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Abstract

Determining how somatic copy-number alterations (SCNAs) promote cancer is an important goal. 

We characterized SCNA patterns among 4934 cancers from The Cancer Genome Atlas Pan-

Cancer dataset. Whole-genome doubling, observed in 37% of cancers, was associated with higher 

rates of every other type of SCNA, TP53 mutations, CCNE1 amplifications, and alterations of the 

PPP2R complex. SCNAs that were internal to chromosomes tended to be shorter than telomere-

bounded SCNAs, suggesting different mechanisms of generation. Significantly recurrent focal 

SCNAs were observed in 140 regions, including 102 without known oncogene or tumor 

suppressor gene targets and 50 with significantly mutated genes. Amplified regions without 

known oncogenes are enriched for genes involved in epigenetic regulation. When levels of 

genomic disruption were accounted for, 7% of region pairs anticorrelated, and these tended to 

encompass genes whose proteins physically interact, suggesting related functions. These results 

provide insights into mechanisms of generation and functional consequences of cancer SCNAs.
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Introduction

Somatic copy-number alterations (SCNAs) affect a larger fraction of the genome in cancers 

than do any other type of somatic genetic alteration1–5. SCNAs play critical roles in 

activating oncogenes and inactivating tumor suppressors3,6–12 and an understanding of the 

biological and phenotypic effects of SCNAs has led to substantial advances in cancer 

diagnostics and therapeutics13–16.

A primary challenge in understanding SCNAs is to distinguish the driver events that 

contribute to oncogenesis and cancer progression from the passenger SCNAs that are 

acquired during cancer evolution but do not contribute towards it17–20. Positively selected 

SCNAs will tend to recur across cancers at elevated rates1,4,5. However, SCNAs may also 

recur in the absence of positive selection due to increased rates of generation or decreased 

negative selection21,22. For this reason, it is important to understand how mechanisms of 

SCNA generation, their temporal ordering, and negative selection shape the distribution of 

SCNAs genome-wide21–25.

A second challenge is to identify the oncogene and tumor suppressor gene targets of the 

driver SCNAs (which often encompass many genes) and elucidate the SCNA’s functional 

roles. The context of the SCNA can be informative. Positive correlations with other genetic 

events may indicate functional synergies, while anticorrelations may indicate functional 

redundancies because redundant events would not be required by the same cancer. Several 

approaches have been developed to determine functional effects of genetic events based on 

anticorrelation patterns26–28.

Here, we address these challenges through the analysis of 4934 cancer copy-number profiles 

across 11 cancer types, assembled through The Cancer Genome Atlas Project Pan-Cancer 

effort, enabling analysis of large numbers of cancers and comparison of patterns of copy-

number change across cancer types. We have integrated rigorous statistical approaches into 

these analyses, including absolute allelic copy-number profiling29, as well as novel 

computational tools to determine individual SCNA events and their temporal ordering from 

these profiles, and to identify functionally relevant correlations between SCNAs.

Results

Cancer purities, ploidies, and rates of copy-number alteration within and across cancer 
types

We analyzed the copy-number profiles of 4934 primary cancer specimens across 11 cancer 

types (minimum 136 for bladder cancer; maximum 880 samples for breast cancer; colon and 

rectal adenocarcinomas were combined; Supplementary Table 1). In each cancer, we 

determined copy-numbers at each of 1,559,049 loci relative to the median copy-number 

genome-wide, using Affymetrix SNP6 arrays and previously described algorithms1. For 

3847 cancers, we also determined the purity, ploidy, and absolute allelic copy-number 

profiles29 of the malignant cells using SNP6 array data and, in 1069 cases, matched whole-

exome sequencing data (Supplementary Table 1). In the other 1087 cases, purity and ploidy 

Zack et al. Page 2

Nat Genet. Author manuscript; available in PMC 2015 March 26.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



estimates were ambiguous and left uncalled. This included all cases of acute myeloid 

leukemias [LAMLs], which exhibit very few SCNAs.

We then inferred the sequence of somatic copy-alteration (SCNA) events that led to each 

copy-number profile, using the most parsimonious set of SCNAs that could generate the 

observed absolute allelic copy-numbers (Supplementary Fig. 1a, Methods). We determined 

the lengths, locations, and numbers of copies of change for each SCNA and, in many cases, 

their allelic structure (Supplementary Fig. 1b). We identified a total of 202,244 SCNAs, a 

median of 39 per cancer sample, comprising six categories: focal SCNAs that were shorter 

than one chromosome arm (a median of 11 amplifications and 12 deletions per sample); 

arm-level SCNAs that were chromosome-arm length or longer (a median of three 

amplifications and five deletions per sample); copy-neutral loss-of-heterozygosity events 

(cnLOHs), in which one allele had been deleted and the other amplified coextensively (a 

median of one per sample); and whole-genome duplications (WGDs, in 37% of cancers). By 

amplifications and deletions, we refer to copy-number gains and losses, respectively, of any 

length and amplitude.

