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Abstract: Over the years, there have been several improvements in ultrasound technologies including
high-resolution ultrasonography, linear transducer, radiant flow, three-/four-dimensional (3D/4D)
ultrasound, speckle tracking of the fetal heart, and artificial intelligence. The aims of this review are
to evaluate the use of these advanced technologies in obstetrics in the midst of new guidelines on and
new techniques of obstetric ultrasonography. In particular, whether these technologies can improve
the diagnostic capability, functional analysis, workflow, and ergonomics of obstetric ultrasound
examinations will be discussed.
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1. Introduction

Ultrasound is widely used in obstetric practice to detect fetal abnormalities with a
view to provide prenatal opportunities for further investigations including genetic testing
and discussion of management options. In 2010, International Societies of Ultrasound in
Obstetrics and Gynecology (ISUOG) published the practice guidelines on the minimal
and optional requirements for a routine mid-trimester ultrasound scan [1]. Recently, The
American Institute of Ultrasound in Medicine (AIUM) suggests a detailed diagnostic
second/third trimester scan for high-risk pregnancies [2], and fetal echocardiography for
at-risk pregnancies [3]. ISUOG has published recent guidelines on indications and practice
of targeted neurosonography [4,5]. Although the introduction of prenatal cell-free DNA-
based screening for Down syndrome has changed the role of the first trimester scan, the
latter should still be offered to women [6]. Around 50% of major structural abnormalities
can be detected in the first trimester [7]. In addition, a recent study showed that a routine
scan at around 36 weeks’ gestation can detect around 0.5% of previously undetected fetal
abnormalities, as well as fetal growth restriction (FGR) [8].

The detection rate of fetal abnormalities varies, depending on anatomy survey pro-
tocol, ultrasound equipment and setting, among other factors [9]. A high-resolution
ultrasound can facilitate a detailed diagnostic scan and a first-trimester scan and allow the
detection of a small or subtle abnormality [10–12]. Although a detailed diagnostic scan is
not required for all pregnant women, the indications include family history of congenital
malformation, maternal age 35 or above, gestational diabetes mellitus, artificial reproduc-
tion technology, body mass index >= 30, teratogen, fetal nuchal translucency >= 3mm, and
many other conditions [2]. In the midst of such increasing standards of obstetric ultrasound
examination, there is a demand on improving the diagnostic capability, functional anal-
ysis, workflow, and ergonomics. Over the years, there have been several improvements
in ultrasound technologies including high-resolution ultrasonography, linear transducer,
radiant flow, three/four-dimensional (3D/4D) ultrasound, speckle tracking of the fetal
heart, and artificial intelligence. The aim of this review is to evaluate the use of these
advanced technologies in obstetrics.

2. High-Resolution Ultrasonography

High-resolution ultrasonography includes the use of a high-frequency transducer,
and the means of enhancing image and signal processing including harmonic imaging
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(HI), spatial compound imaging (SCI), and speckle reduction imaging (SRI). Compared
to a transducer with the low-frequency range (2 to 5 MHz), a transducer with the high-
frequency range (5 to 9 MHz) can allow for improved resolution though with limited tissue
penetration. HI, utilizing the physics of non-linear propagation of ultrasound through
the body tissues, can produce high-resolution images with few artifacts. SCI, combining
multiple lines of sight to form a single composite image at real-time frame rates, can reduce
angle-dependent artifacts. The use of SRI can reduce speckles or disturbances that result
from the echo, which is projected from an ultrasound transducer.

2.1. Fetal Echocardiography and Targeted Neurosonography

ISUOG recommends the use of the highest possible transducer frequency to perform
fetal echocardiography with a view to improve the likelihood of detecting subtle heart de-
fects, albeit at the expense of reduced acoustic penetration [10] (Figure 1a–d and Video S1).
The use of HI can improve the quality of ultrasound images, especially when the maternal
abdominal wall is thick during the third trimester of pregnancy [11,13].
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ing right atrium (RA), left atrium (LA), right ventricle (RV), and left ventricle (LV), (b) five-chamber view showing as-
cending aorta (AAo) arising from the left ventricle, the right and left superior pulmonary veins (RSPV, LSPV) enter the 
left atrium (LA), and descending aorta (DAo) behind the LA (c) Three-vessel view showing the PA dividing into the left 
(LPA) and right (RPA) PA, AAo, and the superior vena cava (SVC), (d) three-vessel and trachea view showing PA with 
the ductal branch (DA) joining the DAo, AAo, SVC, and trachea (T); Thymus is anterior to the three vessels. 

