
OPINION
published: 14 September 2016
doi: 10.3389/fpsyg.2016.01390

Frontiers in Psychology | www.frontiersin.org 1 September 2016 | Volume 7 | Article 1390

Edited by:

Layne Kalbfleisch,

George Washington University, USA

Reviewed by:

Jonathan Plucker,

Johns Hopkins University, USA

*Correspondence:

Ronny Scherer

ronny.scherer@cemo.uio.no

Specialty section:

This article was submitted to

Educational Psychology,

a section of the journal

Frontiers in Psychology

Received: 31 July 2016

Accepted: 30 August 2016

Published: 14 September 2016

Citation:

Scherer R (2016) Learning from the

Past–The Need for Empirical Evidence

on the Transfer Effects of Computer

Programming Skills.

Front. Psychol. 7:1390.

doi: 10.3389/fpsyg.2016.01390

Learning from the Past–The Need for
Empirical Evidence on the Transfer
Effects of Computer Programming
Skills
Ronny Scherer *

Faculty of Educational Sciences, Centre for Educational Measurement, University of Oslo, Oslo, Norway

Keywords: computational thinking, computer programming, creativity, problem solving, transfer of learning

INTRODUCTION TO THE PROBLEM

In recent years, education has put considerable emphasis on the development of twenty-first
century skills—a set of skills that can almost universally be applied to a broad range of domains and
problems, and that help students to deal with the challenges and demands of complex, real-world
problem situations (Pellegrino and Hilton, 2012). Among others, these skills comprise problem
solving, creativity, critical thinking, collaboration, adaptability, digital literacy, and computational
thinking, and are considered to be critical in our information- and knowledge-rich society (Binkley
et al., 2012;Wagner, 2012; Scherer, 2015; Care and Anderson, 2016). Against this background, it has
become the designated aim of educators to help students to develop these skills (Kay and Greenhill,
2011). The question of how the development of these skills and the ability to transfer them to
different contexts and knowledge domains can be fostered has therefore gained significance (Greiff
et al., 2014). Nonetheless, this question is by no means trivial, because the transfer of knowledge
and skills does not automatically happen, as Tricot and Sweller (2013) argued.

In the pursuit of finding ways to foster twenty-first century skills and their transfer, voices have
become loud inspiring education to incorporate computer programming into K-12 curricula (Lye
and Koh, 2014). The reactions on these voices have been tremendous; some countries developed
an entire curriculum around computer programming (Sturman and Sizmur, 2011; Webb et al.,
2016). Behind this development is the belief that fostering programming skills improves students’
performance on other critical skills such as creativity and problem solving (Liao and Bright, 1991;
Clements, 1995). Mitchel Resnick, the director of MIT’s Media Lab and facilitator of the Scratch R©

programming language, argued that “programming supports “computational thinking,” helping
you learn important problem-solving and design strategies [...] that carry over to nonprogramming
domains” (Resnick et al., 2009, p. 62). Along the same lines, Barr and Stephenson (2011) proposed
that computer programming “is a problem solving methodology that can be automated and
transferred and applied across subjects” (p. 51). Brown and Kölling (2012) took this argument
even further and claimed that the “use of programming skills can allow for a deeper and more
direct understanding of the subjects under investigation, using Computing to support learning in
the same way that Mathematics supports the learning of subjects such as Physics.” (p. 1) Whereas
there has been a great body of research supporting these claims in the 1980s and 1990s (for an
overview, please refer to Liao and Bright, 1991), it seems as if there is very little evidence on the
transfer effects of computer programming skills in the context of twenty-first century education
(Grover and Pea, 2013; Lye and Koh, 2014). Although computer programming and other skills

http://www.frontiersin.org/Psychology
http://www.frontiersin.org/Psychology/editorialboard
http://www.frontiersin.org/Psychology/editorialboard
http://www.frontiersin.org/Psychology/editorialboard
http://www.frontiersin.org/Psychology/editorialboard
http://dx.doi.org/10.3389/fpsyg.2016.01390
http://crossmark.crossref.org/dialog/?doi=10.3389/fpsyg.2016.01390&domain=pdf&date_stamp=2016-09-14
http://www.frontiersin.org/Psychology
http://www.frontiersin.org
http://www.frontiersin.org/Psychology/archive
https://creativecommons.org/licenses/by/4.0/
mailto:ronny.scherer@cemo.uio.no
http://dx.doi.org/10.3389/fpsyg.2016.01390
http://journal.frontiersin.org/article/10.3389/fpsyg.2016.01390/full
http://loop.frontiersin.org/people/213357/overview