Estimated purities and ploidies per cancer varied substantially within and across diseases 

(Fig. 1a). The purity estimates correlated with estimates derived from measurements of 

leukocyte and lymphocyte contamination using DNA methylation data from the same 

cancers (Supplementary Fig. 1c) (Shen et al, unpublished data)30, but tended to indicate 

lower purity, consistent with the presence of non-hematopoietic contaminating normal cells. 

Average ploidies within diseases mirrored their frequencies of WGD. The average estimated 

ploidy within samples that had undergone a single WGD was 3.31 (not four), suggesting that 

WGD events are associated with large amounts of genome loss. By contrast, samples that 

had not undergone WGD had an average estimated ploidy of 1.99.

Compared to the near-diploid cancers within each disease, cancers with WGD had higher 

rates of every other type of SCNA (Fig. 1b) and twice the rate of SCNAs overall. Across 

diseases, overall SCNA rates largely reflected rates of WGD (Supplementary Fig. 1d).

In cancers with WGD, most other SCNAs occurred after WGD (Fig. 1b, see Methods). The 

fractions of amplifications and deletions that were estimated to occur prior to WGD were 

highly correlated across diseases (R=0.64, Supplementary Fig. 1e), indicating a consistent 

estimate for the timing of WGD with respect to other SCNAs. WGD was inferred to occur 

earliest relative to focal SCNAs among diseases where WGD was common (ovarian, 

bladder, and colorectal cancers), and after most focal SCNAs in diseases in which WGD 

was least common (glioblastoma and kidney clear cell carcinoma).

SCNA lengths suggest varied mechanisms of generation

Focal SCNAs for which one boundary is the telomere (telomere-bounded) tend to be longer 

than SCNAs in which both boundaries are internal to a chromosome (median SCNA length: 

amplifications 19.6 Mb versus 0.9 Mb; deletions: 22.7 Mb versus 0.7 Mb, for telomere-

bounded and internal events respectively). These differences reflect differences across the 

entire length distributions of internal and telomere-bounded events. Focal internal SCNAs 

were observed at frequencies inversely proportional to their lengths (Fig. 2a, Supplementary 
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Fig. 2a–b), as noted previously1. However, telomere-bounded SCNAs tend to follow a 

superposition of 1/length and uniform length distributions. These distributions are the same 

whether measuring distance by kb, number of array markers, or number of genes, indicating 

that they do not result from variations in array resolution or gene density genome-wide (data 

not shown). Focal, telomere-bounded SCNAs also accounted for more SCNAs (12% and 

26% of focal amplifications and deletions, respectively) than expected assuming random 

SCNA locations (p<0.0001). Both telomere-bounded and internal SCNAs are more likely to 

end within the centromere than expected given the centromere’s length (Supplementary Fig. 

2c), but the differences in their length distributions remain when centromere-bounded events 

are excluded. Differences between telomere-bounded and internal SCNAs are even more 

marked for cnLOH events (Supplementary Fig. 2d).

We detected chromothripsis in 5% of samples, ranging from none of head and neck 

squamous cell carcinomas to 16% of glioblastomas (Fig. 2c; see Methods). The rate of 

chromothripsis was not related to overall rates of SCNA (r=0.13, p=0.3). As previously 

reported31, samples with chromothripsis were more likely to have chromothripsis on more 

than one chromosome (14/122 samples with chromothripsis had two to three such events, 

p=0.003).

Many chromothripsis events were concentrated in a few genomic regions, often associated 

with known driver events (Fig. 2d). In glioblastomas, chromothripsis events were 

concentrated in chromosomes 9 and 12 and corresponded respectively to homozygous loss 

of CDKN2A (20/22 samples) and coamplification of discontinuous regions containing CDK4 

and MDM2 (9/12 samples). Across all cancers, 72% of chromothripsis events included a 

GISTIC peak region (see below).

Recurrent focal SCNAs

We identified 70 recurrently amplified and 70 recurrently deleted regions in a unified “Pan-

Cancer” analysis across all lineages (Fig 3a, Supplementary Fig. 2e, Supplementary Table 

2). SCNAs involving these regions included 21% of all focal amplifications and 23% of all 

focal deletions. Focal SCNAs within peak regions tended to be shorter than focal SCNAs 

elsewhere on the chromosome (median 12.2 Mb in peak regions vs 19.4 Mb genomewide, 

p<0.0001), and were more often high-amplitude events (p<0.0001). The number of focal 

SCNAs involving peak regions per sample tracked the total number of SCNAs (r=0.84, 

p<0.0001), ranging from 0.4 focal SCNAs in the typical acute myeloid leukemia to 12.3 

focal SCNAs in the typical ovarian cancer (mean 5.2).

Tissue types of similar lineages tended to have similar rates of amplification and deletion in 

peak SCNA regions (Fig. 3a). We observed clusters of squamous cell carcinomas (head and 

neck squamous cell carcinoma, lung squamous cell carcinoma and bladder cancer) and 

reproductive cancers (ovarian and endometrial cancer) with breast cancer.

