynamic
interaction there was with the host (Dorosky
et al., 2018; Godino et al., 2016; Hert et al., 2005; Li
et al., 2020).

To investigate plant-associated bacteriocin-mediated
competition, we used Pseudomonas syringae as a
model, as it is possible for multiple distantly related
strains of this species to infect the same plant host
and many can produce bacteriocins to antagonize
competitors (Hirano & Upper, 2000; Holtsmark
et al., 2008). Here, we performed a series of in vitro
co-inoculations and in planta co-infiltrations over an
8-day period with P. syringae pv. syringae (Psy) and
P. syringae pv. phaseolicola (Pph), both virulent plant
pathogens that cause bacterial brown spot and halo
blight in Phaseolus vulgaris (Common bean), respec-
tively (Burkholder, 1926; van Hall, 1902). Psy is a gen-
eralist pathogen that can infect multiple hosts,
whereas Pph is a specialist with a narrow host range
of legume species (Baltrus et al., 2011; Morris
et al., 2019). Key to this interaction is that Psy
encodes a bacteriocin that targets Pph (Hockett
et al., 2015). In this study, we sought to answer two
related questions. First, under what ecological condi-
tions is bacteriocin production beneficial for the pro-
ducer? Second, how do host interactions influence the
fitness benefits of bacteriocin production (i.e. an
increased population size when in competition)? This
work highlights the importance of understanding how
host structure and activity influence microbial competi-
tion and is a critical step to improve disease suppres-
sion in plant and animal hosts.
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RESULTS

Bacteriocins are expressed in vitro but
there is no detectable fitness benefit for
Psy at 1:1 and different co-inoculation
ratios

To investigate whether bacteriocin-mediated antago-
nism provides a fitness benefit within an agar environ-
ment, we spotted individual or mixed strains (1:1) of
either Psy (bacteriocin-producer) or Psy ΔRrbp (bacte-
riocin-deficient mutant; Hockett et al., 2015), and Pph
(bacteriocin-sensitive) on KB agar. At several time
points post-inoculation, the growing culture was sam-
pled, and strains were enumerated (Table S1). Pph
populations were reduced in co-inoculation with either
Psy or Psy ΔRrbp at all time points in comparison to
Pph-only [Figure 1(A)]. The population reduction was
greater for Pph co-inoculated with Psy compared to
Psy ΔRrbp, suggesting the bacteriocin was expressed
and active under these culture conditions. Bacteriocin
production did not provide a detectable fitness benefit
in 1:1 co-inoculation in an agar setting due to no signifi-
cant fitness differences between Psy or Psy ΔRrbp

populations in individual or co-inoculations [Figure 1
(B)]. Individual inoculation of the bacteriocin-
deficient complement strain Psy ΔRrbp:Rrbp at 4 dpi
seemed to be greater by threefold compared to Psy
ΔRrbp; however, the statistical difference is only true
in one of three independent experiments [p ≤ 0.04;
Figure S2(B)].

As bacteriocin production in 1:1 co-inoculation did
not result in a fitness benefit for Psy, we sought to
assess whether the population frequency influenced
competition, as has been previously shown in other
systems (Chao & Levin, 1981; Gordon & Riley, 1999;
Inglis et al., 2009; Kerr, 2007). We altered the inocula-
tion frequency between Psy strains and Pph to either
1:9 or 9:1. For example, ‘Psy minority’ would represent
1:9 (Psy:Pph), and vice versa for ‘Psy majority’ at 9:1
(Psy:Pph). In vitro Pph minority populations were
reduced in co-inoculation with Psy or Psy ΔRrbp com-
pared to Pph-only across all time points [p ≤ 0.0001;
Figure 1(C)]. In Pph majority competitions, Pph growth
with Psy and Psy ΔRrbp was not different to Pph-only
[Figure 1(C)]. Somewhat unexpectedly, Psy minority
reached a population equivalent to the Psy majority
treatments by 4 dpi [p ≤ 0.0001; Figure 1(D)]. This
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trend was maintained at 6 and 8 dpi. As expected, the
Psy ΔRrbp:Rrbp population behaved similarly to Psy
and Psy ΔRrbp in both individual and mixed inocula-
tions [Figure S2(D)]. Taken together, in vitro, there was
no detectable benefit to bacteriocin production for Psy,
yet a negative effect of bacteriocins on Pph is clearly
observed.

