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Abstract: Self-oscillators have the advantages of actively harvesting energy from external steady
environment, autonomy, and portability, and can be adopted as an engine to drive additional work-
ing equipment. The synchronous behavior of self-oscillators and passive oscillators may have an
important impact on their functions. In this paper, we construct a self-oscillating system composed
of a passive oscillator and an active liquid crystal elastomer self-oscillator powered by steady illu-
mination, and theoretically investigate the synchronization of two coupled oscillators. There exist
three synchronous regimes of the two coupled oscillators: static, in-phase, and anti-phase. The
mechanisms of self-oscillations in in-phase and anti-phase synchronous regimes are elucidated in
detail by calculating several key physical parameters. In addition, the effects of spring constant, initial
velocity, contraction coefficient, light intensity, and damping coefficient on the self-oscillations of two
coupled oscillators are further investigated, and the critical conditions for triggering self-oscillations
are obtained. Numerical calculations show that the synchronous regime of self-oscillations is mainly
determined by the spring constant, and the amplitudes of self-oscillations of two oscillators increase
with increasing contraction coefficient, light intensity, and spring constant, while decrease with
increasing damping coefficient. This study deepens the understanding of synchronization between
coupled oscillators and may provide new design ideas for energy harvesters, soft robotics, signal
detection, active motors, and self-sustained machinery.

Keywords: synchronization; self-oscillator; liquid crystal elastomer; passive oscillator; optically-
responsive

1. Introduction

Self-excited oscillation is a phenomenon in which a system moves continuously in
a steady-state environment, and in which the alternating force to sustain the oscillation
is generally manipulated by the motion itself [1–6]. It has broad application prospects in
many fields such as energy harvesting, signal monitoring, soft robotics, medical equipment,
among others [7–11]. The periodic motion of self-excited oscillation can be maintained by
periodically collecting energy from the external steady environment [12–14]. Because the
system only needs steady external stimulation, the design of system motion control and a
complex control system is easier to realize, which reduces the complexity of self-oscillating
systems to a certain extent and has the advantages of portability [15–18].

In recent years, many researchers have proposed various self-oscillating systems based
on active materials [17–25]. The stimuli-responsive materials of self-oscillating systems
include hydrogels [26–29], ionic gels [30,31], and liquid crystal elastomers (LCEs) [32–35],
among others. Among stimuli-responsive materials, LCE has the advantages of fast re-
sponse, recoverable deformation, and low noise [36,37]. LCE is an intelligent material
synthesized by liquid crystal molecules and polymer networks. Under external stimuli
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such as light, electricity, heat, and magnetic field, liquid crystal monomer molecules change
their arrangement, resulting in macro deformation [38]. For many self-excited oscilla-
tions based on LCE, researchers have done a lot of related experimental and theoretical
work [39–44].

Generally, a self-oscillating system requires a certain mechanism to continuously
harvest energy from the external ambient to compensate for the energy dissipation of
system damping [26–35]. For different stimuli-responsive materials and structures, different
feedback mechanisms are proposed to realize energy compensation [45–48]. Due to a self-
shading mechanism, the light-fueled self-excited oscillator based on the LCE actuator
exhibits bending, twisting and contraction expansion vibration modes [49]. Based on
coupling among deformation, movement and evaporation, the volatile droplets on a soft
substrate can evolve into self-excited oscillation [47]. The coupling between the large
deformation and reaction-diffusion of a gel layer under autocatalytic reaction can lead to
self-sustained swelling and shrinking of the gel layer [50].

Recently, the synchronization between multiple coupled self-excited oscillators has
attracted much attention. Synchronization is one of the most basic phenomena in nature,
which exists all around us and has attracted the extensive attention of many researchers [51–54].
The first exploration of synchronization originated from Huygens’s clock experiment [55],
which observed that two identical clocks oscillated synchronously with two pendulums
in opposite directions. Recent studies have confirmed that the synchronization between
the two pendulums is caused by the coupling caused by micromechanical vibration propa-
gating in the wooden structure connecting the clocks [56,57]. In addition, the synchronous
movement of a large number of metronomes with greater degrees of freedom on a freely
moving base was shown experimentally [58]. Recently, Ghislaine et al. studied the syn-
chronous oscillation of a light-driven thin plastic driver based on an optically-responsive
LCE, and found that there are two synchronous oscillation phenomena of in-phase and anti-
phase in the steady illumination [59]. Their numerical simulation qualitatively explained
the origin of synchronous motion and found that synchronous motion can be adjusted by
the mechanical properties of coupling joints.

