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Abstract: In China, organophosphate esters (OPEs) are widely used in indoor environments. How-
ever, there is little information regarding the internal and external exposure of university students
to OPEs. Therefore, in this study, nine OPEs and eight OPE metabolites (mOPEs) were measured
in indoor dust and atmospheric PM2.5 samples from a university campus in Shanghai, as well as
in urine samples collected from the university students. The total concentration of OPEs in the
indoor dust in female dormitories (1420 ng/g) was approximately twice that in male dormitories
(645 ng/g). In terms of indoor PM2.5, the highest OPE concentration was found in meeting rooms
(105 ng/m3, on average), followed by chemical laboratories (51.2 ng/m3), dormitories (44.9 ng/m3),
and offices (34.9 ng/m3). The total concentrations of the eight mOPEs ranged from 279 pg/mL to
14,000 pg/mL, with a geometric mean value of 1590 pg/mL. The estimated daily intake values based
on the indoor dust and PM2.5 OPE samples (external exposure) were 1–2 orders of magnitude lower
than that deduced from the concentration of urinary mOPEs (internal exposure), indicating that
dermal contact, dust ingestion, and inhalation do not contribute significantly to OPE exposure in the
general population. Moreover, additional exposure routes lead to the accumulation of OPEs in the
human body.

Keywords: indoor exposure; organophosphate esters; organophosphate ester metabolites; urine;
external exposure; internal exposure

1. Introduction

The indoor environment has the most direct impact on human health and socioe-
conomic development [1]. Poor indoor environments increase the burden on human
immune systems, leading to asthma, leukemia, immune infertility, lung cancer, and other
diseases [2,3]. With increasing industrial development in China, new building materials,
decoration materials, and consumer goods are produced and used in large quantities,
along with decreased ventilation in energy-efficient buildings [4]. These developments
have led to the emergence of organic compounds, such as flame retardants, plasticizers,
surface antifouling agents, and surfactants, which were rarely found in Chinese indoor
environments decades ago but are now important “modern” indoor exposure factors.

As substitutes of brominated flame retardants, organophosphate esters (OPEs) are
widely used as flame retardants, plasticizers, stabilizers, and defoamers for various con-
sumer and industrial products because of their excellent flame retardant performance and
flexibility [5]. According to the Chinese Flame Retardant Industry Report (2014–2016), the
market share of OPEs produced in China accounts for 30% of the global flame retardant
usage (approximately 620,000 tons) [6]. As OPEs are not chemically bound to the product,
they are likely to be released into the ambient environment from the production and use
of these materials via volatilization, abrasion, diffusion, and leaching processes [7]. OPEs
have been widely detected in various environmental matrices and organisms, including
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the atmosphere [8], water and sediments [9–11], indoor dust [12,13], soil [14], and fish [15].
OPEs in the environment can enter human bodies through dermal contact, dust ingestion,
inhalation, and dietary intake, and subsequently undergo accumulation. Considering
human breast milk as an example, the mean OPE content in breast milk (3.61 ng/mL) [16]
was much higher than that of perfluoroalkyl substances (0.197 ng/mL) [17] and was close
to that of polybrominated diphenyl ethers (3.81 ng/g, converted from the average lipid
content) [18]. Recent studies have found that OPEs have various negative effects, including
neurotoxicity, reproductive toxicity, carcinogenicity, endocrine disruption, and genetic
toxicity, and their environmental hazard potentials are gradually being confirmed [19,20].
Tri(1,3-dichloro-2-propyl) phosphate (TDCIPP), tris(1-chloro-2-propyl) phosphate (TCIPP),
and triphenyl phosphate (TPHP) have mutagenic and carcinogenic effects, which alter hu-
man thyroid hormone levels [21,22] and lead to endocrine disruption [23]. As a neurotoxin,
TDCIPP [24] can also lead to asthma. Meanwhile, TPHP has been proven to present contact
allergy effects and adverse effects on fertility, while TDCIPP has been related to changes
in male hormone levels and a decrease in semen quality [25]. As these chemicals are
continuously released from OPE-containing materials in enclosed environments, particles
are often preferentially adsorbed on indoor dust and air with potential adverse health
effects via indoor exposure. Therefore, indoor exposure to OPEs is attracting increasing
research attention [26].