Psy is competitively superior to Pph in 1:1
plant co-infiltration regardless of
bacteriocin production

To determine whether the leaf apoplast environment
affects the competitive interactions between Psy and
Pph, we infiltrated common bean leaves with either
individual or 1:1 mixed inocula of the same strains used
in the in vitro assay. Similar to our in vitro results, we
found that co-infiltration with Psy resulted in a 10-fold
greater reduction of the Pph population than co-
infiltration with Psy ΔRrbp [p ≤ 0.0001; Figure 2(A)].
This effect, however, was only observed at 4 dpi. There
were no statistical differences after this timepoint,
where the Pph population was suppressed by a similar

amount by both Psy and Psy ΔRrbp. The complement
strain Psy ΔRrbp:Rrbp showed a similar reduction of
Pph at 4 dpi, suggesting the Pph reduction in co-
infiltrations is due to bacteriocin production
[p ≤ 0.0001: Figure S3(A)].

For Psy, there was no difference in population
growth for Psy-only compared to Psy ΔRrbp-only at
all dpi [Figure 2(B)]. There was, however, a sevenfold
reduction in population size of Psy and Psy ΔRrbp in
1:1 co-infiltration at 4 dpi compared to Psy-only and
Psy ΔRrbp-only, respectively (p ≤ 0.0001). There-
fore, 1:1 co-infiltration with a sensitive strain shows
that bacteriocin production provided no fitness benefit
for Psy.

At low frequency, bacteriocin production
provides Psy a fitness benefit when
competing with Pph in the apoplast

The negative effect of the bacteriocin production on
Pph minority was apparent at all time points, with no
effects on Pph-majority populations [Figure 2(C)]. Nota-
bly, there was an 80-fold reduction for co-infiltrated Pph
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minority with Psy at 4 dpi compared to Pph minority
co-infiltration with Psy ΔRrbp (p ≤ 0.0001). The differ-
ences in population to Pph-only were greater for Pph
minority with Psy (6000-fold) in comparison to co-
infiltration with Psy ΔRrbp (80-fold; p ≤ 0.0001). The
differences between co-infiltrated Pph minority
populations decrease at 6 and 8 dpi, yet the popula-
tion sizes of co-infiltrated compared to Pph-only
remained fairly similar to levels at 4 dpi (p ≤ 0.0001).

When Psy minority is co-infiltrated with Pph there is
a statistical eightfold increase compared to co-infiltrated
Psy ΔRrbp minority at 6 dpi [Figure 2(D); p ≤ 0.0001].
Both Psy minority and Psy ΔRrbp minority performed
equivalently at 4 or 8 dpi, indicating this was the first
observation that bacteriocin production is beneficial
when faced with a dominant sensitive population. The
Psy ΔRrbp minority presented between a 5- to 10-fold
reduction at all time points to Psy ΔRrbp-only
(p ≤ 0.0001 for all comparisons). The complement Psy
ΔRrbp:Rrbp minority population level was similar to
Psy minority indicating the population increase is due
to bacteriocin production [Figure S3(B)]. There were no
differences between Psy majority and Psy ΔRrbp

majority when co-inoculated with Pph [Figure 2(D)].
Additionally, Psy majority strains exhibited a decrease
in population relative to the Psy-only infiltration at 4 dpi
but maintained roughly equivalent populations at 6 and
8 dpi. Overall, Psy starting at a low cell frequency
(in the minority) provided a bacteriocin-mediated fitness
benefit.

Psy virulence is required for in planta
bacteriocin-mediated effects

To investigate the role of virulence in pathogen–host
interactions, a mutation of the hrcC gene, a structural
component of the Type III Secretion System (T3SS),
was introduced into Psy. ΔhrcC mutants are impaired
in their ability to suppress plant defences, and thus
incapable of causing disease (Deng et al., 1998; Hirano
et al., 1999). The Pph population in planta was not
affected during 1:1 co-infiltration with either Psy ΔhrcC
or Psy ΔRrbp/ΔhrcC and was able to maintain
populations comparable to Pph-only infiltration for all
dpi [Figure 3(A)]. This was opposite to in vitro
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competition, where Pph co-inoculated with Psy ΔhrcC
at 4 and 6 dpi was reduced by 10-fold compared to the
100-fold reduction at 8 dpi with Psy ΔRrbp/ΔhrcC [-
Figure 3(C)]. In comparison to Pph-only, a 100-fold and
10-fold detriment occurred for Pph in co-inoculation
with Psy ΔhrcC and Psy ΔRrbp/ΔhrcC, respectively.