For a targeted neurosonographic examination, ISUOG recommends the use of high- 
resolution transvaginal transducers whenever possible [5]. An alternative is to use high-

Figure 1. High-resolution ultrasonography of the fetal heart at 20 weeks’ gestation showing (a) a
four-chamber view showing right atrium (RA), left atrium (LA), right ventricle (RV), and left ventricle
(LV), (b) five-chamber view showing ascending aorta (AAo) arising from the left ventricle, the right
and left superior pulmonary veins (RSPV, LSPV) enter the left atrium (LA), and descending aorta
(DAo) behind the LA (c) Three-vessel view showing the PA dividing into the left (LPA) and right
(RPA) PA, AAo, and the superior vena cava (SVC), (d) three-vessel and trachea view showing PA
with the ductal branch (DA) joining the DAo, AAo, SVC, and trachea (T); Thymus is anterior to the
three vessels.
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For a targeted neurosonographic examination, ISUOG recommends the use of high-
resolution transvaginal transducers whenever possible [5]. An alternative is to use high-
resolution transabdominal transducers with high frequency reaching 8–9 MHz [5]. The
anatomy of the fetal brain is examined in details on a continuum of transverse, sagittal and
coronal planes (Figure 2a–d, Video S2a,b).
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or RASopathy, which require chromosome microarray analysis or targeted sequencing for 
RASopathy genes. As such, it is important to perform a detailed ultrasound scan to eval-
uate fetal face in fetuses especially if they have large NT, heart defects, or unusual findings 
[14,15]. High-resolution ultrasonography allows the clear visualization of facial profile, 
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Figure 2. High-resolution ultrasonography of the fetal brain at 20 weeks’ gestation: transverse views showing (a) posterior
horn of the lateral ventricle (Vp), (b) cavum septi pellucidi (C.S.P.), (c) cerebellum (Cereb), Cisterna magna (CM), nuchal
fold (NF), and sagittal view showing (d) corpus callosum (CC), thalamus (TH), brain stem (BS), and cerebellar vermis (CV).

2.2. Face and Neck

While the prenatal detection of cleft lip is high, the detection rate of subtle abnor-
malities of face such as low-set or posteriorly rotating ear, triangular face, down-slanting
palpebral fissures, or a long and marked philtrum remains low [14,15]. These subtle abnor-
malities may be features of rare but severe genetic disorders such as 5p deletion syndrome
or RASopathy, which require chromosome microarray analysis or targeted sequencing
for RASopathy genes. As such, it is important to perform a detailed ultrasound scan to
evaluate fetal face in fetuses especially if they have large NT, heart defects, or unusual
findings [14,15]. High-resolution ultrasonography allows the clear visualization of facial
profile, lens, nostrils, lips, maxilla, and ears (Figure 3a–d, Video S3a,b). Recently, a new
sonographic sign, the ‘superimposed line’ sign, is suggested for evaluation of the sec-
ondary palate by assessment of the vomeromaxillary junction in the midsagittal view of
the palate [16] (Figure 3a).
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Larynx and its movement can be assessed by prenatal ultrasound (Figure 4 and
Video S4). In at-risk fetuses such as those with laryngeal atresia [17] and congenital di-
aphragmatic hernia, prenatal ultrasound allows systematic examination of the larynx,
including vocal cords to detect laryngeal anomalies [17,18].
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2.3. Early Pregnancy Scan

Transvaginal ultrasonography is essential in the assessment of pregnancy of unknown
location, which can be due to early pregnancy, miscarriage, or ectopic pregnancy. It is
important to avoid making a false-positive diagnosis of miscarriage by using transvaginal
sonography, careful measurement of mean sac diameter and crown rump length, and using
safe cut-off values of these measurements in defining miscarriage [19]. A recent study
showed that amniotic sac sign (the presence of amniotic sac without a live embryo) is a
reliable marker of miscarriage [20]. While the presence of an extrauterine gestational sac
with yolk sac and/or embryo with or without cardiac activity is indicative of ectopic preg-
nancy, the presence of an inhomogeneous adnexal mass (‘blob’ sign) or extrauterine sac-like
structure (‘bagel’ sign) is very suggestive of a tubal ectopic pregnancy [21]. In women with
prior Caesarean section, ultrasound features of Caesarean scar pregnancy including low
implantation of the gestational sac within or in close proximity to a Caesarean scar as well
as classical signs of placenta accreta spectrum disorders should be looked out for [22,23].