The 70 peak regions of amplification contain a median of three genes each (including 

microRNAs), with 60 peaks containing fewer than 25 genes. Twenty-four of these peak 

regions contain an oncogene known to be activated by amplification (Supplementary Table 

2), including seven of the top ten regions (CCND1, EGFR, MYC, ERBB2, CCNE1, MCL1, 
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and MDM2). The ninth and tenth most significant regions (11q14.1 and 8p11.23, 

respectively) do not contain known oncogenes, but the latter contains the histone 

methyltransferase WHSC1L1 and is 18 kb away from the known amplified oncogene 

FGFR1. The fourth most significantly amplified peak region (3q26.2) contained TERC, 

which encodes the RNA substrate for the known oncogene TERT, which is itself in a peak 

region of amplification (5p15.33). Another peak with eight genes (9p13.3) contain RMRP, 

another TERT-associated RNA32.

The 70 peak regions of deletion contain a median of four genes (including microRNAs), 

with 52 peaks containing fewer than 25 genes. Twenty-two of these regions contain one of 

the 100 largest genes in the genome and 12 contain known tumor suppressors 

(Supplementary Table 2; two additional large regions contain the known tumor suppressors 

ATM and NOTCH1). Four others each contain a single gene (PPP2R2A, PTTG1IP, FOXK2, 

and LINC00290). We discuss PPP2R2A and its binding partner PPP2R1A (which is 

significantly mutated in the same set of cancers [Lawrence et al., unpublished data]33,34) in 

greater detail below. LINC00290 is a long non-coding RNA, a group whose role in cancer is 

increasingly being appreciated35,36. Two other regions contain suspected tumor suppressors 

(ERRFI137, and FOXC138).

The features most associated with genes in the amplification and deletion peak regions are 

known to be associated with cancer (Fig. 3b). We applied GRAIL39, which uses literature 

citations to find common features of genes in selected regions of the genome. We considered 

amplifications and deletions separately, and only peaks with fewer than 25 genes.

Among the 37 peak regions of amplification with fewer than 25 genes and without known 

targets (Supplementary Table 2), the most associated features were related to epigenetic and 

mitochondrial regulation: “Histone”, “Cytochrome”, “Mitochondrial”, and 

“Acetyltransferase” (Fig. 3b). Thirteen of these 37 regions contain chromatin-state and 

histone-modifying genes (Supplementary Table 2), reflecting significant enrichment 

(p<0.0001)40. Among these, five (BRD4, KAT6A, KAT6B, NSD1, and PHF1) are subject to 

recurrent rearrangements in leukemias, sarcomas, and midline carcinomas41–45. The BRD4 

peak also contains NOTCH3, another potential oncogene46. Two others, KDM2A and 

KDM5A, are reported to regulate the activity of TP53 and RB1, respectively47,48. The 

finding that multiple peak regions of amplification contain epigenetic regulators is consistent 

with growing evidence suggesting epigenetic alterations and chromatin remodeling plays a 

critical role in many forms of cancer49–51. Ten regions contain genes encoding mitochronia-

associated proteins (Supplementary Table 2); none of these are subject to recurrent 

rearrangements in cancer. The 21 peak regions of deletion with fewer than 25 genes and 

without known tumor suppressor or large genes were most associated with “Pten”, 

“Phosphatase”, “Leucine”, and “Prostate”.

Fifty of the 140 peak regions contain a significantly mutated gene, including 23 regions 

without known oncogene or tumor suppressor gene targets and 32 regions with fewer than 

25 genes (Supplementary Table 2). We calculated the significance of mutations (including 

both point mutations and small insertion-deletion events identified in the paired sequencing 

data) for each gene in each region using the methods of [Lawrence et al, unpublished 

Zack et al. Page 5

Nat Genet. Author manuscript; available in PMC 2015 March 26.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



data]33,34 and corrected for multiple hypotheses reflecting the number of genes in the region. 

In three cases, there were two significantly mutated genes per peak, for a total of 35 

significantly mutated genes. These 35 genes included eight of the 23 known amplification-

activated oncogenes and all of the 12 known tumor suppressor genes in these peak regions 

(Supplementary Table 2). An additional two of the 35 genes (both in amplification peaks) 

are oncogenes known to be activated by mutations but not by amplifications.

Frame-shift and nonsense mutations that are likely to cause loss of function were 

significantly enriched in genes in deleted regions (p=0.0002), accounting for 19% of these 

mutations compared to 12% of mutations found in genes in amplified regions. We excluded 

regions with known oncogenes or tumor suppressor genes or more than 25 genes from this 

analysis. These findings are consistent with the prediction that deleted regions without 

known tumor suppressors are enriched for novel tumor suppressors or genes whose 

functions are non-essential.

Most peak regions in lineage-specific analyses intersected peak regions in other lineages, 

and indeed in the Pan-Cancer analysis (Fig. 3c, Supplementary Fig. 3). We obtained a 

median of 74 peak regions for each lineage (ranging from 25 in acute myeloid leukemia to 

95 in endometrial cancer; 42% were amplification peaks and 58% were deletion peaks; 

Supplementary Table 3), resulting in a total of 770 peak regions. Of these, 84% intersected 

peak regions in at least one other lineage (p<0.0001), and 65% intersected peak regions in 

the Pan-Cancer analysis. Peak regions tended to be larger in the lineage-specific than the 

Pan-Cancer analyses (1.4 vs 0.7 Mb), indicating the improved resolution of the Pan-Cancer 

analysis.