No differences were observed between Psy
ΔhrcC and Psy ΔRrbp/ΔhrcC populations in planta
during 1:1 co-infiltration with Pph [Figure 3(B)]. Yet,
these populations were partially rescued when co-
infiltrated with Pph by an average increase of 8- to
20-fold at 6 and 8 dpi compared to Psy ΔhrcC-only
and Psy ΔRrbp/ΔhrcC-only (p ≤ 0.0001). Both indi-
vidual and co-infiltrations of Psy ΔhrcC and Psy
ΔRrbp/ΔhrcC were reduced by 50- to 100-fold from
4 to 8 dpi compared to Psy-only infiltration
(p ≤ 0.0001). Whereas in vitro competition showed
no differences between any individual and mixed Psy
strains [Figure 3(D)]. These results show that viru-
lence is required for Psy to dominate the co-infection
environment, as well as to gain a fitness benefit from
bacteriocin production.

No bacteriocin-mediated fitness benefit for
Psy in co-infiltration with avirulent
sensitive strain

To identify if Psy could gain a fitness benefit in co-
inoculations with an avirulent sensitive strain, the hrpL
gene, required for the activation of the hrp/hrc locus
responsible for T3SS expression, was knocked-out in
Pph (Hockett et al., 2015; Ortiz-Martín et al., 2010).
The Pph ΔhrpL populations in planta were reduced in
both individual (1000-fold) and co-infiltrations (between
10- to 100-fold) compared to Pph-only from 4 dpi
[p ≤ 0.0001; Figure 4(A)]. For all timepoints the co-
infiltration of Pph ΔhrpL with Psy resulted in a 9- to
30-fold increase to Pph ΔhrpL-only (p ≤ 0.0001). How-
ever, the population of Pph ΔhrpL co-infiltration with
Psy was lower than co-infiltration with Psy ΔRrbp at
4 and 8 dpi (p ≤ 0.0302). In vitro competition resulted
in a similar trend with co-inoculated Pph ΔhrpL pre-
senting a 20-fold reduction with Psy compared to Psy
ΔRrbp at 4 dpi and reduced by 70- to 80-fold at 6 and
8 dpi [p ≤ 0.0001; Figure 4(C)]. By 8 dpi, the population
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of Pph ΔhrpL co-inoculated with Psy ΔRrbp is equal to
Pph ΔhrpL-only.

The co-infiltration of Psy with Pph ΔhrpL was not
statistically different in planta to co-infiltrated population
of Psy ΔRrbp, and both Psy-only and Psy ΔRrbp-only
[Figure 4(B)]. However, in vitro co-inoculated Psy was
statistically reduced by threefold compared to Psy-only
[p ≤ 0.033; Figure 4(D)]. Together these results sug-
gest a virulent producer does not benefit from
bacteriocin-mediated competition with an avirulence
sensitive population.

DISCUSSION

In this study, we sought to understand how interactions
with a host plant affect bacteriocin-mediated competi-
tion between two bacterial plant pathogens. Overall,
our in vitro results did not show a bacteriocin-mediated
fitness benefit (i.e. an increased population size) for the
bacteriocin producer, Psy, at any starting frequency
when competing with the sensitive strain, Pph. Con-
versely, in planta co-infiltrations did show a bacteriocin-
mediated fitness benefit for Psy when at an initially low
frequency. Pph, however, suffered from bacteriocin-
mediated inhibition during both in vitro and in planta co-
inoculation. Intriguingly, the in planta benefit to Psy and
detriment to Pph occurred at specific time points and
were not maintained consistently across all time points.
Additionally, virulence aided Psy bacteriocin-mediated
suppression of Pph in the plant environment. These
results indicate that bacteriocin-mediated interactions
within a host plant are influenced by host physiology
and pathogen virulence over the course of an infection.

Previous bacteriocin antagonism studies have been
performed using computer models or laboratory sys-
tems, showing that a fitness benefit for the toxin-
producing population is dependent on the environment
(Chao & Levin, 1981; Kerr, 2007; Majeed et al., 2011).
Our results suggest that when at parity or in the major-
ity there was no bacteriocin-mediated fitness benefit
in vitro for Psy compared to Psy ΔRrbp across 8 dpi. It
is likely that the sampling of the entire colony is a global
measurement of the cumulative effects of local interac-
tions between cells that might mask a fitness benefit
that is localized to the colony periphery. The detriment
was not a complete elimination of Pph as it is hypothe-
sized that primarily sensitive cells at the edges are
affected, with the cells near the centre of the micro-
colony being able to persist (Kerr, 2007). Both Psy
minority strains are also able to overcome the initial low
frequency (regardless of bacteriocin killing) compared
to the Pph minority indicating Psy possesses some
additional method of competitive advantage over Pph.