2.4. First Trimester Scan

ISUOG and recently, AIUM published the practice guidelines on first-trimester fetal
ultrasound scan [24,25]. High-resolution ultrasonography allows the early assessment of
fetal anatomy [11] (Figure 5a–d, Video S5a,b) and fetal malformations [12]. Fetal heart
can be examined in the late first trimester [26], particularly with the use of color Doppler
(Video S5c,d). ISUOG recommends using high-frequency (6–12 MHz) transvaginal ul-
trasound to examine fetal brain, especially if the focus is in the posterior fossa and the
maternal abdominal wall is thick [5].
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Figure 5. High-resolution ultrasonography of the fetus at 13 weeks’ gestation: (a) mid-sagittal view
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2.5. Doppler Ultrasound

Doppler ultrasound is widely used in obstetrics. ISUOG has made recommendations
on how to perform Doppler ultrasonography of the fetoplacental circulation [27]. It is
a challenge to detect late-onset feral growth restriction (FGR). Although third-trimester–
cerebroplacental ratio (CPR = middle cerebral artery pulsatile index/umbilical artery
pulsatile index) is an independent predictor of stillbirth and perinatal mortality [28], CPR
with or without adjustment for estimated fetal weight centile showed a low prediction rate
for adverse perinatal outcome [29]. According to a meta-analysis, abnormal uterine artery
(UtA) Doppler in the third trimester is useful in predicting perinatal death in suspected
small-for-gestational age fetuses [30]. A recent prospective study suggested that cerebral–
placental–uterine ratio (CPUR = CPR divided by mean UtA pulsatile index) detected FGR
better than CPR or UtA Doppler alone [31].

2.6. Labour Ward Ultrasound

The use of intrapartum ultrasonography is increasing. It can be performed by using a
portable machine equipped with a wide-sector and low-frequency (<4 MHz) transducer
and batteries with a long life, and being quick to start up and recharge [32]. According
to ISUOG practice guidelines [32], intrapartum ultrasound is indicated when there is
slow progress or arrest of labor in the first or second stage. Recent studies showed that
single ultrasound assessment of the fetal head station on admission in active phase or
repeated measurements during active phase can predict the duration of labor and operative
delivery in nulliparous women [33,34]. When the second stage of labor is prolonged,
ultrasound can be used to assess fetal head position and station before considering or
performing instrumental vaginal delivery [32]. Such assessment has a potential to predict
mode of operative delivery and pregnancy outcomes [35]. Compared to clinical vaginal
examinations, ultrasound assessment of the fetal head station and position is objective and
reproducible [32–34], but assessment of cervical dilatation is limited when the dilatation is
≥ 4 cm and the membranes are ruptured [36].

Allowing detection of changes in tissue elasticity, elastography is a complementary
technique to B-mode imaging, and it includes two methods, namely, shear-wave and strain
elastography. A recent meta-analysis showed that the performance of cervical elastography
was better than cervical length in the prediction of preterm delivery [37]. For the prediction
of outcome of induction of labor, models based on inner cervical shear wave elastography
and cervical length were more accurate than models based on the Bishop score [38].

3. Linear Transducer

With a high-frequency ultrasound, a linear transducer can produce high-resolution
images of shallow structures and small parts. Unlike curved transducers, linear transducers
produce a rectangular field of view with uniform beam density throughout all tissue levels
and without divergence in deeper tissue. The use of a transabdominal linear transducer
can enhance the examination of the spinal cord and conus medullaris in the midsagittal
view of the spine [5]. Some abnormalities such as cataract [39] and laryngeal atresia [17]
can be well demonstrated using a linear transducer.