Scherer Transfer Effects of Computer Programming

share a number of cognitive and even metacognitive processes
(Clements, 1986, 1995; Brown and Kölling, 2012; Lye and Koh,
2014; Rich et al., 2014), therefore supporting potential transfer
effects, I argue that educational research lags behind in sharing
sufficient evidence for these claims.

Against this background, the main position this opinion paper
conveys is that—although the conceptual argumentation about
the potential transfer effects of computer programming skills on
other skills such as problem solving and creativity is reasonable—
there is a strong need for empirical evidence supporting this,
particularly in the context of the recent advancements of digital
technologies.

CURRENT STATUS OF KNOWLEDGE

Computer Programming Skills and the
Concept of Computational Thinking
Computer programming skills are considered to be an integral
part of what is called “computational thinking” (CT; Denning,
2010; Lye and Koh, 2014), and often find their way into
frameworks of digital literacy (Siddiq et al., 2016). CT has in fact
gained importance in STEM education, and there is a growing
interest in exploring how CT can be introduced in K-12 curricula
(Lye and Koh, 2014). Wing (2006) defined CT as a thought
process that “involves solving problems, designing systems, and
understanding human behavior, by drawing on the concepts
fundamental to computer science” (p. 33). In their review, Lye
and Koh (2014) argued that computer programming—an activity
that requires the abstraction and decomposition of problems—
exposes students to these thinking processes, and claimed that
it may therefore foster the development of CT. This claim has
largely been supported by studies using the first (e.g., Logo R©;
Dyck andMayer, 1989; Pardamean et al., 2015) andmore recently
developed programming tools for education (e.g., Scratch R©;
Wilson et al., 2013).

Transfer Effects on Problem Solving
Having established that computer programming and CT are
closely connected, the question arises to what extent transfer
effects on problem solving exist. The starting point for addressing
this question is to examine which particular thinking processes
are involved in programming and problem solving. According
to Brooks (1999), Clements and Merriman (1988), and Denning
(2010), programming comprises a number of processes that
range from information retrieval and processes of understanding
the problem at hand to discovering methods and algorithms that
solve the problem, and evaluating them (Table 1). According
to a framework proposed by the (OECD, 2014), domain-
general problem solving comprises similar processes of exploring
and understanding, representing and formulating, planning,
and executing, and monitoring and reflecting (Table 1). These
conceptualizations reveal a considerable overlap between the two
constructs: The processes involved in programming are by and
large of the same nature as those involved in problem solving,
in that the problem space needs to be understood and explored
first, hypotheses and methods are to be developed second, and
the proposed solution—be it an algorithm, product, or any

other problem solution—finally needs to be evaluated (Klahr
and Dunbar, 1988). This parallelism brings forth the question
whether computer programming can actually be considered a
form of problem solving (Barr and Stephenson, 2011; Jonassen,
2011), and suggests that transfer effects may exist. Investigating
these ideas systematically, Liao and Bright (1991) conducted a
meta-analysis of 65 studies that were conducted between 1969
and 1989 with the goal to synthesize empirical evidence on the
effects of computer programming on problem solving abilities.
The authors found an average effect size of 41 and concluded
that students—while learning to program—acquire reasoning,
logical thinking, and planning (i.e., problem solving) skills that
go beyond computer programming. This meta-analysis was,
however, followed by only a very limited number of experimental
studies that continued examining these effects (Maloney et al.,
2004; Gibbon, 2007; Pardamean et al., 2015), some of which
were insignificant (Lai and Yang, 2011; Gülbahar and Kalelioğlo,
2014; Korkmaz, 2016). This is somehow surprising, because Liao
and Bright (1991) clearly showed that the average effect was
moderated by the type of programming environment used in
the treatment group, thus suggesting that further advancements
in these tools may affect the transfer effect. In fact, many
publications that argued for the transfer effects later on only
described programming tools or feasibility studies thereof on a
conceptual level (Grover and Pea, 2013). By contrast, a larger
body of research exists on the transfer effects on mathematical
thinking and conceptual understanding (e.g., Calder, 2010;
Kazakoff et al., 2013; Rich et al., 2014).