Nevertheless, some significant SCNAs were identified in lineage-specific but not the Pan-

Cancer analysis. Across all lineages, we identified 229 peaks not present in the Pan-Cancer 

analysis, including amplifications of the known amplified oncogenes MET, CCND2, 

ERBB3, and MYCN and deletions of the known tumor suppressor genes TP53 and CDKN2C.

Correlations reflect overall levels of genomic disruption

For each pair of peak regions, we looked for positive and negative correlations between 

focal SCNAs involving these regions (Fig. 4a). We compared the number of samples with 

SCNAs involving both regions between observed data and permuted data in which SCNAs 

were randomly assigned to samples while maintaining genomic positions and SCNA 

structure. We only permuted SCNAs within lineages (and sub-lineages when available) to 

avoid lineage-dependent confounders, and evaluated correlations between regions on 

different chromosomes to avoid correlations due to chromosomal structure (see Methods). 

We focused on peak regions with less than 25 genes.

We identified significant positive correlations (q<0.25) between 53% of region pairs, but no 

significant anticorrelations (Fig. 4b). The high rate of positive correlations results from 

widely differing levels of genomic disruption across samples, which are not maintained in 

permuted datasets (Fig. 4c). Similar results are obtained with other standard statistical 

approaches such as Fisher’s exact tests (data not shown). These findings indicate that 
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varying levels of overall genomic disruption confound analyses of functionally relevant 

correlations between SCNAs.

We therefore re-evaluated correlations between SCNAs after controlling for genomic 

disruption, by maintaining in the permuted data the fractions of the genome affected by each 

of amplifications and deletions in each sample (Fig. 4c, Supplementary Fig. 4a–b; 

Methods). We performed the analysis in two ways: evaluating all SCNAs (Supplementary 

Table 4), and evaluating only high-level amplifications and homozygous deletions 

(Supplementary Table 4; see Methods). In many cases, high-level amplification or 

homozygous deletion may be necessary to activate an oncogene or inactivate a tumor 

suppressor gene16 and in such cases, correlated features may be masked by noise in lower 

level events.

When evaluating all SCNAs, we identified significant positive correlations between <1% of 

region pairs (40 interactions, Supplementary Table 4) and anticorrelations between 7% of 

region pairs (396 interactions, Fig. 4b, Supplementary Table 4). Correcting for genomic 

disruption altered the estimated significance of these interactions and also changed the rank 

ordering of those significance estimates (Supplementary Fig. 4c). High-level amplifications 

and homozygous deletions are relatively rare, limiting our power to detect anticorrelations in 

the high-level analysis. Among the 1094 interactions we were powered to detect, we 

observed positive correlations between <1% of region pairs (3 interactions, Supplementary 

Table 4) and anticorrelations between 10% of region pairs (108 interactions, Fig. 4d, 

Supplementary Table 4). The three correlations included deletions of CDKN2A with 

amplifications of EGFR, amplifications of PDGFR with amplifications of CDK4, and 

deletions of PPP2RA with amplifications of 19p13.2.

We predicted that anticorrelated SCNAs would often indicate functional redundancies, and 

therefore genes in the affected regions would often be in similar pathways and interact 

physically. We tested this hypothesis by comparing networks representing significantly 

anticorrelated SCNAs (“anticorrelation networks”) with DAPPLE, a set of curated protein-

protein interactions (PPIs)39 (see Methods).

Networks formed by our anticorrelations analyses and by PPIs significantly overlapped 

(p<0.0001 and p=0.006 for all-SCNA and high-level analyses, respectively, Fig. 4e, 

Supplementary Fig. 4d). For example, in the analysis of all SCNAs, we observed 100 

overlapping edges, a 2-fold increase over the 43.4 overlapping edges expected by chance. 

This significance was not observed for correlated events (p=1 for both all-SCNA and high–

level analyses). These results suggest that the observed anticorrelations are related to 

biological interactions.

The anticorrelations networks were enriched for both isolated nodes and highly connected 

“hub” regions (Fig. 4f). To analyze the structure of these networks, we generated control 

anticorrelation networks representing the most significant edges from permuted data in 

which we had randomized the SCNA sample assignments within lineage. In the all-SCNA 

analysis, 28 regions were anticorrelated with fewer than three other regions, relative to three 

isolated nodes in the average permutation (p<0.01).
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The isolated nodes in the all-SCNA analysis were enriched for regions containing large 

genes (including 10 of 28 such regions; p=0.004). Conversely, they trended toward 

excluding regions with known oncogenes or tumor suppressors (five of 35 such regions; 

p=0.06). Most peak regions exhibit fewer anticorrelations in the high-level analysis, possibly 

due to decreased power. The most extreme exception was CDKN2A, which anticorrelated 

with 14 regions in the high-level analysis and only nine regions in the all-SCNA analysis. 

Consistent with these findings, CDKN2A is often inactivated by homozygous deletions.