With modernization and urbanization, China’s indoor environment has undergone
tremendous changes; moreover, China presents unique population and exposure charac-
teristics. To date, research on indoor exposure to OPEs has mainly focused on the family
environment [7,27,28]. However, the information available regarding the indoor operating
environment in universities is limited, which includes offices where projectors, computers,
printers, and electronic equipment are widely used; chemical analysis laboratories; or
crowded university dormitories. Therefore, we need to obtain more data on the charac-
teristics of OPE pollution in different indoor environments to assess the health risks for
full-time university students exposed to OPEs. In general, OPEs are easily metabolized into
their respective diesters in the human body [29] and produce various phase II conjugate
metabolites [30–33]. The existence of OPE metabolites in human urine, which is relatively
easy to collect via biological monitoring, could provide information regarding the in vivo
exposure dose.

Environmental pollution likely enters the human body through different ways after
contact with human body; this is considered as external exposure. On the other hand, initial
chemical dosage absorbed and distributed throughout the body via systemic circulation
is considered as internal exposure. In this study, indoor dust and fine particulate matter
(PM2.5) samples were collected from a dormitory, office, meeting room, and chemical labo-
ratory of a university in Shanghai. Urine samples were collected from university students
aged 22–30 years. Nine OPEs and eight mOPEs were selected as target compounds. The
purpose of this study was to (a) determine the concentration, profile, and lifetime carcino-
genic risk of OPEs in different indoor environments of a university and (b) investigate
the levels of mOPEs in the urine samples of university students, infer the actual exposure
level according to the internal exposure dose of mOPEs, and compare this value with the
estimated external exposure level.

2. Materials and Methods
2.1. Sample Collection and Chemicals

Sampling was conducted from December 2017 to July 2018 at Shanghai University,
which is located in the suburban area of Shanghai, China. PM2.5 samples (n = 37 in
total) were randomly selected from offices (n = 12), chemical analysis laboratories (n = 9),
dormitories (n = 12), and meeting rooms (n = 4). Quartz filters (QMA, Whatman, Boston,
MA, USA) with a medium flow air particulate matter sampler equipped with a cutting
head for 2.5 µm particles (TH-150, Tianhong, Wuhan, PRC) were applied at a sampling
flow of 0.1 m3/min for 8 h. Indoor dust samples were collected from female (n = 48) and
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male dormitories (n = 47). A household vacuum cleaner was used to collect indoor dust
from apartment dormitories (Figure S1 in the Supporting Information). All the collected
quartz filters and screened dust samples were stored in a freezer at −29 ◦C for pretreatment.
Morning urine samples (n = 60) were collected from female (n = 24) and male university
students (n = 36) recruited from Shanghai University. The study protocol was reviewed
and approved by the Ethics Committee of Shanghai Zhabei District Shibei Hospital. Each
volunteer was asked to fill out a questionnaire, including information such as age, sex,
smoking status, allergy history, and use of electronic devices. The collected urine samples
were immediately transferred to a laboratory freezer maintained at −29 ◦C.

Nine triester OPEs and eight diester mOPEs were analyzed: triethyl phosphate (TEP),
tri-n-propyl phosphate (TPP), tris(2-butoxyethyl) phosphate (TBOEP), tris(2-ethylhexyl)
phosphate (TEHP), TCIPP, TDCIPP, TPHP, tris(methylphenyl) phosphate (TMPP), tris(2-
chloroethyl) phosphate (TCEP), diphenyl phosphate (DPHP), di(methylphenyl) phosphate
(DMPP), diethyl phosphate (DEP), bis(2-ethylhexyl) phosphate (BEHP), bis(2-butoxyethyl)
hydrogen phosphate (BBOEP), bis(2-chloroethyl) phosphate (BCEP), bis-(1-chloro-2-propyl)
phosphate (BCIPP), and bis(1,3-dichloro-2-propyl) phosphate (BDCIPP). More details are
provided in the Supporting Information (Table S1).

2.2. Chemical Analysis

OPEs and mOPEs were extracted from indoor dust/PM2.5 and human urine samples,
respectively. Nine OPEs were analyzed using a gas chromatography-mass spectrometer
(GC/MS, 7890A/5975C, Agilent, CA, USA). Eight mOPEs were analyzed using an Agilent
1260 liquid chromatograph coupled with an Agilent 6460 triple quadrupole mass spectrom-
eter (Agilent, Palo Alto, CA, USA). Details regarding sample preparation and instrumental
analysis are provided in the Supporting Information.