A linear transducer can be used to examine fetal structures in the first trimester
(Figure 6a–d). However, a linear transducer is not suitable for using if the structures of
interest are deep or the maternal abdominal wall is thick. Although a linear transducer can
allow the examination of the fetal cardiac anatomy at 11–13 weeks [40], it is the use of color
flow mapping but not of a linear transducer that improves the examination [41].
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Figure 6. Ultrasonography of a fetus at 13 weeks’ gestation by a transabdominal high-frequency
linear transducer: (a) transverse view of fetal brain, (b) coronal view of face showing both orbits
(OB), (c) coronal view of abdomen showing both kidneys (Ki) on either side of the spine, and (d) the
three-vessel trachea transverse view with color Doppler showing pulmonary artery (PA), aorta (Ao),
superior vena cava (SVC), and trachea (T).

4. Radiant Flow

Radiant flow shows the blood flow with a sense of depth by using a specific algorithm
to convert the index of erythrocyte density in a certain area into a height index which
is then superimposed on the initial coding of color, power Doppler, or high-definition
flow [42]. Other advantages include reducing blood overflow and indicating the vessel
with sharp edges. Special display produced by similar technologies include MicroFlow
Imaging (Philips), MV-Flow, and LumiFlow (Samsung).

Radiant flow is used to show fast blood flow in the fetal heart and brachycephalic
arteries [42] (Videos S5d and S6a,b), as well as slow-blood flow in the neurovascular
circulation [43] (Video S7).

The fetal umbilical–portal venous system is complex. High-definition flow imaging
(HDFI) has been used to assess the normal anatomy of this system or umbilical–portal–
systemic venous shunts. Transverse and sagittal planes are used to examine the fetal
umbilical–portal venous system (Video S8a,b). In a recent case report, the authors used
HDFI and radiant flow imaging to clearly delineate the aberrant course of the ductus
venosus returning to the coronary sinus [44].

5. 3D/4D Ultrasound

Over the years, new 2D modes (such as high-density power imaging), new 3D volume
acquisition (such as Corpus callosum mode or matrix probe), and new analysis (such as
semiautomated analysis) have been added in 3D/4D ultrasound examinations (Table 1).
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The use of 3D multiplanar/multislice analysis facilitates the assessment of normal and
abnormal structures in standard planes. This can also facilitate the detection of subtle fetal
defects [45]. The use of 3D rendered images can help counseling to the women when fetal
malformations are found or reassure the at-risk women when normal fetal anatomy is
found [45]. 3D/4D US is useful for the assessment of fetal brain, spine, face, heart, and
other structures [45,46].

Table 1. Commonly used scanning mode, volume acquisition, and analysis for three-/four-
dimensional (3D/4D) ultrasound examinations.

Mode Volume Acquisition 3D/4D Analysis

Gray scale 3D: different modes Multiplanar
Color flow 4D Multislice

Power doppler STIC 1 Rendered view: different modes
High-density power imaging Matrix probe Cine loop

B-flow Semi-automatic analysis
Volume measurement

Power Doppler measurements
1 Spatiotemporal image correlation.

Examples in the assessment of fetal abnormalities

a. Cleft lip and palate: use gray-scale mode, after a 3D volume acquisition, perform
multiplanar/multi-slice analysis and rendering techniques to assess the integrity
of palate.

b. Short-limbed and short-rib dysplasia: use gray-scale mode, after a 3D volume ac-
quisition with skeletal mode, perform rendering techniques with skeletal mode to
examine the long bones and ribs.

c. Agenesis of ductus venosus: use high-density power imaging, after a 3D volume
acquisition, perform multi-slice analysis to assess the precordial venous system.

d. Cardiac outflow tract abnormalities: use color flow, after a STIC volume acquisition,
perform multiplanar/multi-slice analysis in a cine-loop of cardiac cycle.

e. Atrioventricular valve abnormalities: use matrix probe and gray-scale mode, real-
time 4D cine-loop analysis to display the coronal view of atrioventricular valve.