We applied a similar analysis to identify events associated with WGD. We included both 

SCNAs and mutations, using the 200 most significantly mutated genes across the TCGA 

Pan-Cancer dataset [Lawrence et al, unpublished data34; see Methods). Three SCNA peak 

regions and two significantly mutated genes correlated with WGD (Supplementary Table 4). 

TP53 mutations and CCNE1 amplifications correlated with WGD; both have been 

functionally associated with tolerance of tetraploidy in experimental models52–55. Our 

findings indicate these associations apply to human tumors across multiple lineages. We also 

found that deletions of PPP2R2A and mutations of its binding partner PPP2R1A were 

correlated with WGD. These two genes belong to phospho-protein phosphatase complex 2 

(PPP2), which regulates mitotic spindle formation and can lead to chromosomal 

missegregation and abnormal mitoses when depleted56,57.

Eleven genetic events anti-correlated with WGD, including two amplifications, five 

deletions and four mutations. (Supplementary Table 4). The deletions included CDKN2A, 

PTEN, and NF1, and three of the four mutations also involved genes known as or proposed 

to be tumor suppressors (CTCF58, MAP3K19, and ATM). The anticorrelations of these tumor 

suppressors may result from a greater difficulty in biallelically inactivating tumor 

suppressors in samples with extra copies subsequent to WGD29.

Portal for interactive viewing of results

Results from this study are available at http://www.broadinstitute.org/tcga, including 

segmented copy-number data (viewable using the Integrative Genomics Viewer59) and the 

frequency and significance of copy-number changes across and within cancer types.

Discussion

This study represents the largest analysis to date of high-resolution copy-number profiles 

generated using a single platform, and the first large-scale analysis of absolute allelic copy-

number data across cancer types. We identified common patterns of SCNA across cancer 

types, including a tendency for telomeric events to be longer and more frequent than SCNAs 

within chromosomes, and for duplications of large regions of the genome (through WGD or 

polysomy) to lead to subsequent increases in numbers of SCNAs (especially deletions) in 

the duplicated regions. SCNAs also tend to reside in the same regions of the genome across 

different cancer types.

A primary challenge in the analysis of somatic genetic data is distinguishing between 

patterns of alteration that reflect mechanism by which those alterations are generated, 

positive selection, and negative selection. An underlying assumption of our analyses is that 
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patterns of alteration that are observed across all chromosomes are likely to reflect 

mechanistic biases, whereas deviations from these patterns at individual loci are likely to 

reflect selective pressures.

The differences between telomere-bounded and internal SCNAs across all chromosomes 

suggest different mechanisms underlie their generation. Internal SCNAs have been proposed 

to occur as a result of apposition of their two breakpoints in three-dimensional space. 

Chromatin is arranged as a “fractal globule” during interphase60,61, in which the likelihood 

that two breakpoints would be apposed decreases proportional to the linear distance between 

them, implying a 1/length distribution. Conversely, SCNAs that start on the telomere may be 

related to telomere shortening and telomere crisis, and associated with a single double-strand 

break that could occur anywhere within the chromosome62.

Among the 140 peak regions in the Pan-Cancer analysis, only 35 contained known amplified 

oncogenes or tumor suppressor genes. SCNAs in some of the remaining regions may recur 

because these regions are subject to relatively small amounts of negative selection21 or due 

to mechanistic biases favoring the generation of SCNAs in these regions63, as has been 

suggested for deletions involving large genes1,5,64. Indeed, we found that SCNAs involving 

large genes often did not anticorrelate with any other genetic events, suggesting the genes in 

these regions may have limited functional roles in oncogenesis. However, it remains likely 

that many additional oncogenes and tumor suppressor genes are within these regions. 

Moreover, these 140 regions and the additional 229 peak regions identified in the lineage-

specific analyses are likely to compose a subset of the regions that are significantly altered 

in cancer. Analyses of other cancer types have identified additional peak regions1,4, and the 

limited resolution of the array platform may have obscured detection of some SCNAs.

Varying levels of genomic disruption across cancers are likely to engender biases in 

analyses of correlations not only between SCNAs, but also between SCNAs and other 

features of these cancers. For example, increased genomic disruption has been associated 

with poor prognosis in multiple cancer types65,66. Poor prognosis is therefore likely to be 

associated with increased rates of SCNA across much of the genome. Controlling for this 

tendency will be required to identify SCNAs that are functionally associated with 

progression. It will also be important to account for other possible confounders, such as 

mechanistically linked events (e.g. chromothripsis or SCNAs that encompass multiple peak 

regions).

Whole-genome sequencing data can indicate the specific rearrangements that contributed to 

each SCNA11,24, and assessment of genetic heterogeneity within tumors can also distinguish 

early from late events23,29. Both of these are approaches are likely to inform the 

mechanisms by which SCNAs are generated and the selective pressures that shape them.