Self-oscillators are often used as engines to drive external working components, and
synchronous oscillations occur with external passive oscillators. Synchronous behaviors
often have an important impact on the function of the machine. For example, the phase dif-
ference and amplitude of the self-oscillator and passive oscillator in synchronous oscillation
generally depend on system factors, and may affect the work done by the self-oscillator.
In this paper, we construct a new self-oscillating system composed of a passive oscillator
and an active self-oscillator powered by steady illumination, in which the self-oscillator
can oscillate spontaneously under steady illumination and drive the passive oscillator to
oscillate synchronously. Based on a well-established dynamic LCE model [60], the syn-
chronization of the two coupled oscillators is theoretically explored, and the effects of
spring constant, light intensity, damping coefficient and other factors on synchronization
are investigated. The main object of this research was to construct a coupled self-oscillating
system, investigate the principles of the synchronous self-oscillation through theoretical
modeling, and guide its design in the engineering applications of energy harvesters, soft
robotics, signal detection, active motors, and self-sustained machinery.

2. Model and Formulation

Based on the dynamic LCE model, a theoretical model of self-oscillating system
composed of a passive spring oscillator and a LCE active self-oscillator powered by steady
illumination was established. The model includes the dynamics of two coupled oscillators,
evolution law of cis number fraction of LCE fiber, and nondimensionalization of the system
parameters and governing equations.
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2.1. Dynamics of Two Coupled Oscillators

Figure 1 shows a self-oscillating system composed of a passive spring oscillator and a
LCE active self-oscillator powered by steady illumination. In the reference state of the LCE
fiber (Figure 1a), the original lengths of LCE fiber and spring are L, and the azobenzene
molecules in LCE fiber are oriented along its axis. Figure 1b depicts the initial state of the
coupled oscillator. One end of the LCE fiber is fixed at the O point, and the other end is
connected with the spring through a mass block m. Meanwhile, the other mass block m
is hanging at the end of spring. The masses of LCE fiber and spring are negligible.

.
u0

1

represents the initial speed of the upper mass block and
.
u0

2 represents the initial speed of
the lower mass block. The current state of the coupled oscillator is shown in Figure 1c. The
illuminated zone is represented by the shaded area. u1(t) is the displacement of the upper
mass block oscillating between the illuminated area and the non-illuminated area (the same
as the material point at the end of the LCE fiber), and u2(t) is the displacement of the mass
block below. FL(t) is the spring force of the LCE fiber, Fs(t) is the spring force of the spring,
and Fd(t) is the fluid damping force applied on the small mass during the vibration process.
For simplicity, we assume that Fd(t) is proportional to the velocity of mass block.
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Figure 1. Schematic of a self-oscillating system composed of a passive spring oscillator and an LCE
active self-oscillator powered by steady illumination. Both the LCE fiber and spring are connected to
each mass block. The two mass blocks are placed into a fluid, and the damping coefficient can be
easily tuned by controlling the viscosity of the fluid. Under steady illumination, the two coupled
oscillators may vibrate synchronously.
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Initially, the self-sustained coupled oscillators are in the reference state, and an initial
velocity is applied to the two mass blocks. When the upper mass vibrates in the illumination
region, some LCE liquid crystal molecules change from straight trans conformation to
curved cis conformation, resulting in the contraction of LCE fibers. In the non-illumination
region, the change of some liquid crystal molecules from cis to trans leads to the recovery of
LCE fiber length. Through the periodic contraction and relaxation of LCE fibers, the upper
mass can trigger self-excited oscillation under steady illumination. In this process, the LCE
fiber drives the spring and the mass block suspended at its end to oscillate periodically.
At the same time, the interaction between the two mass blocks leads to the self-excited
coupling oscillation system to evolve different synchronous regimes.