5.1. 3D Neurosonography

In targeted neurosonography, a systematic assessment of the fetal brain is required.
Although this assessment can be performed by a 2D ultrasound examination, a perfect
midsagittal view may not be achieved at all times, thus affecting a proper assessment.
ISUOG recommends using 3D ultrasound examination that can provide images of enhanced
resolution by displaying thicker ‘slices’ of the brain and thus increasing the signal-to-
background noise ratio on all three planes. In addition, multiplanar imaging correlation
allows the display of perfectly aligned views on the three orthogonal planes [5]. To avoid
shallowing by adjacent skull bones, it is important to acquire a 3D volume in a mid-
sagittal plane through the sagittal suture. If the focus is on the anterior complex, the
volume will be obtained from the anterior fontanelle or the anterior part of the sagittal
suture [5] (Figure 7a). If the focus is on the posterior fossa and cerebellar vermis, the volume
will be obtained from the posterior fontanelle or the posterior part of the sagittal suture
with the ultrasound beam being almost perpendicular to the tentorium [47] (Figure 7b). A
transvaginal and transabdominal approach is used when the fetal presentation is vertex and
breech, respectively. Then, the midlines structures including corpus callosum, brain stem,
and cerebellar vermis can be examined by multiplanar and multi-slice analysis [43,48,49].
An accurate measurement of corpus callosum and cerebellar vermis can be achieved.
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Figure 7. Three-dimensional ultrasonography of fetal brain at 20 weeks’ gestation: (a) multiplanar analysis after a volume
acquisition with corpus callosum mode through the anterior part of the sagittal suture showing corpus callosum (CC), and
(b) multiplanar analysis after a volume acquisition through the posterior fontanelle showing corpus callosum (CC), cavum
septi pellucidi (C.S.P.), thalamus (TH), brainstem (BS), and cerebellar vermis (CV).

After a 3D volume acquisition of the fetal spine at mid-sagittal plane, a rendered view
of the fetal spine can be well displayed with various modes (Figure 8a,b). In addition,
the coronal planes at the level of the vertebral bodies and/or posterior arches can be
reconstructed on multiplanar analysis [5].
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Figure 8. Three-dimensional rendered views of fetal spine at 20 weeks’ gestation after a volume
acquisition with skeletal mode: (a) usual mode, and (b) X-ray mode.

5.2. Spatiotemporal Image Correlation

Spatiotemporal Image Correlation (STIC) allows an automatic acquisition of a single
3D volume through slow sweep and subsequent analysis in a looped cine sequency of
images in the multiplanar/multi-slice format and a rendered view. This can produce images
in a standardized plane while minimizing the operation dependency of the ultrasound
examination. The recent advances in gray scale and color Doppler post processing improves
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the display of ultrasound images. Using color Doppler with STIC in the glass-body mode
can show normal and abnormal anatomy of the fetal heart and major vessels [46] (Figure 9,
Video S9). The matrix probe allows the rapid acquisition of an STIC volume, thus reducing
the motion artifact and facilitating live 4D display [46]. In addition, the use of the matrix
probe allows the simultaneous examination of two orthogonal planes of the fetal heart in
the ‘biplane mode’. Additional use of image recognition software can help review cardiac
structures in the standard planes [46]. The 3D rendered images are useful for counseling
to parents. In addition, STIC volume can facilitate interdisciplinary consultation and
teleconsultation [42].
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Figure 9. Color Doppler with spatiotemporal image correlation in the glass-body mode showing
multiplanar view and a rendered image of a normal fetal heart at 20 weeks’ gestation.

5.3. 3D Ultrasound Examination of Face, Limbs, and Other Structures

While 2D ultrasound is a key tool for the detection of fetal anomalies, there are some
anomalies such as facial clefts, micrognathia, and club foot in which 3D ultrasound may
provide additional information or help counseling when such anomaly is suspected [9].
Compared to 2D ultrasound alone, combined approach of 2D and 3D ultrasound with
multiplanar/multi-slice analysis can improve the detection or exclusion of cleft palate
in fetuses with cleft lip [50] (Figure 10). Although 3D ultrasound is less sensitive for the
detection of isolated cleft palate, a recent study showed that an accurate evaluation of palate
requires 3D ultrasound examination with volume acquisition in a strictly axial transverse
view of the palate [16]. The use of 3D ultrasound multiplanar analysis and 3D rendering
view can facilitate the display of mid-sagittal plane of the fetal face and thus improve the
accuracy of measurements of the mandible and the detection of micrognathia [51].