Online Methods

1. Generation of copy-number profiles

The pipeline used to generate relative copy-number estimates will described elsewhere 

(Tabak et al, unpublished data). In brief, probe-level signal intensities from Affymetrix 
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SNP6 .CEL files were normalized to a uniform brightness across arrays and merged to form 

intensity values for each probeset using SNPFileCreator, a Java implementation of 

dChip67,68. These intensities were mapped to copy-number levels using Birdseed69 in the 

case of SNP markers, and on the basis of experiments with cell lines with varying dosage of 

X in the case of copy-number markers1. Recurrent germline copy-number variations (CNVs) 

were identified across all DNA samples from normal tissue and markers within these regions 

(representing ~15% of all markers) were removed from further analysis70. Noise was further 

reduced by application of Tangent normalization70 followed by Circular Binary 

Segmentation71,72. Quality control metrics were applied at various stages in the pipeline70, 

resulting in the removal of data representing 23 cancers out of 4957 primary cancers that had 

been profiled by SNP6 arrays.

HAPSEG73 and ABSOLUTE29, running on FireHose74, were applied to data from 4870 of 

these cancers, including both the SNP6 data and, when available, whole-exome sequencing 

data from the same cancers (1069 samples). Of these, purity and ploidy estimates and 

genome-wide absolute allelic copy-numbers were called in 3847 cancers (Supplementary 

Table 1). The 200 acute myeloid leukemia samples were not called by ABSOLUTE because 

they exhibited copy-number alterations across small fractions of their genomes, resulting in 

insufficient data for accurate calls by the algorithm.

2. Determination of SCNAs

We determined the most likely series of SCNAs that led to the copy-number profiles 

generated by ABSOLUTE for each homologous chromosome (henceforth, “allele”). Each 

SCNA was characterized by its length, amplitude, genomic position, and, when 

determinable, allele and the timing of its generation relative to neighboring segments. We 

deconstructed each chromosome individually in two sequential steps (to be described in 

greater detail in Zack et al, unpublished data):

1. Find a set of the most parsimonious arrangements of copy levels on the two 

parental alleles (allelic partitioning).

2. Find the most likely set of SCNA events that would give rise to these copy-number 

profile (allele deconstruction).

Allelic partitioning—Our data consist of integer copy-numbers of each allele at each 

locus. The data are segmented, with infrequent changes in copy-number between adjacent 

markers on the array (fewer than one breakpoint per 1000 markers). We start with no 

information about which copy levels or breakpoints belong on the same. The purpose of this 

section is to find a set of the most parsimonious partitions of copy levels between the two 

alleles.

There is some information inherent in the structure of the segmentation. Because 

breakpoints are rare, introducing breakpoints that are not necessary to explain our 

observations adds complexity to our model. There are only two situations in which this does 

not determine partitioning between the two alleles: 1) the two alleles are at the exact same 

copy level at a particular locus, or 2) both alleles have a breakpoint at the exact same SNP 

marker. The first situation is common; we expect the second situation to be rare. In either 
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case, we lose the ability to confidently say whether segments preceding that position 

occurred on the same or opposite allele as segments subsequent to this position. We call 

these loci “flex-points” as we are free to swap segments between the two alleles only in 

these regions. We label regions between adjacent flex-points “contigs”, as the partitioning of 

these segments relative to one another is fixed. The total number of possible arrangements of 

a given chromosome is 2f where f is the number of flex-points on the chromosome.

If there are fewer than eight flex-points, we enumerate all possible permutations of the 

contigs across the two alleles. If there are eight or more flex-points, such enumeration is 

computationally prohibitive, and we focus on the most likely allelic partitions. We assume 

the most likely partitions will tend to assign unlikely copy-levels (which vary widely from 

the chromosome-wide average) to the same allele, so that they can be accounted for by a 

single unlikely event rather than requiring separate unlikely events on each allele.

Allele Deconstruction—Once the segments have been fixed to each allele, SCNA 

determination is performed in similar fashion to methods described previously1,75, which 

identify the combination of SCNAs that would result in the observed copy-number profile 

and have maximum likelihood of having occurred. The likelihood of an SCNA occurring is 

estimated according to the observed frequencies of SCNAs with similar lengths and 

amplitudes of copy-number change across the entire dataset.

Here, however, we consider absolute allelic copy-number levels, which are discrete 

numbers, whereas prior methods focused on continuous total copy ratios. The discretized 

data allow enumeration of more possible SCNA combinations (including multiple 

overlapping amplifications and deletions) than is computationally possible in continuous 

data. The absolute copy-numbers also require that we distinguish SCNA likelihoods in near-

diploid samples from SCNA likelihoods in samples that have undergone WGD, which tend 

to have higher rates of other types of SCNA (Fig. 1b).

3. SCNA timing relative to WGD and chromosome duplication

We determined the temporal relations of individual SCNAs to WGD using different 

approaches for deletions and amplifications.

We considered deletions that involved a change from two copies to zero copies of an allele 

in WGD samples to have likely occurred prior to WGD. Similarly, deletions that involved a 

change from two copies to one copy of an allele were considered to have occurred after 

WGD. Other deletions were left uncalled because of ambiguities introduced by surrounding 

alterations. When determining timing of genome doubling, we did not include arm level or 

whole chromosome events, as the events of this size are too common to rule out two 

sequential events that appear to have the same breakpoints.

Amplifications are more ambiguous than deletions because the extra copies of DNA may 

end up elsewhere in the genome and be affected by subsequent events in those regions. 

