
Why Phenotype Robustness Promotes Phenotype

Evolvability

Xinzhu Wei and Jianzhi Zhang*

Department of Ecology and Evolutionary Biology, University of Michigan

*Corresponding author: Email: jianzhi@umich.edu.

Accepted: December 7, 2017

Abstract

Robustness and evolvability are fundamental characteristics of life whose relationshiphas intrigued generations of biologists. Studies

of several genotype–phenotype maps (GPMs) such as the map between short DNA sequences and their bindings to transcription

factors showed that phenotype robustness (PR) promotes phenotype evolvability (PE), but the underlying reason is unclear. Here, we

show mathematically that the expected PE is a monotonically increasing function of the expected PR in random GPMs. Population

genetic simulations confirm that increasing PR raises the probability that a target phenotype appears in a population within a given

time, under empirical as well as randomly rewired GPMs. These and other results demonstrate that the positive correlation between

PR and PE is mathematical rather than biological. Hence, it is unsurprising to observe this correlation in every empirical GPM

investigated, although the magnitude of the correlation may vary due to influences of various biological factors.
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Robustness and Evolvability

Genetic robustness refers to phenotypic invariance in the face

of mutation and is a widespread phenomenon at multiple

levels of biological organization (de Visser et al. 2003;

Kitano 2004; Wagner 2005b; Masel and Trotter 2010;

Yang et al. 2014; Ho and Zhang 2016). Evolvability is the

ability to produce (adaptive) phenotypic variation (Wagner

and Altenberg 1996; Kirschner and Gerhart 1998; Wagner

2005b; Masel and Trotter 2010). Although robustness and

evolvability are both fundamental characteristics of life, their

relationship has been a long-standing controversy (Kitano

2004; Wagner 2005b; Masel and Trotter 2010). On the one

hand, they are apparently antagonistic to each other, because

the higher the robustness, the lower the probability with

which a mutation results in a new phenotype (Ancel and

Fontana 2000; Carter et al. 2005). On the other hand, robust-

ness has been suggested to promote evolvability, not least

because robustness allows the accumulation in a population

of cryptic genetic variations that may be exposed and adaptive

in a new environment (Aldana et al. 2007; Elena and Sanjuan

2008; Masel and Trotter 2010). Experimental evolution of

RNA enzymes (Hayden et al. 2011), RNA viruses (McBride

et al. 2008), and bacteria (Stiffler et al. 2015) showed that

robustness can indeed enhance evolvability under certain con-

ditions, but the generality of these findings is unknown.

Theoretical analysis of the robustness–evolvability relation-

ship is often conducted in the context of a genotype–pheno-

type map (GPM; Fig. 1A), where each node is a genotype,

each edge connects two genotypes that differ by one muta-

tion, and nodes are colored based on their phenotypes

(Wagner 2012). The set of connected nodes with the same

color is commonly referred to as a neutral network (Schuster

et al. 1994), because wandering in this network alters the

genotype but not the phenotype. Note, however, that phe-

notypes are defined qualitatively in this context.

A decade ago, Wagner revolutionized the study of the

robustness–evolvability relationship by distinguishing between

genotype robustness (GR) and phenotype robustness (PR) and

between genotype evolvability (GE) and phenotype evolvabil-

ity (PE) (Wagner 2008). GR is the probability with which a

random mutation occurring in a given genotype does not

change its phenotype. By contrast, PR is the mean GR of all

genotypes exhibiting a given phenotype. GE is the fraction of

all phenotypes reachable by one mutation from a given ge-

notype. By contrast, PE is the fraction of all phenotypes reach-

able by one mutation from any genotype exhibiting a given

phenotype. Wagner and colleagues found that, within a

GPM, GR and GE are negatively correlated but PR and PE

are positively correlated for the phenotypes of RNA structure

(Wagner 2008), protein structure (Ferrada and Wagner
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2008), and DNA binding to transcription factors (TFs) (Payne

and Wagner 2014). However, the broader generality and the

underlying cause of the positive PR–PE correlation are unclear.