To analyze the inhomogeneous deformation of LCE fiber, we established a Lagrangian
coordinate system X on the reference state of LCE fiber, and the Eulerian coordinate system
x in its current state. Then, the instantaneous position of a material point X can be denoted
as x = x(X, t). During the movement of coupled oscillator, the governing equation for the
dynamics of two mass blocks can be given by

m
..
u1 = mg + FL − Fs(t)− c

.
u1, (1)

m
..
u2 = mg − Fs − c

.
u2, (2)

where g is the gravitational acceleration, c is the damping coefficient,
.
u1 and

..
u1 indicate the

velocity du1(t)
dt and acceleration d2u1(t)

dt2 of the mass block, respectively. Similarly,
.
u2 and

..
u2

indicate du2(t)
dt and d2u2(t)

dt2 . The spring force Fs can be written as

Fs = k2[u2(t)− u1(t)], (3)

where k2 is the spring constant of the spring.
For simplicity, we assume that the force of LCE fiber is linear to the deformation

gradient as in the following form [61],

FL(t) = k1L[λ(X, t)− 1 − ε(X, t)], (4)

where k1 is the spring constant of LCE fiber, λ(X, t) is the deformation gradient, which is
written as

λ(X, t) =
dx(X, t)

dX
, (5)

and the light-driven contraction strain ε(X, t) is assumed to be linear to the number fraction
ϕ(X, t) of cis number fraction in the LCE fiber, which can be written as

ε(X, t) = −C0 ϕ(X, t), (6)

where C0 is the contraction coefficient.
To obtain the instantaneous position x of the LCE fiber, FL(t) should be rewritten

by u(t) and ε(X, t). Considering that FL(t) in the LCE fiber is uniform, we integrate
Equation (4) from 0 to L on both sides, and obtain

FL(t) = k1

[
u1(t)−

∫ L

0
ε(X, t)dX

]
. (7)

Then, from Equation (4), λ(X, t) can be expressed by FL(t) as:

λ(X, t) =
FL(t)

kL
+ 1 + ε(X, t). (8)
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By combining Equations (5), (7) and (8), we obtain

dx(X, t) =

[
u1(t)−

∫ L
0 ε(X, t)dX
L

+ 1 + ε(X, t)

]
dX. (9)

We integrate Equation (9) from 0 to X and then obtain

x(X, t) =
X
L

[
u1(t)−

∫ L

0
ε(X, t)dX

]
+
∫ X

0
ε(X, t)dX + X. (10)

The calculated x from Equation (10) can be compared with L to determine whether
the LCE fiber matter point is in the illuminated or non-illuminated region.

2.2. Dynamic LCE Model of the LCE Fiber

To obtain the number fraction of LCE fiber in Equation (6), the dynamic LCE model
was adopted. The number fraction ϕ(X, t) of cis number fraction generally depends on the
thermal excitation of trans to cis, thermally driven relaxation of cis to trans, and light-driven
isomerization [62]. In this work, we used the following governing equation to describe the
evolution of the number fraction of cis number fraction [63,64],

∂ϕ(X, t)
∂t

= η0 I0[1 − ϕ(X, t)]− T−1
0 ϕ(X, t), (11)

where T0 is the thermal relaxation time from the cis state to trans state, I0 is the light intensity,
and η0 is a light-absorption constant.