2.3. Quality Assurance and Quality Control

Every 10 samples were equipped with a procedural blank to monitor contamination
and environmental interference during the experimental operation. The limit of quan-
tification (LOQ) was set to three times the standard deviation of the blank samples. The
recoveries of the two internal standards of OPEs were as follows: 82% ± 19% for d15-TPHP,
and 89% ± 20% for triamyl phosphate. The recoveries of deuterated internal standards
for mOPEs were as follows: 90% ± 18% for d10-DPHP, 93% ± 16% for d10-BDCIPP, and
91% ± 20% for d8-BBOEP. The LOQ values of the OPEs in the indoor dust and PM2.5 were
0.24–21.5 ng/g and 10.0–1340 pg/m3, respectively. Meanwhile, the LOQ of the mOPEs in
the urine samples ranged from 0.84 pg/mL to 21.9 pg/mL.

2.4. Statistical Analysis

Considering biological diversity, the specific gravity (SG) of the urine was used to
correct the concentration of the target substance in the urine. The concentration of the
object below the detection limit was set to 0. Further, 1/2 LOQ was used as the substitute
for concentrations below the LOQ. Positive matrix factorization (PMF) was used to estimate
the source information of the target analytes in different media. Statistical analyses were
performed using Origin 8.0 (OriginLab Corporation, Northampton, MA, USA) and SPSS
(version 19.0, SPSS Inc., Chicago, IL, USA).

3. Results and Discussion
3.1. Concentration Distribution of OPEs in Indoor Dust and Atmospheric PM2.5

Seven of the nine targeted OPE compounds were found in both the indoor dust and
PM2.5 at detection rates ranging from 78–99% and 97–100%, respectively, indicating that
OPEs are widespread in indoor campus environments. Therefore, ΣOPEs are considered
as the sum of concentrations of these seven individual compounds (TEP, TCEP, TCIPP,
TDCIPP, TPHP, TBOEP, and TMPP). The concentrations of ΣOPEs in indoor dust and PM2.5
are shown in Figure 1, and the distribution of the OPE data is listed in Table S2. The
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concentration range of ΣOPEs was 0.39–6480 ng/g (mean value: 1040 ng/g) in the indoor
dust samples. Specifically, TPHP (39.0%) was the predominant compound, followed by
TDCIPP (28.1%). A similar profile was observed for the indoor dust of a Canadian e-waste
dismantling facility [34]; e-waste recycling regions in Guangdong, China [35]; and several
microenvironmental floors in Beijing, China [36]. The concentration range of ΣOPEs was
0.015–287 ng/m3 (mean value: 50 ng/m3) in the indoor PM2.5, wherein TCEP (40.8%)
was the predominant compound, followed by TBOEP (29.0%). A similar pattern was
observed in the indoor PM2.5 of classrooms in Norway [37]. Cl-OPEs presented the highest
contribution to indoor dust (51.0%) and PM2.5 samples (65.2%). The ΣOPE concentration
measured in the female dormitory (1420 ng/g) was approximately twice that measured in
the male dormitory (645 ng/g). Aryl-OPEs and Cl-OPEs presented higher contributions in
female dormitories, whereas Cl-OPEs were dominant in male dormitories (Figure 1). TPHP
(48.9%), TDCIPP (23.8%), and TCIPP (10.0%) presented the highest contributions to the
dust in the female dormitories, while TDCIPP (37.7%), TCEP (22.1%), and TCIPP (11.5%)
were dominant in the male dormitories. TPHP has been detected in nail polish, and DPHP
was measured in urine samples from female participants who applied nail polish [38]. This
indicates that the different lifestyles of males and females can affect their exposure to the
indoor environment. The concentrations of OPEs in indoor dust have been reported in
many countries (Table S3). In general, the concentrations of OPEs in this study were similar
to those reported for Kuwait, New Zealand, Germany, and Saudi Arabia [39–42], which
were one order of magnitude lower than those reported in developed countries, such as the
United Kingdom, Sweden, and Japan [43–45], and nearly one order of magnitude higher
than those reported in Pakistan, Egypt, and Nepal [13,39,46].
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Regarding indoor PM2.5, the highest concentration of ΣOPEs was found in meeting
rooms (105 ng/m3, on average), followed by chemical laboratories (51.2 ng/m3), dormito-
ries (44.9 ng/m3), and offices (34.9 ng/m3). Cl-OPEs were the dominant OPE compounds
in indoor air PM2.5, followed by alkyl-OPEs. The OPE profiles were similar among offices
(TCEP, 36.2%; TBOEP, 28.0%; and TCIPP, 27.0%), meeting rooms (TCEP, 68.6%; TCIPP,
14.3%; and TBOEP, 14.0%), and dormitories (TBOEP, 40.7%; TCEP, 39.9%; and TCIPP,
13.6%), but different from those in laboratories (TDCIPP, 32.2%; TBOEP, 29.8%; and TCEP,
20.6%). Previous studies have mostly focused on indoor air in homes and workplaces (e.g.,
offices, laboratories, and shops); for comparison, these values are listed in Table S4. In
general, the OPE concentration (mean value: 50 ng/m3, range: 0.015–287 ng/m3) in this
study was similar to the levels of ΣOPEs reported in Switzerland (3.90–270 ng/m3) [47]
and Spain (1.59–202 ng/m3) [48], but was several orders of magnitude lower than those
reported in developed countries, such as Sweden (101–1900 ng/m3) [49], the United States
(2220–1,040,000 ng/m3) [50], and Vietnam (540–13,000 ng/m3) [51].