PE Is Expected to Increase Monotonically
with PR in Random GPMs

That a positive PR–PE correlation is observed in every GPM

investigated (Ferrada and Wagner 2008; Wagner 2008; Payne

and Wagner 2014) prompts us to investigate the possibility

that this correlation is mathematical rather than biological. To

this end, we consider a random GPM between G DNA

sequences (genotypes) and their binding to K TFs (pheno-

types). Each node represents a genotype of an l-nucleotide

DNA sequence, and each phenotype represents the binding

of the DNA to a TF. Let the number of genotypes showing

phenotype i (i.e., the number of binding sequences of TFi) be

gi. With a single-nucleotide replacement, each genotype can

change to one of m¼ 3 l other genotypes, which are collec-

tively called the neighborhood of the focal genotype. In this

random GPM, under the assumption that 1� gi�G for any

i, it can be shown (see Materials and Methods) that the

expected PR of binding to TFi is

EðPRiÞ � gi=G; (1)

whereas the corresponding expected PE is

EðPEiÞ � 1�
X

j 6¼i

e�mgjgi=G=ðK � 1Þ: (2)

Hence,

EðPEiÞ � 1�
X

j 6¼i

e�mgjEðPRiÞ=ðK � 1Þ: (3)

Equation (3) shows that the expected PEi is a monotonically

increasing function of the expected PRi. In other words, the

expected PR and PE are intrinsically positively correlated in

random GPMs. Importantly, equation (3) does not rely on

any specific distribution of gi.

To evaluate the accuracy of the above formulas that were

derived with approximations, we simulated a random GPM

with K¼ 80 TFs that all use 8-mer binding sequences. We

chose these parameters because the empirically determined

yeast and mouse TF-DNA binding GPMs have 89 and 105

TFs, respectively, and their binding sequences inferred from

microarray data all contain 8 nucleotides (see Materials and

Methods). To examine the variations of PR and PE in the entire

range of possible gi values, we chose the gi values to be 15, 25,

35, . . ., and 805. We repeated the simulation 100 times and

calculated the mean empirical PR and PE of binding to each TF.

We found that E(PR) (fig. 1B), E(PE) (fig. 1C), and their relation-

ship (fig. 1D) basedon the analytical formulas are indistinguish-

able from the corresponding average values observed from the

simulation. This was also the case when gi follows a normal

(supplementary fig. S1A–C, Supplementary Material online),

bimodal (supplementary fig. S1D–F, Supplementary Material

online), or exponential (supplementary fig. S1G–I,

Supplementary Material online) distribution, suggesting that

our analytical formulas are sufficiently accurate and general.

The PR–PE Correlation Is Stronger in
Empirical than Randomly Rewired GPMs

We noticed from the analytical and simulation results of ran-

dom GPMs that PE becomes virtually independent of PR when

PR exceeds a certain value (fig. 1 and supplementary fig. S1,

Supplementary Material online). This phenomenon is much

less pronounced in the empirical TF-DNA binding GPMs of

mouse (fig. 2A–C) and yeast (supplementary fig. S2A–C,

Supplementary Material online). To quantitatively compare

empirical with random GPMs, we analytically computed the

expected PR and PE for each TF in a randomly rewired mouse

GPM, where the number of genotypes for each phenotype is

unchanged but the genotype–phenotype relationships are

randomized. Relative to a randomly rewired GPM, the actual

GPM has higher PR and lower PE values for most TFs (fig. 2A

and B). This result is similar to that of Payne and Wagner

(2014), although they computed PR and PE for a TF by ran-

domly rewiring the binding sequences of the focal TF instead

of those of all TFs simultaneously. Furthermore, they did not

examine the relationship between PR and PE in any random or

randomly rewired GPM. We found that the positive rank cor-

relation between PR and PE is greater in the actual GPM than

in each of 100 randomly rewired GPMs (fig. 2D). Similar

results were found when the yeast GPM was compared

with corresponding randomly rewired GPMs (supplementary

fig. S2, Supplementary Material online).

The Increase in the PR–PE Correlation Is
Related to Large Neutral Networks

We hypothesize that the differences between the empirical

GPMs and their randomly rewired GPMs in PR, PE, and PR–PE

correlation are primarily related to the existence of large neu-

tral networks in the former (i.e., genotypes of the same phe-

notypes tend to be connected) but not the latter. On average,

the largest connected network for a mouse (or yeast) TF con-

tains 81% (or 79%) of its binding sequences. This number

drops to 1.2% in the randomly rewired GPMs of both species.