Three-dimensional (3D) rendering technology with skeletal mode can display skull,
vertebrae, ribs, long bones and fingers [52] (Figure 11a,b and Video S10a,b). Prenatal as-
sessment of the ribs and vertebral pattern can be performed by 3D ultrasound with skeletal
mode (Figure 8a,b), albeit it is not a routine practice. A review of 39 studies including
75,018 healthy subjects and 6130 subjects with structural or chromosomal anomalies or
adverse outcome showed an association between cervical ribs and other structural anoma-
lies including esophageal atresia and anorectal malformation [53]. Abnormalities such as
craniosynostosis [26,54], and extra ribs can be shown.
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Figure 11. Three-dimensional rendered images of the fetal skeleton at 20–22 weeks’ gestation
showing: (a) X-ray mode of the skull bone with frontal suture (SS) and anterior fontanelle (AF), and
(b) HD skeletal mode of the skull, bones of the upper and lower limbs.

It is difficult to visualize esophagus on 2D ultrasound examination. The use of 3D ul-
trasound with multiplanar analysis and Crystal Vue rendering may make the visualization
possible [55]. Three-dimensional (3D) volumes are acquired from a midsagittal section of
the thorax and upper abdomen with the fetus lying in supine position.

While 2D ultrasound examination with gray scale and color flow is the standard for the
antenatal diagnosis of placenta accreta spectrum disorders [22], 3D ultrasound with power
Doppler and multiplanar analysis permits an accurate assessment of the placenta-bladder
interface, and the degree of bladder invasion by the placenta [56]. Three-dimensional (3D)
rendered images can be used for patient counseling [56].

5.4. 3D Printing

With advances in 3D ultrasound, the derived ultrasound data can be used for 3D
printing of physical models of whole fetuses [57] and the fetal face [58]. A recent trial
showed that the use of 3D-printed fetal facial models resulted in greater increases in
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maternal–fetal attachment in the third trimester than the use of ultrasonography only [58].
Whether this can be translated into better pregnancy outcomes needs further studies. In
addition, a 3D-printed spina bifida model can be beneficial for surgical rehearsal prior to a
fetoscopic repair [59].

With advances in STIC, the derived data can be used for 3D printing of the fetal heart,
which is a fast-moving structure [60]. In a recent case report, the authors found that the 3D
model was useful in showing the complex anatomy of fetal transposition of great arteries
and in providing prenatal parental counseling [61].

Previously, after acquisition of a 3D/STIC volume dataset, a number of post-processing
steps are required to convert it from Cartesian.vol file through segmentation, refinement,
and optimization to a STL (Standard Triangle Language) file, the industry standard file
type for 3D Printing [60]. These steps take a long time, and whether the final produced STL
file is good enough for 3D printing is not certain before processing. With recent advances
in ultrasound technology, a 3D/STIC volume dataset can be directly exported from the
ultrasound machine as an STL file that is ready for viewing on a personal computer using
common software as well as for 3D printing (Figure 12).
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Figure 12. A physical model of three-dimensional printing of the fetal face.

6. FetalHQ

FetalHQ, a novel heart and vascular analysis software, can allow assessment of the
fetal heart shape, size, and contractibility by using speckle tracking to analyze the motion of
multiple points of the fetal heart [62] (Figure 13). The global sphericity index (SI) is a simple
measurement of cardiac contractility, and it is equal to (end-diastolic mid-basal–apical
length)/transverse length [63]. For 24-segment sphericity index, SI is computed for each of
the 24 end-diastolic transverse segments, which are distributed from the base to the apex
of each ventricle, as well as the end-diastolic mid-basal–apical length [62].

This 24-segment sphericity index is a comprehensive method to assess the shape of
ventricular chambers [62]. The SI for each segment was independent of gestational age
and fetal biometry. The SI of the right ventricle was lower than that of the left ventricle
for segments 1–18. This index can be used when discordance between the size of the atrial
and/or ventricular cardiac chambers is found. Abnormal SI values are found in the fetuses
with cardiac abnormalities such as coarctation of aorta, pulmonary stenosis, and fetal
growth restriction [62]. Abnormal SI values are associated with increased risk of perinatal
complications and childhood and/or adult cardiovascular disease [64].
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Figure 13. FetalHQ assessment of the fetal heart shape, size, and contractibility by using speckle
tracking to analyze the motion of multiple points of the fetal heart at 20 weeks’ gestation.