Transfer Effects on Creativity
Similar to the reasoning on the transfer effects on problem
solving, researchers have claimed that learning to program
fosters students’ creative thinking. In the most recent systematic
review that I could identify (Clements, 1995), the author
found that computer programming instruction fosters creativity
and divergent thinking; significant effects on originality—a
facet of creative thinking that involves selective encoding and
combining—could be identified. Clements (1995) concluded
his review by summarizing the key elements of computer
programming that are also essential for creative thinking:
decide on the nature of the problem, combine components
of the problem, select a mental representation, monitor
progress, acquire knowledge, and encode (see also Clements
and Merriman, 1988). In a slightly different framework, Wallas
(1926) proposed four stages of creativity, namely preparation,
incubation, illumination, and verification, which are still widely
used today. Comparing these processes with those required
for computer programming (Table 1), substantive similarities
exist, such that transfer effects between them could be expected.
In fact, programming is considered to be a creative human
activity (Denning, 2010; Grover and Pea, 2013). Yet, the existing
body of empirical evidence supporting this expectation is rather
meager: Except for a single study (Pardamean, 2014), the bulk of
published empirical research on the transfer effects on creativity
dates back to the 1980s and 1990s (Clements, 1986, 1991, 1995;
McGrath, 1988; Subhi, 1999).

Frontiers in Psychology | www.frontiersin.org 2 September 2016 | Volume 7 | Article 1390

http://www.frontiersin.org/Psychology
http://www.frontiersin.org
http://www.frontiersin.org/Psychology/archive

Scherer Transfer Effects of Computer Programming

TABLE 1 | Key processes involved in computer programming, problem solving, and creative thinking.

Computer programming Problem solving Creative thinking

Representing, storing, and retrieving information in

order to understand the problem (i.e., knowledge

acquisition of basic problem elements such as

objects, relations, initial and final states of objects)

Discovering algorithms for information processes

—finding a method in order to represent the

real-world problem, develop, and execute an action

plan and code

Evaluating the performance of the designed

complex systems on the basis of the written code;

bridging the gap between the problem statement

and the solution

Exploring and understanding the problem (e.g., by

decomposing the problem into sub-problems)

Representing and formulating the problem by

creating representations of the problem situation

and formulating hypotheses

Planning and executing the sequential steps to

solve the problem

Monitoring progress and reflecting on the problem,

the solution, and solution strategy

Acquiring knowledge and skills relevant to the

creative act, setting goals; encoding, recognizing,

and formulating the problem (preparation)

Building a representation of the problem (e.g.,

by combining components of the problem) and

unconscious processing (incubation)

Searching for and finding solutions (illumination)

Evaluating the creative product, monitoring the

process of creative activities, and improving

shortcomings (verification)

WHAT IS NEEDED

In light of this brief review of the current status of knowledge,
I would like to follow Mayer (2015), who discussed the strong
need for research evidence on game-based learning, and propose
that research on the transfer effects of computer programming
needs to move beyond untested claims and the mere description
of programming tools, their feasibility, and students’ interest
or enjoyment thereof Fessakis et al. (2013) raised similar
concerns: “Instead of focussing on the cognitive effects of
programming, more recent studies concern the development
of new programming environments for children [...]” (p. 89)
Along these lines, educational research needs to focus more
on the cognitive consequences of learning to program by
designing experimental studies that systematically evaluate the
transfer effects, making use of the well-developed programming
tools such as Scratch R© (Resnick et al., 2009). I believe that
the outstanding number of feasibility studies on these tools
create a fruitful ground for experimental comparisons. Such
comparisons, however, need an appropriate research design,
which fulfills at least three criteria (Mayer, 2015): (1) Appropriate
outcome measures of academic learning or other skills that
go beyond students’ self-reports, enjoyment, or interest; (2)
Experimental control—pretest-posttest designs with a treatment
group (i.e., the group that learns to program) and a control
group; (3) Random assignment of students to treatment and
control groups. Despite the very few studies during the last 20
years, which adhered to these criteria (e.g., Pardamean et al.,
2015), my observation is that research on the transfer effects of
computer programming is in need of methodologically sound,
experimental studies.