Based on the definitions of PR and PE, it is obvious that, given

gi values, the presence of large neutral networks raises PR but

reduces PE. As a result, PE increases with gi in almost the full

range of gi values in the empirical GPMs (fig. 2B and supple-

mentary fig. S2B, Supplementary Material online), but satu-

rates even in the bottom tenth of gi values in the randomly

rewired GPMs (fig. 2B and supplementary fig. S2B,

Supplementary Material online).
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To further demonstrate that the differences in PR, PE, and

PR–PE correlation between empirical GPMs and their ran-

domly rewired GPMs are due primarily to neutral networks

instead of other properties of empirical GPMs, we created

randomized GPMs with large neutral networks (see

Materials and Methods). Indeed, patterns of PR, PE, and PR-

PE correlation in these GPMs closely resemble those in empir-

ical GPMs (supplementary fig. S3, Supplementary Material

online).

The Biophysics of TF-DNA Binding Creates
Large Neutral Networks

It is interesting to note that, if the binding sequences of a TF

were randomly distributed in a GPM, a population starting

with a weak binding sequence would have to cross deep

binding affinity valleys to reach a strong binding sequence,

which is improbable except in very small populations. Thus,

the presence of strong TF-DNA binding per se implies the

existence of large (qualitatively) neutral networks of its bind-

ing sequences. But what forces have led to the large neutral

networks? It is known that the genotypes for a phenotype

tend to form a large neutral network simply by chance when

the genotype number is sufficiently large. This phenomenon

of percolation is, however, irrelevant here, because the phe-

notype with the largest number of genotypes contains only 2–

3% of all genotypes in the GPMs studied here, much lower

than the lower bound required for percolation (6.25%)

(Gravner et al. 2007).

TF-DNA binding is known to be primarily determined by

specific base pair recognition (von Hippel and Berg 1986), and

at different amino acid binding positions, different base pairs

are preferred due to interaction with hydrogen bonds pro-

vided by appropriately positioned amino acids and peptide

FIG. 2.—PR–PE relationships in the mouse TF-DNA binding GPM and corresponding randomly rewired GPMs. (A) PR increases with the number of

binding sequences in the mouse GPM. Each dot is a TF. (B) PE increases with the number of binding sequences in the mouse GPM. (C) PE is an increasing

function of PR in the mouse GPM. In (A–C), the analytically computed results in corresponding random GPMs are presented by the grey curves. (D) Frequency

distribution of the rank correlation between PR and PE in 100 randomly rewired mouse GPMs. The arrow points to the observed correlation in the mouse

GPM.

FIG. 1.—PR and PE are positively correlated in random GPMs. (A) A hypothetical GPM. Each node represents a genotype, while its color represents its

phenotype. Two genotypes that are one mutational step away from each other are connected by an edge, where a solid edge connects genotypes of the

same phenotype and a dotted edge connects genotypes of different phenotypes. (B) The expected PR increases with the number of binding sequences in

random TF-DNA binding GPMs. Each symbol represents one TF. Solid circles show analytically calculated values while open diamonds show corresponding

means observed from 100 simulations of random GPMs. The observed standard deviation of PR (average 0.0016) is not correlated with the number of

binding sequences. See main text for the parameters of the GPMs used. (C) The expected PR increases with the number of binding sequences in these

random GPMs. The observed standard deviation of PE (maximum 0.0304) is negatively correlated with the number of binding sequences. (D) The expected

PE is a monotonically increasing function of the expected PR in these random GPMs.
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functional groups (von Hippel and Berg 1986; Stormo and

Fields 1998; Afek et al. 2014). The biophysical property of

TF-DNA binding dictates that the binding energy between a

TF and a segment of DNA is largely the sum of the interaction

energies of individual couples of an amino acid residue and a

base pair. Only at 5% of sites does the binding strength de-

viate from the multiplicative expectation by more than 2-fold

(Jolma et al. 2013). The scarcity of epistasis means that the

one-mutation neighborhood of a strong binding sequence of

a TF is likely filled with the binding sequences of the same TF,

because a single-nucleotide change cannot drastically reduce

the TF-DNA binding strength. Indeed, binding sequences with

higher binding affinities tend to have higher GR (Payne and

Wagner 2014). This property leads to the creation of large

neutral networks. A recent extensive analysis of TF-DNA bind-

ing affinities generally supports this notion (Aguilar-Rodr�ıguez

et al. 2017).