However, because WGD affects the whole genome simultaneously, we expect estimates of 

WGD timing based on amplifications to be similar overall to estimates based on deletions. 
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We called events with an even total copy change as occurring prior to WGD and events with 

odd copy change as occurring after WGD.

The same metrics were used to determine events before or after chromosome duplication 

(Figure 2b). Again, amplifications are more uncertain than deletions because they may 

involve disparate regions of the genome.

4. Chromothripsis detection

Chromothripsis results from different mechanisms to most focal events, and has a very 

different distribution across lineages31,76. We identified chromothripsis events in diploid 

samples based on three features that are observable in copy-number profiles and which have 

been associated with chromothripsis previously76:

1. A single chromosome exhibits an unexpectedly large number of SCNAs given the 

observed frequency of SCNAs within the sample.

2. SCNAs on this chromosome tend to abnormally closely spaced than we would 

expect by chance.

3. The SCNAs are non-overlapping (because they occurred simultaneously) and lead 

to copy-number changes of +1 or −1.

Prior estimates of rates of chromothripsis have been complicated by uncertainty as to the 

absolute numbers of copies of change. In our application of these criteria, we evaluated the 

absolute allelic copy-number data to identify chromosomes that contained more non-

overlapping SCNAs that involved a single-copy change than we would expect by chance, 

given the number of SCNAs within the sample and using the binomial distribution. From 

these chromosomes, we applied the additional criterion that these SCNAs should be more 

tightly distributed within the chromosome than we would expect given a random selection of 

non-overlapping SCNAs within our dataset. If this criterion was not met, we applied a 

recursive algorithm to remove the SCNA furthest from the centroid location of the SCNAs 

potentially derived from chromothripsis, and recomputed these two statistics.

Further details of the method will be described separately (Zack et al, unpublished data).

5. Impurity-corrected GISTIC

In cases where we were able to estimate purity and ploidy from ABSOLUTE, we 

“corrected” total copy-ratios for signal dampening due to cancer cell impurity (i.e. 

contamination with normal DNA). We called this In-Silico Admixture Removal (ISAR).

The observed copy-ratio R(x) at locus x is a function of the purity α, cancer cell ploidy τ 

(representing the average copy-number genome-wide), and integer copy-number (in the 

cancer cells) q(x)29

where D represents the average ploidy across all cells in the cancer:
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From this, we can determine q(x):

We assume that the functionally relevant number is the copy-ratio within cancer cells, 

representing the integer number of copies q(x) divided by the overall ploidy of the cell τ:

Use of R’(x) has the effect of amplifying the signal from low purity samples to be equivalent 

to higher purity samples. For samples for which ABSOLUTE calls were not available, we 

used R(x).

To determine significantly recurrent regions of SCNA, we used GISTIC 2.075 applied to the 

transformed copy-number data. We used a noise threshold of 0.3, a broad length cutoff of 

0.5 chromosome arms, a confidence level of 95%, and a copy-ratio cap of 1.5.

For some lineage-specific analyses, dozens of regions on a single chromosome arm were 

identified as significant peaks due to the presence in many samples of discontinuous SCNAs 

(such as chromothripsis) on those chromosome arms. This phenomenon has been observed 

previously1. We narrowed these regions by applying in all lineage-specific analyses an 

“arm-level peel-off” correction that considers all SCNAs on a chromosome arm in a single 

sample to be part of a single event when determining whether multiple significantly 

recurrent events exist on that chromosome arm. This approach has also been used in prior 

analyses77.

The genes listed in each peak region include all protein-coding genes and microRNAs and 

additional non-coding RNAs as listed in the files refGene.txt, refLink.txt, refSeqStatus.txt, 

and wgRna.txt from the UCSC Golden Path database (ftp://hgdownload.cse.ucsc.edu/

goldenPath/hg19/database/) as of 27 February 2012.

6. Significance of chromatin modifying genes among peak regions of amplification without 
known driver genes

To determine whether epigenetic regulators were enriched in peak regions, we compared the 

number of regions with epigenetic regulators (using a published list40) to permuted datasets 

in which each gene in each region was replaced by a gene randomly selected from elsewhere 

in the genome.

7. Correlation analysis

To determine the significance of SCNA co-occurrences, we compared the observed rate of 

co-occurrences to the rate of co-occurrences in 5000 permuted copy-number profiles for 
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which we had randomized the sample assignment for each chromosome, while maintaining 

genomic position and lineage and sub-lineage assignments. We only considered SCNAs in 

different chromosomes to avoid confounding due to geographic proximity. This analysis 

generated the permuted distribution in Figure 4c (blue line) and Supplementary Figures 4a–

b, and the FDR-corrected78 p-values in Figure 4b (top).