While the initial results are promising, a recent review of 23 studies showed conflicting
results concerning the development of strain and strain rate during gestation [65]. Large
longitudinal cohort studies with a standard protocol are needed to obtain reference values
for fetal cardiac deformation in uncomplicated pregnancies [65]. A recent systematic
review also showed heterogeneous results concerning gestational age and Doppler profiles.
Large prospective longitudinal cohort studies are required to assess the clinical significance
of deformation measurements of the fetal heart in growth restricted fetuses and normal
fetuses [66].

7. Artificial Intelligence

Machine learning, in particular deep learning, allows ultrasound image recognition
and thus facilitates the automatic identification and measurement of fetal biometry [67]. It
is a branch of artificial intelligence (AI). In obstetric ultrasonography, the automation of
measurements of fetal biometry is a potentially useful tool to increase the reliability and
reproducibility of measurements as compared to manual measurements [68]. In addition, it
can reduce scanning time [68] and work-related fatigue and musculoskeletal disorders [69].

With automatic image recognition technology applied on a frozen 2D ultrasound
image, auto measurement of fetal biometry including biparietal diameter (BPD), head
circumference (HC), abdominal circumference (AC), and femur length (FL) becomes fea-
sible. A study showed a success rate of 91.43% and 100% for auto measurement of HC
and BPD, respectively [67]. Although the inaccuracy for the plane acceptance check for
head parameters was 12.9% [67], such inaccuracy can be corrected by fine-tuning of the
caliper placement manually. In another study, manual adjustment of caliper position was
not required in about two-thirds of cases for HC and FL measurements, but it was required
in more than 80% for the measurement of AC [68]. Auto measuring AC is more difficult
than measuring HC because of the low contrast between the abdomen and surrounding
tissues and the large variability in abdominal shape and appearance [68]. The accuracy of
the auto measurement of HC, AC, and FL was high, and it compared well with previously
published manual-to-manual agreement, but the auto measurements had a tendency to
underestimate biometry, which requires further improvements in the algorithm [68].

With automatic image recognition technology applied on an acquired 3D ultrasound
volume of the fetal head from the BPD plane, SonoCNS allows auto measurement of fetal
biometry including BPD, HC, atrium of the posterior horn of the lateral ventricle (Vp),
transcerebellar diameter (TCD), and cisterna magnum (CM) [70] (Figure 14). A recent
study showed that this 3D automated technology reliably identified and measured BPD
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and HC but was less so for TCD, CM, and Vp [70]. Further optimization of this automated
technology is required.
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Figure 14. SonoCNS, after volume acquisition of the fetal brain at biparietal diameter plane at
21 weeks gestation, showing auto measurement of biparietal diameter (BPD), head circumference
(HC), atrium of the posterior horn of the lateral ventricle (Vp), transcerebellar diameter (TCD), and
cisterna magnum (CM).

Fetal Intelligent Navigation Echocardiography (FINE) applied on a STIC volume
using “intelligent navigation” technology allows the automatic display of nine standard
fetal echocardiography views [71]. This can simplify fetal cardiac examinations, reduce
operator dependency, and help detect congenital heart defects [71].

During a real-time 2D morphology scan, identifying and interpreting fetal standard
scan planes are highly complex tasks. With automatic image processing technology [46,70],
these tasks can be assisted by providing feedback or guidance to an ultrasound operator
on whether a correct standard scan plane of fetal anatomy is obtained, whether all parts of
anatomy are checked, and whether unusual findings on a standard plane are identified [72].
The operator can use this technology as a second pass or confirmation to improve diagnostic
accuracy [70]. This can also allow audit and quality improvement [73].