3.2. Source Analysis for Indoor Dust and Atmospheric PM2.5

The OPE compound concentrations were determined using the United States Environ-
mental Protection Agency (USEPA) PMF 5.0 model to evaluate the contribution of OPE
sources to the indoor environments of the university (additional details in the Support-
ing Information (Table S9)). According to the PMF software analysis, three key factors
were extracted from the indoor dust and PM2.5 in the study area. For both indoor dust
and PM2.5 (Figure 2), the markers of factor 1 were mainly TCIPP and TCEP. Specifically,
large amounts of TCEP are used in buildings, and may remain active sources for several
years [52]. Meanwhile, TCIPP is a common substitute for pentabromodiphenyl ether in
polyurethane foam [19]. Thus, it was preliminarily speculated that factor 1 was indicative
of the release from building materials and furniture. For these OPEs, inhalation is expected
to be a more dominant intake pathway than dust ingestion and dermal contact [53]. Factor
2 was characterized by high loadings of TDCIPP, TPHP, and TMPP. TDCIPP is commonly
used as an additive in polyurethane foam padding used in furniture, children’s foam prod-
ucts, and automobile upholstery [54,55]. Frequent use of electronics was associated with
higher TDCIPP hand wipe levels [56]. TPHP is one of the most effective flame retardants for
many polymers and can be used in hydraulic fluids [52] and polyvinyl chloride (PVC) [57].
Zheng et al. [35] found that TPHP was the main OPE in the indoor dust at e-waste recycling
stations in South China. TMPP can also be used in hydraulic fluids [52] and PVC [57]; it
has also been reported to be the main organophosphate flame retardant in e-waste disposal
sites in southern China [58]. Therefore, factor 2 was likely attributed to the use of electronic
equipment. Factor 3 was heavily loaded with TBOEP and TEP. Alkyl-OPEs are mainly used
as plasticizers in unsaturated polyester resins, cellulose acetate, PVC, synthetic rubber, and
other materials [59]. In addition, they can also be used as defoaming agents in coatings,
hydraulic oils, and floor waxes [60]. TBOEP has been reportedly used as an additive in
floor polishing in school indoor environments [37]. Therefore, factor 3 was speculated to
be indicative of the use of decoration materials or other consumer goods.
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3.3. Concentration Distribution of mOPEs in Human Urine Samples