CONCLUSION

From a conceptual perspective, the claims that learning computer
programming may translate into the development of other,
cognate skills such as problem solving or creative thinking,
do have their standing, particularly because a considerable
conceptual overlap between these skills exists. From an empirical
perspective though, it seems as if the conceptual claims have
been supplemented with evidence from experimental studies to a
very limited extent. My observation is that most of the empirical
research on the transfer effects dates back to the 1980s and
1990s; yet, too few studies have looked into these effects in the
twenty-first century. This observation is somehow unexpected,
particularly because Pea and Kurland (1984) pointed to the
strong need for evidence on the transfer effects of computer
programming that takes into account the development of digital
technologies more than 20 years ago. Although this plea has
been followed by a wave of experimental studies (Liao and
Bright, 1991; Clements, 1995), educational research has not
systematically followed up on examining the transfer effects.
On the basis of the limited research on the transfer effects of
computer programming skills on other cognitive skills on the one
hand, and the conceptual claims that these transfer effects exist on
the other hand, I would like to encourage researchers to fill this
gap by learning from the past and reviving this research area in
the twenty-first century.

AUTHOR CONTRIBUTION

RS has conducted the literature review, drafted the manuscript,
and performed revisions.

REFERENCES

Barr, V., and Stephenson, C. (2011). Bringing computational thinking to k-12: what
is involved and what is the role of the computer science education community?
ACM Inroads 2, 48–54. doi: 10.1145/1929887.1929905

Binkley, M., Erstad, O., Herman, J., Raizen, S., Ripley, M., Miller-Ricci, M., et al.
(2012). “Defining Twenty-First Century Skills,” in Assessment and Teaching of

21st Century Skills, eds P. Griffin, B.McGaw, and E. Care (Dordrecht: Springer),
17–66.

Brooks, R. (1999). Towards a theory of the cognitive processes in computer
programming. Int. J. Hum. Comput. Stud. 51, 197–211. doi: 10.1006/ijhc.1977.
0306

Brown, N., and Kölling, M. (2012). “Position paper: programming can deepen
understanding across disciplines [DRAFT],” in Paper Presented at the IFIP

Working Conference–Addressing Educational Challenges: the Role of ICT

(Manchester, UK: Manchester Metropolitan University).
Calder, N. (2010). Using scratch: an integrated problem-solving approach to

mathematical thinking. Aust. Prim. Math. Classroom 15, 9–14.

Frontiers in Psychology | www.frontiersin.org 3 September 2016 | Volume 7 | Article 1390

http://www.frontiersin.org/Psychology
http://www.frontiersin.org
http://www.frontiersin.org/Psychology/archive

Scherer Transfer Effects of Computer Programming

Care, E., and Anderson, K. (2016). How Education Systems Approach Breadth of

Skills. Washington, DC: Center for Universal Education at BROOKINGS.
Clements, D. H. (1986). Effects of Logo and CAI environments on cognition and

creativity. J. Educ. Psychol. 78, 309–318. doi: 10.1037/0022-0663.78.4.309
Clements, D. H. (1991). Enhancement of creativity in computer environments.

Am. Educ. Res. J. 28, 173–187. doi: 10.2307/1162883
Clements, D. H. (1995). Teaching creativity with computers. Educ. Psychol. Rev. 7,

141–161. doi: 10.1007/bf02212491
Clements, D. H., and Merriman, S. (1988). “Componential developments in

LOGO programming environments,” in Teaching and Learning Computer

Programming: Multiple Research Perspectives, ed R. E. Mayer (Hillsdale:
Lawrence Erlbaum Associates, Inc.), 13–54.