Based on deep learning, image segmentation is an image processing method that can
automatically recognize the location and size of an object in pixels. However, accurate
segmentation of most anatomical structures in medical ultrasound is limited by the low
contrast between the target and background of the images [74]. To improve the segmenta-
tion performance of the thoracic wall in fetal ultrasound videos, a novel model-agnostic
method using deep learning techniques in processing time-series information of ultrasound
videos and the shape of the thoracic wall was proposed [75]. Accurate segmentation can
assist ultrasonographers with identifying the thoracic area and its orientation, and it has the
potential to build AI-based diagnostic support models to assess four-chamber view [75].

There are emerging studies on the application of artificial intelligence in obstetric
scan. It is feasible to use 3D ultrasound to automatic measure thymic volume [76]. Two-
dimensional (2D) placental sonographic images can be screened for lacunae, which is a
feature of PAS [77]. Preliminary results are encouraging. Further improvement of algorithm
and technology are required prior to using AI applications in clinical practice.

8. Conclusions

The use of high-resolution ultrasonography can facilitate detailed diagnostic ultra-
sonography, in particular, fetal echocardiography and targeted neurosonography, in at-risk
pregnancies, as suggested by the recent guidelines. The use of radiant flow can improve
the display, especially in complex cardiac or vascular structures. The use of 3D/4D ul-
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trasound may help in the prenatal diagnosis and counseling of some fetal abnormalities.
Select use of linear transducer may enhance the diagnostic capabilities of some superficial
anomalies. Speckle tracking of the fetal heart can allow assessment of fetal heart shape, size
and contractibility, and further studies are required to assess its clinical effectiveness. At
present, automated tools for simple task such as measurement of fetal growth biometry are
a good assistant to routine ultrasonography. Further refinement of automated algorithm is
required, especially for complex tasks, to improve the workflow.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/diagnostics11071217/s1. Video S1. High-resolution ultrasonography of the fetal heart at
20 weeks’ gestation showing four-chamber view with two pulmonary veins connecting to the left
atrium at a high frame rate. Video S2. High-resolution ultrasonography of the fetal brain at 20 weeks’
gestation: (a) mid-sagittal view showing corpus callosum, thalamus, brain stem and cerebellar vermis,
and (b) coronal view through anterior fontanelle showing interhemispheric fissure, corpus callosum
and cavum septi pellcidi, thalami. Video S3. High-resolution ultrasonography of the fetal face at
20 weeks’ gestation: (a) mid-sagittal view showing facial profile, ‘superimposed line’, opening and
closing of mouth, (b) transverse view showing orbits, lips, palate, and maxilla. Video S4. High-
resolution ultrasonography of the fetal neck at 21 weeks gestation: coronal view showing abduction
and adduction of vocal cords. Video S5. High-resolution ultrasound of the fetus at 12–13 weeks’
gestation: (a) mid-sagittal view showing head, neck and facial profile, (b) coronal view showing both
eyes and ears, (c) four-chamber heart at a high frame rate, and (d) color flow imaging showing blood
flow at four-chamber, three-vessel and right subclavian artery views. Video S6. Radiant flow imaging
of the fetal heart at 20 weeks’ gestation: (a) Four-chamber view and bifurcation of the pulmonary
artery, and (b) three-vessel trachea view and right subclavian artery. Radiant flow shows the blood
flow with a sense of depth. Video S7. Radiant flow imaging of the fetal brain at 20 weeks’ gestation
showing callosum artery. Radiant flow shows the blood flow with a sense of depth. Video S8. Radiant
flow imaging of the fetal umbilical–portal venous system at 20 weeks’ gestation: (a) transverse view
of the abdomen showing umbilical vein, left portal vein, and right portal vein, ductus venosus and
main umbilical vein, and (b) sagittal view showing the merging of ductus venosus, left hepatic vein,
inferior vena cava into the right atrium of the heart. Radiant flow shows the blood flow with a sense
of depth. Video S9. A cine loop of glass-body mode of a spatio-temporal image correlation (STIC)
volume in color Doppler showing a rendered image of a normal fetal heart in a cardiac cycle at
20 weeks’ gestation. Video S10. A cine loop of three-dimensional rendered images of the fetal long
bones at 20–22 weeks’ gestation: (a) upper limb including humerus, ulnar, radius and five fingers,
and (b) upper and lower limbs. (c) A video clip of four-dimensional rendered image of fetal spine at
20 weeks’ gestation.
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