2.3. Nondimensionalization

By introducing the following dimensionless parameters: t = t/T0, FL = FLT2
0 /mL,

Fs = FsT2
0 /mL, u1 = u1/L, u2 = u2/L, X = X/L, x = x/L, c = cT0/m, g = gT2

0 /L,
k2k2T2

0 /m, k1 = k1T2
0 /m, and I = T0η0 I0, the governing Equations (1), (2), (10) and (11) can

be rewritten in dimensionless form as

..
u1 = g + k2

[
u2
(
t
)
− u1

(
t
)]

− k1

[
u1
(
t
)
−
∫ 1

0
ε
(
X, t
)
dX
]
− c

.
u1, (12)

..
u2 = g − k2

[
u2
(
t
)
− u1

(
t
)]

− c
.
u2, (13)

x
(
X, t
)
= Xu1

(
t
)
− X

∫ 1

0
ε
(
X, t
)
dX +

∫ X

0
ε
(
X, t
)
dX + X, (14)

∂ϕ
(
X, t
)

∂t
= I −

(
1 + I

)
ϕ
(
X, t
)
, (15)

where
.
u1 and

.̃.
u1 indicate the velocity

du1(t)
dt and acceleration

d2u1(t)
dt2 of the mass, respec-

tively. Similarly,
.
u2 and

..
u2 indicate

du2(t)
dt and

d2u2(t)
dt2 , respectively.

Equations (12) and (13) are ordinary differential equations with variable coefficients,
and no analytical solution can be obtained. By following previous work [65], we used
the classical fourth-order Runge-Kutta method to solve Equations (12)–(15) in MATLAB
software, and obtained the final steady-state response of the LCE self-excited coupled oscil-
lation system, i.e., the relationship between displacement and velocity with time histories.

3. Three Synchronization Regimes and Their Mechanisms

Based on the above governing equations, we numerically studied the synchronous
motion of two coupled oscillators. First, three typical synchronous regimes, namely
static regime, in-phase regime and anti-phase regime, are presented. Then, the corre-
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sponding mechanisms of self-oscillations in in-phase regime and anti-phase regime are
elucidated, respectively.

3.1. Three Synchronous Regimes

To investigate the synchronous motion of the two coupled oscillators, the typical
geometric parameters and material properties were estimated for numerical calculations.
According to the available experiments [10,66–70], we list typical values of geometric
parameters and material properties of the coupled oscillators system in Table 1. Meanwhile,
the corresponding dimensionless parameters are also listed in Table 2. In addition, we

set the initial velocities of two mass blocks as
.
u

0
1 = 0.5 and

.
u

0
2 = −0.5. Figures 2–4 show

the displacement time histories of the two mass blocks and the attraction domain for
three different spring constants k2. In the computation, the other geometric and material
parameters are given in Table 2. As shown in Figure 2a–c, the numerical results show that
the two mass blocks always move in the same direction during the self-oscillations for
k2 = 16. This means that the two oscillators are in-phase regime. As shown in Figure 3a–c,
the numerical results show that the two mass blocks always move in opposite directions
during the self-oscillations for k2 = 4.5, which indicates that the two oscillators are in
anti-phase regime. Meanwhile, as shown in Figure 4a–c, the two oscillators finally develop
into static regime for k2 = 8. In summary, there are three typical synchronous regimes
for the self-sustained motion of the two mass blocks, namely, in-phase regime, anti-phase
regime and static regime. Detailed numerical calculations show that the synchronous
regime of self-oscillations is mainly determined by the spring constant. In the following,
we further explore the mechanisms of the in-phase and anti-phase regimes and the effects
of several key parameters on their amplitudes, periods, limit cycles and attraction domains.

Table 1. Material properties and geometric parameters.

Parameter Definition Value Units

m Mass of each mass block 0.01 kg
L Original length of LCE fiber and spring 0.18 m
g Gravitational acceleration 10 m/s2

k1 Spring constant of LCE fiber 9.5 N/m
k2 Spring constant of spring 4.4~16 N/m
T0 cis-to-trans thermal relaxation time of LCE fiber 0.1 s
c Damping coefficient 0.022 kg/s

C0 Contraction coefficient of LCE fiber 0.5 /

Table 2. Dimensionless parameters.