PR Facilitates Adaptation in Population
Genetic Simulations under Randomly
Rewired GPMs

Because Wagner’s definition of PE does not explicitly consider

the population genetic process of adaptation, we turn to an-

other, arguably more relevant measure of evolvability—the

probability that a target phenotype appears in a population

within a given time, which we will refer to as PE’. We start

with a haploid adult population with a homogenous geno-

type corresponding to phenotype i, which is optimal in the

current environment. All other phenotypes are lethal. In each

generation, genetic drift occurs such that N offspring are pro-

duced and their genotype frequencies may differ from those

of the parental population. Each offspring has a probability of

l to become a neighboring genotype due to mutation, and

only those with viable phenotypes mature and reproduce (i.e.,

some of the N individuals may not mature). Based on theory

(Nei et al. 1975) and our pilot simulation, we repeat this pro-

cess for 1/l generations to allow the population to reach an

equilibrium level of genetic diversity. An environmental shift

then occurs, which renders phenotype i suboptimal, pheno-

type j (6¼i) optimal, and all other phenotypes still lethal. We

repeat the process of mutation, purifying selection, and drift

over many generations until an individual with phenotype j

appears in the population or the number of generations after

the environmental shift reaches a preset limit T, whichever

occurs first. We examine each and every new phenotype j

(6¼i) and calculate the fraction of phenotypes that can be

reached from i within time T, which is PE’. We repeat the

evolutionary simulation 50 times, each starting from a ran-

domly picked genotype of the phenotype i and present the

average result from these 50 simulations. We consider the

first appearance of the adaptive phenotype rather than the

first fixation of the adaptive phenotype, because the fixation

probability and expected fixation time is the same given N, m,

and selective strength. In all simulations, we use N¼ 100 to

speed up the process.

We first conducted the population genetic simulation un-

der the mouse TF-DNA binding GPM using mouse-

appropriate Nl. When T¼ 10,000 generations is the upper

limit in waiting time for the target phenotype, we found a

positive correlation between the PR of the starting phenotype

and PE’ (q¼ 0.45, P< 10�5; fig. 3A). Similar results were

obtained (fig. 3B) when T is 1,000 (q¼ 0.37, P< 10�4),

100,000 (q¼ 0.46, P< 10�5), or 1,000,000 generations

(q¼ 0.49, P< 10�6). Thus, increasing PR raises the chance

of adaptation upon an environmental shift.

We similarly conducted the population genetic simulation

under the yeast TF-DNA binding GPM using yeast-appropriate

Nl. We again observed that the higher the PR of the starting

phenotype, the higher the probability of appearance of a tar-

get phenotype in the population (fig. 3B).

FIG. 3.—Population genetic simulations show that PR promotes PE’,

which is the probability that a target phenotype appears in a population

within time T. (A) Positive correlation between PR and PE’ under the mouse

GPM when T¼10,000 generations. q, Spearman’s rank correlation coef-

ficient. (B) Rank correlation between PR and PE’ under mouse (asterisks)

and yeast (dots) GPMs, respectively. (C) Positive correlation between PR

and PE’ under a randomly rewired mouse GPM when T¼10,000 gener-

ations. (D) Rank correlation between PR and PE’ under randomly rewired

mouse (asterisks) and yeast (dots) GPMs, respectively. In panels (B) and (D),

all correlations significantly exceed 0 (P<10�4). For mouse, our simulation

used Nl¼0.004 per generation per motif, based on the motif length of

8 nucleotides, mutation rate of 5.4�10�9 per generation per site

(Uchimura et al. 2015), and effective population size of 105 (Phifer-Rixey

et al. 2012). For yeast, our simulation used Nl¼0.016 per generation per

motif, based on its motif length of 8 nucleotides, mutation rate of

2�10�10 per generation per site (Zhu et al. 2014), and effective popula-

tion size of 107 (Wagner 2005a).
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Interestingly, the correlation between PR and PE’ becomes

even stronger when we conducted simulations under ran-

domly rewired mouse and yeast GPMs, respectively (fig. 3C

and D). These results indicate that PR promotes PE’ and that

this property is intrinsic rather than biological.