Denning, P. J. (2010). Great principles of computing. Am. Sci. 98, 369–372. doi:
10.1511/2010.86.369

Dyck, J. L., and Mayer, R. E. (1989). Teaching for transfer of computer
program comprehension skill. J. Educ. Psychol. 81, 16–24. doi: 10.1037/0022-
0663.81.1.16

Fessakis, G., Gouli, E., and Mavroudi, E. (2013). Problem solving by 5–6 years old
kindergarten children in a computer programming environment: a case study.
Comput. Educ. 63, 87–97. doi: 10.1016/j.compedu.2012.11.016

Gibbon, L. W. (2007). Effects of LEGO Mindstorms on Convergent and Divergent

Problem-Solving and Spatial Abilities in Fifth and Sixth Grade Students (Doctor

of Education). Seattle, WA; Seattle Pacific University.
Greiff, S., Wüstenberg, S., Csapó, B., Demetriou, A., Hautamäki, J., Graesser, A. C.,

et al. (2014). Domain-general problem solving skills and education in the 21st
century. Educ. Res. Rev. 13, 74–83. doi: 10.1016/j.edurev.2014.10.002

Grover, S., and Pea, R. (2013). Computational thinking in K-12: a review of the
state of the field. Educ. Res. 42, 38–43. doi: 10.3102/0013189x12463051

Gülbahar, Y., and Kalelioğlo, F. (2014). The effects of teaching programming
via Scratch on problem solving skills: a discussion from learners’ perspective.
Inform. Educ. 13, 33–50.

Jonassen, D. H. (2011). Learning to Solve Problems: A Handbook for Designing

Problem-Solving Learning Environments. New York, NY: Routledge.
Kay, K., andGreenhill, V. (2011). “Twenty-First century students need 21st century

skills,” in Bringing Schools into the 21st Century, eds G. Wan and M. D. Gut
(Dordrecht: Springer), 41–65.

Kazakoff, E. R., Sullivan, A., and Bers, M. U. (2013). The effect of a classroom-based
intensive robotics and programming workshop on sequencing ability in early
childhood. Early Child. Educ. J. 41, 245–255. doi: 10.1007/s10643-012-0554-5

Klahr, D., and Dunbar, K. (1988). Dual space search during scientific reasoning.
Cogn. Sci. 12, 1–48. doi: 10.1207/s15516709cog1201_1

Korkmaz, Ö. (2016). The effect of scratch- and lego mindstorms Ev3-Based
programming activities on academic achievement, problem-solving skills and
logical-mathematical thinking skills of students. Malays. Online J. Educ. Sci. 4,
73–88.

Lai, A.-F., and Yang, S.-M. (2011). “The learning effect of visualized programming
learning on 6 th graders’ problem solving and logical reasoning abilities,”
in Paper presented at the International Conference on Electrical and Control

Engineering (ICECE) (Yichang).
Liao, Y.-K. C., and Bright, G. W. (1991). Effects of computer programming on

cognitive outcomes: a meta-analysis. J. Educ. Compu. Res. 7, 251–268. doi:
10.2190/e53g-hh8k-ajrr-k69m

Lye, S. Y., and Koh, J. H. L. (2014). Review on teaching and learning of
computational thinking through programming: what is next for K-12? Comput.

Human Behav. 41, 51–61. doi: 10.1016/j.chb.2014.09.012
Maloney, J., Burd, L., Kafai, Y., Rusk, N., Silverman, B., and Resnick, M. (2004).

“Scratch: A sneak preview,” in Paper presented at the Second International

Conference on Creating, Connecting and Collaborating Through Computing

(Kyoto).
Mayer, R. E. (2015). On the need for research evidence to guide the design

of computer games for learning. Educ. Psychol. 50, 349–353. doi: 10.1080/
00461520.2015.1133307

McGrath, D. (1988). Programming and problem solving: will two languages do it?
J. Educ. Comput. Res. 4, 467–484.

OECD (2014). PISA 2012 Results: Creative Problem Solving: Students’ Skills in

Tackling Real-Life Problems, Vol. 5. Paris: OECD Publishing.
Pardamean, B. (2014). Enhancement of creativity through logo programming.Am.