Parameter ¯
k1

¯
g

¯
c

¯
I C0 .̄

u
0

1
.̄
u

0

2

¯
k2

Value 11.2 0.55 0.22 1.45 0.5 0.5 −0.5 4.4~16

3.2. Mechanisms of Self-Oscillation in the in-Phase Regime

As shown in Figure 5, to study the mechanism of self-excited oscillation in the in-phase
regime of two oscillators under steady illumination, the relationship diagrams of some key
physical quantities in the in-phase regime in Figure 2 are given. The shadow area in the
figure indicates that LCE fiber is in the illuminated region. During the oscillation of the
upper mass block, the cis-number fraction of the material point at the end of the LCE fiber
increases in the illuminated region and decreases in the non-illuminated region, as shown
in Figure 5a. As a result, light-triggered contraction increases in the illuminated region
and decreases in the non-illuminated region, as shown in Figure 5b. Since the number
fraction of LCE fibers and the photo-triggered contraction show periodic changes, the
spring force magnitude of LCE fibers first increases and then decreases in the illuminated
region, as shown in Figure 5c. In Figure 5d, the spring force of the LCE fiber and the



Polymers 2022, 14, 3058 7 of 18

displacement of the upper mass block shows a closed-loop relationship, and the area
enclosed by the closed-loop represents the net work done by the force. Under the action
of periodic contraction and relaxation of the LCE fiber, the spring force magnitude of the
spring also shows periodic changes, as shown in Figure 5e. In Figure 5f, the spring force of
the spring and the displacement of the lower mass block show a closed-loop relationship,
and the area enclosed by the closed-loop represents the net work done by the force. Once
the net work of the spring force is equal to the energy consumed by the damping of the
lower mass, its self-excited oscillation can be maintained. Since the two mass blocks can
attain self-excited oscillation respectively, and because k2 = 16, the coupling between the
two mass blocks is strong, and the synchronous motion regime of the coupling oscillator
is in-phase.

3.3. Mechanisms of Self-Oscillation in the Anti-Phase Regime

As shown in Figure 6, the relationship diagrams of some key physical quantities in the
anti-phase regime in Figure 3 are obtained by numerical calculations. During the oscillation
of upper mass block, the cis number fraction of material point at the end of LCE fiber
increases in the illuminated region and decreases in the non-illuminated region, as shown
in Figure 6a. As a result, the light-triggered contraction increases in the illuminated region
and decreases in the non-illuminated region, as shown in Figure 6b. Similarly, the spring
force of LCE fiber first increases and then decreases in the illuminated region, as shown in
Figure 6c. In Figure 6d, the spring force of LCE fiber and the displacement of upper mass
block show a closed-loop relationship, and the area enclosed by the closed loop represents
the net work done by the force. Under the action of periodic contraction and relaxation of
the LCE fiber, the spring force of the spring also changes periodically as shown in Figure 6e.
In Figure 6f, the spring force of the spring and the displacement of the lower mass block
show a closed-loop relationship, and the area enclosed by the closed-loop represents the
net work done by the force.
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Figure 5. Mechanism of self-excited oscillation in in-phase regime of k2 = 16 in Figure 2. (a) ϕ
(
X = 1

)
vs. t. (b)

∣∣ε(X = 1
)∣∣ vs. t. (c) FL vs. t. (d) FL vs. u1. (e) Fs vs. t. (f) Fs vs. u2. In Figure 3d,f, the

area enclosed by the closed loop represents the net work done by the tensions of the LCE fiber
and spring, which compensates for the damping dissipation to maintain the oscillations of two
coupled oscillators.
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(a) ϕ

(
X = 1

)
vs. t. (b)

∣∣ε(X = 1
)∣∣ vs. t. (c) FL vs. t. (d) FL vs. u1. (e) Fs vs. t. (f) Fs vs. u2.

In Figure 4d,f, the area enclosed by the closed loop represents the net work done by the tensions of
LCE fiber and spring, which compensates for the damping dissipation to maintain the oscillations of
two coupled oscillators.
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4. Parametric Study

Generally, the dynamics of two coupled oscillators depends on the dimensionless
parameters of system in Table 2. In this section, we investigate the effects of several
typical systematic parameters on the synchronous regime, amplitudes and limit cycles of
self-oscillations of two coupled oscillators in detail.