Implications

Our mathematical and empirical results showed that (1) the

expected PR and PE are intrinsically positively correlated even

in random GPMs; (2) compared with the corresponding ran-

domly rewired GPMs, the mouse and yeast TF-DNA binding

GPMs show stronger PR–PE correlations, likely because of their

largeneutral networks; and (3) these large neutral networks are

explainable by the biophysical nature of TF-DNA binding. While

(1) is a general finding for GPMs of all classes of phenotypes, (2)

and (3) are derived from the analysis of TF-DNA binding GPMs.

Nonetheless, for any phenotype that can be improved by nat-

ural selection, its genotypes must form some neutral networks

such that quantitatively better phenotypes are reachable by

mutation; otherwise, the phenotype could not be improved

by natural selection. Hence, we expect (2) to be true in the

GPM for any adaptable phenotype (when adaption occurs pri-

marily viamutation rather than recombination).Note,however,

that our finding that the expected PR and PE are positively cor-

related in random GPMs does not imply that PR and PE cannot

have a negative correlation even in hypothetical GPMs. For in-

stance,onecould imagineaGPMwhere thegenotypesof some

phenotypes form large neutral networks whereas those of

other phenotypes are largely unconnected. Compared with

the latter group of phenotypes, the former group is expected

to have higher PR but lower PE. Consequently, a negative cor-

relation between PR and PE would result when the two groups

of phenotypes are analyzed together. Nevertheless, such GPMs

shouldbetheexceptionrather thantherule.Hence,observinga

positive PR–PE correlation in an empirical GPM is expected and

does not offer any specific biological insight, as far as Wagner’s

definitions are concerned.

Our population genetic simulations showed that PR pro-

motes PE’ under real and randomly rewired GPMs. PE’ is sim-

ilar to Wagner’s definition of PE except that PE’ is defined in a

population genetic framework and hence is more realistic and

more relevant to actual adaptation. Our population genetic

simulation differs from a previous treatment of the same sub-

ject by Draghi et al. (2010), who found PR to promote PE’

under some but not all circumstances. However, their study

contained a number of simplifying assumptions. For instance,

they assumed that any genotype has a non-zero probability to

show any phenotype by a minimum of one mutation, which is

untrue. In addition, no GPM was explicitly modeled and only

genotypes of the starting phenotype were assumed to form a

neutral network. They also unrealistically assumed that all

genotypes of the same phenotype have equal robustness.

Furthermore, although the robustness of a phenotype

correlates with the number of neighboring phenotypes,

they neglected this correlation in their model. Hence, our

analysis, based on actual and randomly rewired GPMs, cou-

pled with more realistic assumptions, is biologically more rel-

evant than theirs. Note that, Draghi et al. observed a decrease

in PE when PR is very high, which we did not observe in our

study. Because such high PR values are not observed in our

data, our analysis cannot confirm or invalidate their finding.

Together, our findings on the impacts of PR on PE and PE’

demonstrate that observing a positive correlation between PR

and evolvability in an empirical GPM requires no biological

explanation. This said, the magnitude of the positive correla-

tion is certainly impacted by some biological factors, as in the

TF-DNA binding GPMs studied here.

Compared with phenotypes without large neutral net-

works, those with large neutral networks (but the same num-

bersofgenotypes)have twoapparentbenefits. First,mutations

are less likely to alter these phenotypes qualitatively. Second,

theyaremore selectable,meaning thatmutations could lead to

quantitatively fitter but qualitatively unchanged phenotypes.

One drawback is that they have a reduced evolvability.

Nevertheless, it is clear by comparing the mouse (or yeast) TF-

DNA binding GPM with its randomly rewired GPM that the PE

and PE’ reduction in the empirical GPM is moderate while the

PR increase is substantial (figs. 2 and 3 and supplementary fig.