Differences in apoplast spatial structure, available
resources and host compatibility create a dynamic host
environment for two pathogens to compete that is more

complex than an agar plate (Dangl & Jones, 2001;
Farvardin et al., 2020; O’Leary et al., 2016; Rico &
Preston, 2008). In 1:1 co-infiltration, the outcome of in
planta competition was similar to the in vitro competi-
tion where there was no benefit for the bacteriocin pro-
ducer but there was a bacteriocin mediated detriment
to Pph, similar to the effects Li et al. (2020) showed for
competition between P. syringae pv. tomato and P.
syringae pv. lachrymans (Li et al., 2020). However, the
detriment was not maintained from 6 dpi onwards,
potentially indicating the effect of bacteriocin production
in the apoplast is limited either by changes in behaviour
of Pph or changes in the apoplast environment, or both.
Previous work has suggested that both sensitive and
producing populations are able to coexist through spa-
tial partitioning (Cz�ar�an & Hoekstra, 2003; Kerr, 2007),
which may occur in the leaf apoplast.

Our results indicate that bacteriocin production is
beneficial in a negative-frequency dependent manner,
where production is favoured when the population is
low (Kerr, 2007; Müller et al., 2019). In our case, this fit-
ness benefit was not observed immediately post-
inoculation and occurred once the initial Psy minority
had a high population level. Importantly, our results
showed that the Pph population was significantly
reduced by bacteriocin-mediated killing at 4 dpi and
that the Psy population is suppressed when co-
inoculated with Pph compared to Psy-only at the same
time point. Taken together, these results indicate that it
should have been possible to observe a bacteriocin-
mediated benefit for Psy at 4 dpi. We also considered
the use of the competitive index (CI) to present the fit-
ness benefit, since we have paired populations of Pph
and Psy strains for each treatment. We believe, how-
ever, that such calculations would be misleading as the
CI will certainly show Psy performing better compared
to Psy ΔRrbp, but this difference would, in nearly all
cases, result from less killing of Pph by Psy ΔRrbp
rather than any increase in the Psy population com-
pared to Psy ΔRrbp. This observation also occurs
about the same time that disease symptoms for Pph
were distinctly identifiable in individual infiltration
(e.g. water-soaking and yellowing). Therefore, we
hypothesize that during co-infiltration Pph can gain
greater access to host nutrients at the height of disease
progression increasing its population, and the bacterio-
cin production of Psy is able to overcome this growth
whereas Psy ΔRrbp cannot resulting in the reduction of
Psy ΔRrbp population at 6 dpi.

Bacterial pathogens must contend with the host
plant defences to enable establishment and prolifera-
tion of their populations. Pathogenic bacteria can use
the T3SS encoded by the hrp and hrc genes to sup-
press the plants response in nearby plant cells (Alfano
et al., 2000; Arnold et al., 2003). During in planta infil-
trations both Psy ΔhrcC and Psy ΔRrbp/ΔhrcC
populations were greatly reduced compared to Psy.
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When co-infiltrated, however, T3SS mutant strains
received an in trans benefit from the virulent Pph
strain. This has been observed in other work with avir-
ulent strains of P. syringae which relied on the proxim-
ity of virulent strains to reduce the plant cells effector-
triggered immunity (Macho et al., 2007; Omer &
Wood, 1969; Rufian et al., 2018). Similarly, Pph ΔhrpL
benefitted from co-infiltration with virulent Psy. There
was also no detriment for Pph in the presence of Psy
ΔhrcC, indicating that Psy virulence is required for a
bacteriocin-mediated effect on Pph.

While previous research has focused mainly on
the outcomes of bacteriocin-mediated antagonism
in vitro, we show that such outcomes may not be
directly translated into a host plant environment. Our
findings show that under certain frequency and tem-
poral conditions bacteriocin production can promote
Psy fitness while targeting the sensitive strain popula-
tion. Further research is needed to elucidate the
exact spatial distribution of the infiltrated bacteria,
such as the use of fluorescent microscopy, alongside
measuring the rates of bacteriocin production in the
apoplast. Bacteriocin-mediated killing does not nec-
essarily equate to a bacteriocin-mediated fitness ben-
efit. We suggest that this dichotomy applies to past
and current biological control research, where the
objective typically is to limit the effects of the patho-
gen but there was no examination of the benefit of the
agent to proliferate and maintain present in the field
(Fravel, 1988).
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