4.1. Effect of Spring Constant of Spring

Figure 7 shows the effect of spring constant k2 of the spring on the self-oscillations of
two oscillators. In the computation, the other geometric and material parameters are given
in Table 2. In Figure 7a,c,e, for k2 > 9.5, the self-oscillations of two oscillators evolve into
an in-phase regime, and the amplitudes of self-oscillations monotonously increase with the
increase of spring constant k2. For 7 ≤ k2 ≤ 9.5, the amplitudes of self-oscillations gradually
decay with the decrease of spring constant k2, and finally evolve into a static regime, as
shown in Figure 7c,e. In Figure 7b,d,f, for k2 < 7, the self-oscillations of two oscillators
evolve into an anti-phase regime, and the amplitudes of self-oscillations gradually decrease
with increases of the spring constant k2. For 7 ≤ k2 ≤ 9.5, the amplitudes of self-oscillations
gradually decay with the increase of spring constant k2, and the system finally evolves
into static regime, as shown in Figure 7d,f. The reason for this phenomenon is that in the
in-phase regime, with the increase of spring constant, the spring forces of spring and LCE
fiber gradually increase, and their corresponding net works increases. Therefore, the self-
oscillations of two coupled oscillators can be maintained. In the anti-phase regime, as the
spring force increases, the tension of LCE fiber gradually decreases and its corresponding
net work decreases. Therefore, the synchronous motion of two coupled oscillators cannot
be maintained.
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Figure 7. The effect of spring constant k2 on the self-oscillations of two coupled oscillators. In
the computation, the other geometric and material parameters are given in Table 2. (a) Domain
of attraction, and (c,e) limit cycles for in-phase regimes of k2 > 9.5. (b) Domain of attraction, and
(d,f) limit cycles for anti-phase regimes of k2 < 7. The synchronous regime of self-oscillations of two
oscillators is mainly determined by the spring constant.
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In Figure 7e,f, it is noted that with the decrease of spring constant k2 from 7 to 9.5,
the position coordinates of the lower mass block at rest will gradually increase. This is
because that with the decreasing spring constant k2, the spring length in the static state
is greater, and the equilibrium position of lower mass block changes. Meanwhile, the
numerical results show that only the spring constant k2 determines the synchronous regime
of self-oscillations of two oscillators. The two oscillators oscillate in an in-phase regime
for k2 < 7, and oscillate in an anti-phase regime for k2 > 9.5. Meanwhile, the system is
in the static regime for 7 ≤ k2 ≤ 9.5. In the following, we describe the influences of other
parameters on the self-oscillation of two oscillators in the in-phase regime of k2 = 16 and
in the anti-phase regime of k2 = 4.5.

4.2. Effect of Damping Coefficient

Figure 8 shows the effect of the damping coefficient c on the self-oscillations of two
oscillators for the in-phase regime of k2 = 16 and the anti-phase regime of k2 = 4.5. In the
computation, the other geometric and material parameters are given in Table 2. As shown
in Figure 8a,b, the damping coefficient does not affect the synchronization regime of two
oscillators, which is mainly determined by the spring constant k2, as discussed in Section 4.1.
In the in-phase regime, the amplitudes of self-oscillations of the two oscillators decrease
with the increase of damping coefficient, and the limit cycles finally evolve into the static
regime, as shown in Figure 8c,e. The self-oscillations of the two oscillators can be triggered
for c < 0.29, while the oscillation is eventually suppressed for c ≥ 0.29. In the anti-phase
regime, for c < 0.3, the two coupled oscillators can self-oscillate, and the amplitudes of
self-oscillations increase with the decrease of damping coefficient. For c ≥ 0.3, the limit
cycles evolve into the static regime, as shown in Figure 8d,f.
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Figure 8. The effect of damping coefficient c on self-oscillations of the two coupled oscillators.
(a) Domain of attraction, and (c,e) limit cycles for in-phase regime of k2 = 16. (b) Domain of
attraction, and (d,f) limit cycles for anti-phase regime of k2 = 4.5. In the computation, the other
geometric and material parameters are given in Table 2. With the increase of c, the amplitudes of
self-oscillations of two coupled oscillators decrease.
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The influence of damping coefficient on the in-phase and anti-phase regimes is the
same. With increase of the damping coefficient, the amplitudes of self-oscillations of the
two mass blocks gradually decrease. The reason for this phenomenon is that due to the
increase in damping coefficient, the light energy input by the external environment does
not compensate for damping dissipation, and the self-oscillation of mass block is gradually
suppressed. Therefore, the system cannot maintain the self-sustained synchronous motion
of two coupled oscillators.