S2, Supplementary Material online).

Kitano contended that there are architectural requirements

for complex systems to be evolvable and that such require-

ments also give rise to robustness (Kitano 2004). If his

“evolvable” meant “selectable,” our results strongly support

his hypothesis, because having a large neutral network given

the number of genotypes is necessary for a phenotype to be

selectable and is also the reason behind its high robustness. If

his “evolvable” is in the sense of PE or PE’, our findings refute

his hypothesis, because the architecture that confers high

evolvability—a lack of neutral networks (given the number

of genotypes)—reduces robustness.

In the case of TF-DNA binding GPMs, large neutral net-

works arise naturally from the biophysics of TF-DNA binding.

It seems likely that, in other systems such as RNA secondary

structures or protein structures, large neutral networks can

also result from physical and/or chemical properties of the

systems. If this conjecture proves to be generally true, it would

mean that simple physical and chemical laws not only permit

the origin of life but also provide life with robustness and

selectability while allowing reasonably high evolvability. This

intriguing possibility is worth exploration in the future.

Materials and Methods

Expected PR and PE in a Random GPM

Let us consider a random GPM, where each node represents a

genotype of l nucleotides and the GPM contains

Robustness and Evolvability GBE
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G¼ð4l � 40:5lÞ=2þ 40:5l ¼ ð4l þ 40:5lÞ=2 unique genotypes

and K phenotypes. The above formula of G was derived by

considering thateachsequence isequivalent to its reversecom-

plementandthat thereare40.5l palindromic l-mers (when l is an

even number) (van Helden et al. 1998). Because palindromic

sequences constitute a tiny fraction (< 0.5l) of all genotypes,

we ignoredtheirpalindromiceffects in the followingmodeling.

As shown in the numerical examples (fig. 1 and supplementary

fig. S1, Supplementary Material online), this approximation is

acceptable. Let the number of unique binding sequences of TFi

be gi. With a single-nucleotide replacement, each genotype

can change to one of m¼ 3l other genotypes, which are col-

lectively called the one-step neighborhood of the focal geno-

type. We assume that 1� gi�G for any i. The expected GR of

a binding sequence of TFi is the expected number of other

binding sequencesofTFi that fall in theone-stepneighborhood

of the focal binding sequence, divided by m. Because the num-

ber of other binding sequences of TFi is gi� 1 and the proba-

bility for any one of them to fall in the one-step neighborhood

of the focal binding sequence is m/(G� 1), the expected GR is

E[GR]¼ [(gi � 1)m/(G � 1)]/m¼ (gi � 1)/(G � 1)� gi/G.

Because PR is the mean GR of all binding sequences of TFi,

the expected PR is E[PR]¼ E[mean GR]¼ E[GR]� gi/G.

Now let us consider another TF (TFj), which has gj binding

sequences. The probability that a particular binding sequence

of TFi is in the one-step neighborhood of a particular binding

sequence of TFj is approximately m/G. Hence, the probability

that a particular binding sequence of TFi is in the neighbor-

hood of any binding sequence of TFj (or more precisely the

expected number of edges between a particular binding se-

quence of TFi and all binding sequences of TFj) is approxi-

mately mgj/G. The expected number of edges between all

binding sequences of TFi and all binding sequences of TFj is

approximately mgigj/G. Because the number of edges be-

tween two phenotypes follows a binomial distribution (with

gigj trials each having a success rate of m/G), the probability

that the phenotype of TFj binding is reachable from the phe-

notype of TFi binding by one mutation from at least one bind-

ing sequence of TFi equals qij ¼1 �
(1�m=GÞgigj � 1� e�

mgi gj
G . Thus, PEi, the fraction of all phe-

notypes reachable from the phenotype of TFi binding

by one mutation, is expected to be
P

j 6¼i qij=ðK � 1Þ ¼
P

j 6¼i

ð1� e�mgjgi=GÞ=ðK � 1Þ ¼ 1�
P

j 6¼i e�mgjgi=G=ðK � 1Þ. One

can substitute gi/G in the above formula by E(PRi) to obtain

E(PEi)¼ 1�
P

j 6¼i e�mgjEðPRiÞ=ðK � 1Þ, which indicates that

E(PE) is an increasing function of E(PR).