The SG-adjusted geometric mean (GM) concentrations and profiles of eight mOPEs in
the collected urine samples are illustrated in Figure 3, and the distribution of the mOPE
data is listed in Table S5. Aryl-mOPEs (DPHP, 78.3%) and alkyl-mOPEs (DEP, 91.7%;
BBOEP, 78.3%; and BEHP, 75.0%) presented high detection frequencies in all urine samples.
Cl-mOPEs were observed with detection frequencies of less than 50%, for which similar
patterns were reported for the detection frequencies of urinary mOPEs in a general exposed
population in China [61]. The total concentrations of the eight mOPEs (ΣmOPEs) ranged
from 279 pg/mL to 14,000 pg/mL, with a GM value of 1590 pg/mL. The ΣmOPE concen-
trations in the female urine samples were higher than those in the male urine samples, but
the difference was not significant (p > 0.05). Alkyl-mOPEs were the predominant mOPEs
in both male and female urine samples. The proportion of dominant mOPE monomers in
the female urine samples was as follows: DEP (40.8%) > DPHP (26.7%) > BCEP (12.6%).
In contrast, in the male urine samples, the proportion of dominant mOPE monomers
was DEP (41.9%) > BCEP (17.8%) > BBOEP (15.4%). It has been reported that there are
significant differences between males and females in terms of exposure, toxicokinetics,
and reactions to chemicals [62,63]. The results in this study show that, except for DPHP,
gender differences had no significant effect on the distribution of mOPEs in urine samples.
However, the small sample size analyzed in these studies may be subject to certain biases.
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The main mOPE monomers reported in China and globally were BDCIPP and DPHP,
which were 2–3 orders of magnitude higher than the concentration levels in this study,
indicating that the internal exposure degrees of TDCIPP and TPHP in this study area
were relatively low (Table S6). This might be attributed to the different indoor uses of
OPEs; for example, the United States has a high demand for flame retardant interior
furniture [31,64]. Although organic toxic pollutants in the environment may form pollution
sinks in the indoor environment, pollutants such as OPEs physically added to the products
may function as a pollution source. We also compared the urinary mOPE concentrations
with the concentrations of their corresponding parent OPEs in indoor environments on
campus and found no significant correlation (Tables S7 and S8). This may be because indoor
atmospheric particulate matter or dust concentrations only reflect the exposure pathways
of dermal contact and respiratory intake, whereas, for the general population, dietary
intake is the predominant pathway. In addition, there are differences in the metabolic
mechanism of each OPE upon entry into the human body [65].

3.4. Risk Assessment of OPEs

Details regarding the estimated daily intake (EDI), hazard index (HI), and carcinogenic
risk (CR) of OPEs via air and dust exposure are provided in the Supporting Information
(Tables S10 and S11). The average and high exposure EDItotal values of students with seven
OPEs, as estimated by indoor air intake, dust intake, and skin absorption, were 5.10 ng/kg
bw/d and 14.0 ng/kg bw/d, respectively. The daily exposure dose of OPEs calculated
by indoor air intake and dust intake was similar to the EDI value of the drinking water
intake of OPEs reported in New York [66], and approximately 10 times lower than the OPE
EDI values of indoor air intake and dust intake in the United States [50]. The EDIinhalation
value of OPEs was higher than that of the indoor air PM2.5 of subway station [48], while
EDIingestion was lower than that in the indoor dust in Guangzhou [7]. In general, the EDIs
of OPEs in indoor air and dust in this study were in the low-middle level. The HI value of
the OPE monomers with non-potential carcinogenic risk was less than 1, and the CR value
of the OPE monomers with a potential carcinogenic risk was less than 1 × 10−6, which
indicates that there was no potential health risk when exposed to indoor air PM2.5 and
indoor dust in this university.

mOPEs in urine are non-invasive biomarkers that can be used to identify and quan-
tify human exposure to OPEs. They provide comprehensive information on system load,
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including all types of sources and exposure routes (such as inhalation, dermal contact, and
oral ingestion), and can be used to quantify personal exposure. Biotransformation can
be an important determinant of the toxicological effects and bioaccumulation of xenobi-
otics [32]. Despite the limitations of the OPE kinetic or metabolic data in terms of the human
body [67], metabolism studies of five mOPEs (TCEP, TCIPP, TDCIPP, TPHP, and TBOEP)
in human liver microsomes (HLMs) and S9 fractions provided some evidence of their
bioavailability and toxicity in humans [32]. Herein, the individual internal exposure OPE
doses according to the concentration of related mOPEs in the urine samples were estimated
(Table 1). For EDIHLM, the exposure level of donors revealed that the concentration of TCEP
was the highest (103 ng/kg bw/day), followed by TPHP (52.5 ng/kg bw/day), TBOEP
(8.07 ng/kg bw/day), TCIPP (4.97 ng/kg bw/day), and TDCIPP (3.57 ng/kg bw/day).
For EDIS9, this order was TPHP (118 ng/kg bw/day), TCEP (55.8 ng/kg bw/day), TBOEP
(40.9 ng/kg bw/day), TCIPP (5.86 ng/kg bw/day), and TDCIPP (2.42 ng/kg bw/day).
All the estimated HI levels were less than 1, suggesting that there was no significant risk of
exposure to OPEs in this study.