4.3. Effect of Contraction Coefficient

Figure 9 shows the effect of the contraction coefficient C0 on the self-oscillations of
two oscillators for the in-phase regime of k2 = 16 and the anti-phase regime of k2 = 4.5. In
the computation, the other geometric and material parameters are given in Table 2. It can
be seen from Figure 9a,b that the contraction coefficient does not affect the synchronization
regime of the two oscillators. In the in-phase regime, the amplitudes of self-oscillations of
two oscillators gradually decrease with the decrease of contraction coefficient, and the limit
cycles finally evolve into the static regime, as shown in Figure 9c,e. The self-oscillation of
the two oscillators can be triggered for C0 > 0.37, while the oscillation regime is eventually
suppressed for C0 < 0.37. In the anti-phase regime, it can be seen that for C0 > 0.3, with
the increase of contraction coefficient the amplitude of self-oscillation increases gradually.
However, for C0 ≤ 0.3, the limit cycles evolve into the static regime, which is denoted by
the point in Figure 9d,f.
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Figure 9. The effect of contraction coefficient C0 on self-oscillations of the two coupled oscillators.
(a) Domain of attraction, and (c,e) limit cycles for in-phase regime of k2 = 16. (b) Domain of attraction,
and (d,f) limit cycles for anti-phase regime of k2 = 4.5. In the computation, the other geometric and
material parameters are given in Table 2. With the increase of C0, the amplitudes of self-oscillations
of two coupled oscillators increase.

Similarly, the influences of the contraction coefficient on the in-phase and anti-phase
regimes are the same. With the decrease of contraction coefficient, the amplitudes of
self-oscillations of two mass blocks gradually decrease, and the self-excited oscillation is
gradually suppressed. This phenomenon can be understood being due to the reduction of
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contraction, the deformation of fiber, and the force of fiber, the net work done by the system
in the coupling process of deformation and vibration decrease, which cannot compensate
for the dissipation of system damping. Therefore, the self-excited oscillation of two mass
blocks cannot be maintained.

4.4. Effect of Light Intensity

Figure 10 shows the effect of light intensity I on the self-oscillations of two oscillators
for the in-phase regime of k2 = 16 and the anti-phase regime of k2 = 4.5. In the computation,
the other geometric and material parameters are given in Table 2. The numerical results
show that the light intensity does not affect the synchronization regime of the two oscillators,
as shown in Figure 10a,b. In the in-phase regime, the amplitudes of self-oscillations
gradually decrease with the decrease of light intensity, and the limit cycles finally evolve
into the static regime, as shown in Figure 10c,e. This shows that the self-oscillation of two
oscillators can be triggered for I > 0.9, while the oscillation regime is eventually suppressed
for I ≤ 0.9. In the anti-phase regime, it can be seen that for I > 0.9, with the increase of
light intensity, the amplitudes of self-oscillations increase gradually. However, for I ≤ 0.9,
the limit cycles evolve into the static regime, as shown in Figure 10d,f.
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Figure 10. The effect of light intensity I on self-oscillations of the two coupled oscillators. (a) Domain
of attraction, and (c,e) limit cycles for in-phase regime of k2 = 16. (b) Domain of attraction, and
(d,f) limit cycles for anti-phase regime of k2 = 4.5. In the computation, the other geometric and
material parameters are given in Table 2. With the increase of I, the amplitudes of self-oscillations of
two coupled oscillators increase.