J. Appl. Sci. 11, 528–533. doi: 10.3844/ajassp.2014.528.533
Pardamean, B., Suparyanto, T., and Evelyn. (2015). Improving problem-solving

skills through Logo programming language. New Educ. Rev. 41, 52–64. doi:
10.15804/tner.2015.41.3.04

Pea, R. D., and Kurland, D. M. (1984). On the cognitive effects of learning
computer programming. New Ideas Psychol. 2, 137–168.

Pellegrino, J. W., and Hilton, M. (2012). Education for Life and Work: Developing

Transferable Knowledge and Skills in the 21st Century. Washington, DC: The
National Academies Press.

Resnick, M., Maloney, J., Monroy-Hernández, A., Rusk, N., Eastmond, E.,
Brennan, K., et al. (2009). Scratch: programming for all. Commun. ACM 52,
60–67.

Rich, P. J., Bly, N., and Leatham, K. R. (2014). Beyond cognitive increase:
investigating the influence of computer programming on perception and
application of mathematical skills. J. Comput. Math. Sci. Teach. 33,
103–128.

Scherer, R. (2015). Is it time for a new measurement approach? A closer look at
the assessment of cognitive adaptability in complex problem solving. Front.
Psychol. 6:1664. doi: 10.3389/fpsyg.2015.01664

Siddiq, F., Hatlevik, O. E., Olsen, R. V., Throndsen, I., and Scherer, R.
(2016). Taking a future perspective by learning from the past – A
systematic review of assessment instruments that aim to measure primary
and secondary school students’ ICT literacy. Educ. Res. Rev. 19, 58–84. doi:
10.1016/j.edurev.2016.05.002

Sturman, L., and Sizmur, J. (2011). International Comparison of Computing in

Schools. Slough: National Foundation for Educational Research.
Subhi, T. (1999). The impact of LOGO on gifted children’s achievement

and creativity. J. Comput. Assist. Learn. 15, 98–108. doi: 10.1046/j.1365-
2729.1999.152082.x

Tricot, A., and Sweller, J. (2013). Domain-specific knowledge and why
teaching generic skills does not work. Educ. Psychol. Rev. 26, 265–283. doi:
10.1007/s10648-013-9243-1

Wagner, T. (2012). Creating Innovators - The Making of Young People Who Will

Change the World. New York, NY: Scribner.
Wallas, G. (1926). The Art of Thought. New York, NY: Harcourt, Brace and

Company.
Webb, M., Davis, N., Bell, T., Katz, Y. J., Reynolds, N., Chambers, D. P., et al.

(2016). Computer science in K-12 school curricula of the 2lst century: why,
what and when? Educ. Inf. Technol. doi: 10.1007/s10639-016-9493-x. [Epub
ahead of print].

Wilson, A., Hainey, T., and Connolly, T. M. (2013). Using Scratch with
primary school children: an evaluation of games constructed to gauge
understanding of programming concepts. Int. J. Game-Based Learn. 3, 93–109.
doi: 10.4018/ijgbl.2013010107

Wing, J. M. (2006). Computational thinking. Commun. ACM 49, 33–35. doi:
10.1145/1118178.1118215

Conflict of Interest Statement: The author declares that the research was
conducted in the absence of any commercial or financial relationships that could
be construed as a potential conflict of interest.

Copyright © 2016 Scherer. This is an open-access article distributed under the terms

of the Creative Commons Attribution License (CC BY). The use, distribution or

reproduction in other forums is permitted, provided the original author(s) or licensor

are credited and that the original publication in this journal is cited, in accordance

with accepted academic practice. No use, distribution or reproduction is permitted

which does not comply with these terms.

Frontiers in Psychology | www.frontiersin.org 4 September 2016 | Volume 7 | Article 1390

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://www.frontiersin.org/Psychology
http://www.frontiersin.org
http://www.frontiersin.org/Psychology/archive

	Learning from the Past–The Need for Empirical Evidence on the Transfer Effects of Computer Programming Skills
	Introduction to the Problem
	Current Status of Knowledge
	Computer Programming Skills and the Concept of Computational Thinking
	Transfer Effects on Problem Solving
	Transfer Effects on Creativity

	What Is Needed
	Conclusion
	Author Contribution
	References