In addition, it was found that the OPE EDI values estimated by exposure to indoor
dust and PM2.5 (external exposure) were 1–2 orders of magnitude lower than that deduced
from the concentration of urinary mOPEs (internal exposure), indicating that dermal
contact, dust ingestion, and inhalation do not contribute significantly to OPE exposure in
the general population. Studies have found that dietary intake is another important means
of human exposure to OPEs [68]. TCEP has been detected in eggs from southern China
at a detection rate of 100% [69]. A comprehensive investigation of OPE concentrations in
Chinese food indicated that TCEP (mean value: 0.74–29.8 ng/g) was the most important
OPE in various food categories, including rice, cereals, vegetables, meat, and fruits [70]. In
China, rice intake is considered to be the main means of exposure to OPEs in foods, as it
presents the highest contribution to total intake, accounting for approximately 60% [71].
The highest levels of OPEs have been reported in cereals, which may be the main path of
dietary intake for the Chinese population [72].
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Table 1. EDIs (ng/kg bw/d), HI, and CR from the exposure of OPEs.

Analytes TEP TBOEP TCEP TCIPP TDCIPP TPHP TMPP ΣOPEs Alkyl-
OPEs Cl-OPEs Aryl-OPEs

RfD 1.30 × 105 1.50 × 104 7.00 × 103 1.00 × 104 2.00 × 104 7.00 × 104 1.30 × 104

SFO 2.00 × 10−8 3.10 × 10−8

EDIs (ng/kg bw/d), HI and CR from the exposure of OPEs in indoor dust and air

EDIingestion
Average 1.33 × 10−3 5.24 × 10−3 6.45 × 10−3 5.30 × 10−3 3.36 × 10−2 3.29 × 10−2 5.88 × 10−3 1.61 × 10−1 7.26 × 10−3 6.95 × 10−2 3.76 × 10−2

High 2.95 × 10−3 1.69 × 10−2 4.81 × 10−2 4.04 × 10−2 1.08 × 10−1 1.50 × 10−1 1.85 × 10−2 3.85 × 10−1 1.99 × 10−2 1.97 × 10−1 1.69 × 10−1

EDIdermal adsorption
Average 1.41 × 10−3 5.55 × 10−3 6.84 × 10−3 5.62 × 10−3 3.56 × 10−2 3.49 × 10−2 6.24 × 10−3 1.71 × 10−1 7.70 × 10−3 7.37 × 10−2 3.99 × 10−2

High 3.79 × 10−3 2.17 × 10−2 6.18 × 10−2 5.18 × 10−2 1.39 × 10−1 1.93 × 10−1 2.37 × 10−2 4.95 × 10−1 2.55 × 10−2 2.53 × 10−1 2.17 × 10−1

EDIinhalation
Average 5.25 × 10−2 1.55 1.47 7.22 × 10−1 1.04 × 10−1 8.16 × 10−2 4.41 × 10−2 4.77 1.68 3.15 1.46 × 10−1

High 1.54 × 10−1 3.79 5.34 1.98 1.22 2.56 × 10−1 3.54 × 10−1 1.31 × 101 3.95 8.53 6.10 × 10−1

EDItotal
Average 5.52 × 10−2 1.56 1.48 7.33 × 10−1 1.73 × 10−1 1.49 × 10−1 5.62 × 10−2 5.10 1.69 3.30 2.24 × 10−1

High 1.60 × 10−1 3.83 5.45 2.07 1.46 5.99 × 10−1 3.97 × 10−1 1.40 × 101 3.99 8.98 9.95 × 10−1