Microarray Data

The TF-DNAbindingmicroarraydata for mouse andyeast were

downloaded from UniPROBE (http://the_brain.bwh.harvard.

edu/uniprobe/downloads.php; last accessed December 12,

2017) (Newburger and Bulyk 2009). We defined binding

sequences using the same data and enrichment score (E-score)

cutoff (0.35) as in Payne and Wagner (2014); this cutoff corre-

sponds to a low false discovery rate (Payne and Wagner 2014).

PR and PE Calculation

We considered only single-nucleotide substitutions in com-

puting PR and PE. This is slightly different from a previous

study (Payne and Wagner 2014), in which insertions and

deletions (indels) were also considered. While considering

indels should in theory make the analysis better, Payne and

Wagner (2014) assumed that indels are one nucleotide long

and are restricted to the two ends of a binding sequence,

which are unrealistic. Contemplating the complication of

indels and the problem with the assumption, we decided

not to consider indels. Note that our mathematical model

has a variable m that measures the number of one-step neigh-

bors per node that in theory takes into account all kinds of

mutations. Hence, ignoring indels in the empirical analysis

does not impact our mathematical analysis. Unlike the previ-

ous study (Payne and Wagner 2014), we considered all bind-

ing sequences of a TF rather than only those belonging to the

largest neutral network (giant component). Because sequen-

ces that do not belong to the giant component can also bind

to its TF and has potentials to evolve to a binding sequence of

other TFs, including all binding sequences makes our analysis

more complete. This change in methodology does not qual-

itatively affect the results on empirical (fig. 2A–C and supple-

mentary fig. S2A–C, Supplementary Material online) or

randomly rewired GPMs (supplementary fig. S4,

Supplementary Material online). A binding sequence of TFi

can be zero mutational steps away from a binding sequence

of TFj if they share the same binding sequence.

Generation of Randomly Rewired GPMs

Given the gi values of all TFs, we randomly picked genotypes

from the 8-mer genotype space (with replacement) and

assigned the genotypes to each TF. This was done with re-

placement, because both mouse and yeast GPMs contain

genotypes that map to multiple phenotypes and because

the sum of gi exceeds G in both mouse and yeast. A genotype

can map to multiple phenotypes but it cannot occur twice for

the same phenotype.

PR, PE, and PR–PE Correlation in Random GPMs with Large
Neutral Networks

The ensemble of all binding sequences of a TF is often repre-

sented by a position weight matrix (PWM), which shows the

frequencies of A, T, G, and C at each nucleotide position of all

binding sequences of the TF. Because potential epistasis is ig-

nored in constructing PWMs from microarray-based TF-DNA

binding data, when PWMs are used, all binding sequences of a

TF are connected to form one large neutral network in the

GPM. We downloaded PWMs for mouse and yeast
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from UniPROBE (http://the_brain.bwh.harvard.edu/uniprobe/

downloads.php; last accessed December 12, 2017)

(Newburger and Bulyk 2009). For microarray data, we defined

binding sequences using the same data and same enrichment

score (E-score) cutoff (0.35) as previously used (Payne and

Wagner 2014); this cutoff corresponds to a low false discovery

rate (Payne and Wagner 2014). To convert PWMs back to bind-

ing sequences, we calculated the probability of each genotype

for each TF, and used the cutoff of 0.0000469 in yeast and

0.00023885 in mouse to define binding sequences. Using these

cutoffs ledtosimilar totalnumbersofbindingsequencesas in the

microarray data. We considered all binding sequences passing

our cutoff to have equal binding affinities to the TF of concern.

We then constructed a random GPM with large neutral

networks. Specifically, to remove the evolutionary relation-

ships among the PWMs (and those among their correspond-

ing TFs), we constructed a new set of PWMs by randomly

shuffling all nucleotide positions among all existing PWMs

of the species. We then used these scrambled PWMs to con-

struct the GPM. In this GPM, large neutral networks are still

present (albeit different from those in the empirical GPMs).

Supplementary Material

Supplementary data are available at Genome Biology and

Evolution online.
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