In addition, the influences of light intensity on the in-phase and anti-phase regimes are
the same. With the decrease of light intensity, the amplitudes of self-excited oscillations of
the two mass blocks gradually decrease, and the self-excited oscillation is finally suppressed.
This phenomenon can be explained as follows. With the gradual decrease of light intensity,
the light-driven contraction of LCE fiber decreases gradually, resulting in the gradual
decrease of spring force and the net work caused by light-driven contraction, and the net
work done by spring force also decreases gradually. Therefore, the dissipation of system
damping cannot be compensated, and the self-excited oscillation of the two mass blocks
cannot be maintained.
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4.5. Effect of Initial Velocity

Figure 11 shows the effect of initial velocity
.
u

0
1 on the self-oscillations of two oscillators

for the in-phase regime of k2 = 16 and the anti-phase regime of k2 = 4.5. In the computation,
the other geometric and material parameters are given in Table 2. The numerical results

show that the initial velocity
.
u

0
1 does not affect the synchronization regime of the two

oscillators, as shown in Figure 11a,b. In the in-phase regime, the initial velocity
.
u

0
1 does

not affect the limit cycle and amplitude of self-oscillation of two oscillators, as shown in

Figure 11c,e. In the anti-phase regime, it can be seen that the initial velocity
.
u

0
1 also does

not affect the limit cycle and amplitude of self-oscillation of two oscillators, as shown
in Figure 11d,f.
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(a) Domain of attraction, and (c,e) limit cycles for in-phase regime of k2 = 16. (b) Domain of
attraction, and (d,f) limit cycles for anti-phase regime of k2 = 4.5. In the computation, the other

geometric and material parameters are given in Table 2. The initial velocity
.
u

0
1 does not affect the

self-oscillations of two oscillators.

In addition, Figure 12 shows the effect of initial velocity
.
u

0
2 on the self-oscillations of

two oscillators for the in-phase regime of k2 = 16 and the anti-phase regime of k2 = 4.5.
In the computation, the other geometric and material parameters are given in Table 2.

The numerical results show that the initial velocity
.
u

0
2 does not affect the synchronization

regime of two oscillators, as shown in Figure 12a,b. It is seen that the initial velocity
.
u

0
2

does not affect the limit cycles and amplitude of the self-oscillations of two oscillators
in synchronous regime, as shown in Figure 12c–f. This is because the initial condition
does not change the energy input of the system and the net work done by fiber in the
coupling process of fiber contraction and oscillation of the two mass blocks. In conclusion,
the initial velocity does not affect the synchronous regime and inherent characteristics of
self-oscillation of the two oscillators. The effects of initial velocity on self-oscillations of
two coupled oscillators based on LCE fiber are the same as that in other self-oscillating
systems [57].
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5. Conclusions

Self-oscillators capable of harvesting energy from a steady environment can be adopted
as an engine to drive additional working equipment, and the synchronous behavior of
self-oscillators and passive oscillators may have an important impact on their functions. In
this research, based on optically-responsive LCE fibers, we constructed a self-oscillating
system composed of a passive oscillator and an active self-oscillator powered by steady
illumination, and theoretically investigated the synchronization of two coupled oscillators.
The governing equations of dynamics of the two coupled oscillators under steady illumi-
nation were derived and numerical calculations were performed in Matlab software. The
results show that the movement of two oscillators always develops into in-phase regime,
anti-phase regime, or static regime. In the process of self-oscillation, the cis number fraction
and the light-driven contraction in the LCE fiber, and the tensions of the LCE fiber and
spring, change periodically and continuously. Self-oscillation is maintained by energy
input from the environment to compensate for damping dissipation. The self-oscillations
of the two oscillators can be triggered by adjusting the spring constant, damping coeffi-
cient, light intensity, and contraction coefficient, and the synchronous regime is mainly
determined by the spring constant. The amplitudes of self-oscillations of the two oscillators
increase with the increase of contraction coefficient, light intensity, and the spring constant
of spring, and decrease with the increase of damping coefficient. These results deepen
the understanding of the synchronization behaviors of coupled oscillators and provide
new design ideas for energy harvesters, soft robotics, signal detection, active motors, and
self-sustained machinery.
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