HI
Average 4.25 × 10−7 1.04 × 10−4 2.11 × 10−4 7.33 × 10−5 8.66 × 10−6 2.13 × 10−6 4.33 × 10−6

High 1.23 × 10−6 2.55 × 10−4 7.78 × 10−4 2.07 × 10−4 7.32 × 10−5 8.55 × 10−6 3.05 × 10−5

CR
Average 2.96 × 10−8 5.37 × 10−9

High 1.09 × 10−7 4.54 × 10−8

EDIs (ng/kg bw/day) and HI calculated under various assumptions of urine excretion of OPEs in different sex groups
Daily intakes estimated based on Fue values of OPEs in human liver microsomes system (EDIHLM)

EDItotal
Male 9.22 118 5.68 4.08 60 197

Female 6.92 88.8 4.26 3.06 45 148

HI
Male 6.15 × 10−4 1.69 × 10−2 5.68 × 10−4 2.04 × 10−4 8.58 × 10−4 1.92 × 10−2

Female 4.61 × 10−4 1.27 × 10−2 4.26 × 10−4 1.53 × 10−4 6.43 × 10−4 1.44 × 10−2

CR
Male 2.36 × 10−6 1.26 × 10−7

Female 1.78 × 10−6 9.49 × 10−8

Daily intakes estimated based on Fue values of OPEs in human S9 fraction system (EDIS9)

EDItotal
Male 46.7 63.8 6.7 2.76 135 255

Female 35 47.8 5.02 2.07 101 191

HI
Male 3.11 × 10−3 9.11 × 10−3 6.70 × 10−4 1.38 × 10−4 1.93 × 10−3 1.50 × 10−2

Female 2.33 × 10−3 6.83 × 10−3 5.02 × 10−4 1.03 × 10−4 1.45 × 10−3 1.12 × 10−2

CR
Male 1.28 × 10−6 8.56 × 10−8

Female 9.56 × 10−7 6.42 × 10−8
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4. Conclusions

The OPE concentrations and EDIs in the indoor dust and atmospheric PM2.5 samples
obtained in this study were relatively low, as compared with global levels. Specifically,
the concentration level of mOPEs was 2–3 orders of magnitude lower than that reported
in domestic and foreign studies. Three key contributing factors were extracted using the
PMF model of the OPE concentrations in the indoor dust and PM2.5 samples, revealing that
building materials and furniture, electronic equipment, and the use of decoration materials
and other consumer goods were the main contributing factors. The OPE EDI values
estimated using the OPE indoor dust and PM2.5 samples were 1–2 orders of magnitude
lower than that deduced by urinary mOPEs. These findings can act as a foundation
for the establishment of a comprehensive evaluation mechanism for indoor and outdoor
environments in the future. Upon comparing internal and external exposure, it was found
that dermal contact, dust ingestion, and inhalation did not contribute significantly to OPE
exposure in the general population. Instead, dietary intake may be the main exposure
pathway contributing to the health risks of the general population. Full-time college
students typically reside and study on campus for several years, which presents a good
research object for studying the health effects of indoor exposure. In the future, extensive
research should be carried out, including on dietary exposure, in order to obtain more
accurate data on the exposure to OPEs in the general population.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/ijerph18179212/s1, Figure S1: Sample collection from indoor environment, Table S1: Desig-
nation and structural formula of OPEs and its metabolites (mOPEs), Table S2: Distribution of OPEs
concentrations found in indoor dust (n = 95) and airborne PM2.5 (n = 37), Table S3: Concentrations of
OPEs in indoor dust worldwide (ng/g), Table S4: Concentrations of OPEs in indoor air (gas and/or
PM phase) samples worldwide (ng/m3), Table S5: Distribution of SG adjusted OPE metabolite con-
centrations found in urine (n = 60) from Shanghai (pg/mL), Table S6: SG adjusted geometric mean
or median concentrations of urinary mOPEs worldwide (pg/mL), Table S7: Correlation coefficient
of mOPEs in human urine and OPEs in indoor dust, Table S8: Correlation coefficients of mOPEs in
human urine and OPEs in indoor atmospheric PM2.5 samples, Table S9: The parameters of input files
in PMF, Table S10: Exposure parameters for children and adults, and Table S11: Parameters used for
calculation of total EDI and HI of OPEs in China.
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