To control for variable rates of genomic disruption across samples, we modified the 

permutations so that they maintained both the numbers of amplified and deleted markers A0
j 

and D0
j in each sample j. After randomizing sample assignments for each chromosome as 

described above, we applied simulated annealing79,80 in which we picked a chromosome at 

random and swapped it between two randomly chosen samples within the same lineage at 

each step, and accepted the step with a probability 1− Etot, where:

and At
j and Dt

j represent the numbers of amplified and deleted markers in sample j and step 

t. Tamp and Tdel are temperature factors that were slowly increased during the annealing, and 

the 1 in the denominator of each value is to avoid dividing by 0 in samples without any 

events. This approach generated the distributions shown in Figure 4c (dashed line) and the 

FDR-corrected78 p-values in 4b (bottom). This procedure was applied in two separates 

analyses: one in which we looked at all SCNAs that passed the noise thresholds we used for 

our GISTIC significance analyses (above), and one in which we only considered loci with 

copy-number <−1 or >4.4. The second analysis we termed our “high-level” analysis.

8. Intersection between mutual exclusivity network and Dapple network

To validate the functionality of our network, we looked at the overlap between our network 

and DAPPLE, a curated dataset of protein-protein interactions81 (PPIs). Of the >400,000 

PPI pairs, we took only pairs with a score equal to 1 (indicating highest confidence). Two 

peak regions had an edge between them in the PPI network under two conditions;

1. A protein within the first peak was a direct interactor with a protein in the second 

peak.

2. A protein in the first peak had at least three distinct paths of length 2 in the PPI 

network to a protein in the second peak.

To improve specificity, we only tested regions containing fewer than 25 genes. We 

determined whether the similarity between the PPI network and the anticorrelation network 

was significant by comparing the extent of overlap to permutations in which the edges in the 

anticorrelation network were randomly reassigned while maintaining the overall 

connectivity of the graph (see Results). By comparing both observed and anticorrelation 

networks to the same PPI network, we controlled for the propensity of regions with many 

genes to map to more PPIs.
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9. Somatic genetic correlates with WGD

To determine which of the 200 most significant somatic mutations correlate with WGD, we 

used the permmatswap function in the R82 package “vegan”83 with the “quasifit” handle 

[Lawrence et al., unpublished data]34 to produce a series of independent assignments for 

mutations on each gene within each sample. This function maintained the number of 

mutations per gene per lineage, as well as the number of the number of mutations per 

sample.

To determine which of the peak regions had SCNAs that correlate with WGD, we compared 

the number of times each SCNA was observed in WGD samples in our observed data to the 

number of times the SCNA was observed in WGD samples in the permutations created by 

our simulated annealing approach above.

10. Overlap of peak regions of SCNA

Two regions were considered to overlap if their 95% confidence intervals intersected. To 

determine significance of overlap, we compared the number of peak regions that overlapped 

across at least two lineages in the observed data to 100,000 permutations in which the 

locations of each peak region were randomly shuffled within its chromosome arm 

(disallowing extension past the telomere or centromere).

11. GRAIL analysis

We used GRAIL39 (www.broadinstitute.org/mpg/grail/) to find common functional terms in 

the literature for the genes in peak regions of SCNA. We used only PubMed abstracts 

through December 2006. We removed the following non-informative keywords from those 

GRAIL found most significant: "growth", "cancer", "cancers", "tumor", "tumors", 

"proliferation", "suppressor", "factors", "loss", "like", "rich", "cel", "cells", "yeast", 

"system", "family", "repeat", "deletions", "elegans", "national".

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Distribution of SCNAs across lineages
(a) Sample purities (top panel) and ploidies (bottom panel) across lineages (see 

Supplementary Table 1 for a list of lineage abbreviations). Near-diploid samples are 

designated in purple; cancers that have undergone one or more than one WGD event are 

designated by green and red, respectively. Summarized data across all lineages are indicated 

on the right. (b) Numbers of arm-level (top) and focal (bottom) amplifications (left) and 

deletions (right) across lineages. For each lineage, near-diploid and WGD samples are 
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indicated by bars on the left and right, respectively; events among WGD samples are 

resolved according to their timing relative to WGD.
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Figure 2. Characteristics of different types of SCNA
(a) The distribution of lengths of SCNAs originating at telomeres (black line) compared to 

SCNAs that are internal to the chromosome. (b) Rates of chromothripsis across lineages. (c) 

Rates of chromothripsis across chromosomes. Chromothripsis events that involved peak 

regions of amplification and deletion (see below) are indicated in blue (dark blue: 

amplifications >4.4 copies or deletions<−1; light blue: low-level events involving smaller 

changes); events that do not involve peak regions are indicated in grey.
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Figure 3. Significantly recurrent focal SCNAs
(a) Frequencies of amplification minus frequencies of deletion (red and blue indicated 

propensity to amplifications and deletions, respectively) across lineages (x-axis; see 

Supplementary Table 1 for a list of lineage abbreviations) for all 84 significant peak regions 

of SCNA, arranged in order of significance (y-axis). The ordering of lineages reflects the 

results of unsupervised hierarchical clustering of these data. Magnified views of the values 

for the ten most significant amplification and deletion peaks, respectively, are shown to the 

right, alongside candidate targets for these regions. Criteria for selecting the indicated 
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candidates are described in the Methods. (b) Associated terms in literature in peak regions 

containing fewer than 25 genes, according to a GRAIL analysis of (top) all peak regions and 

(bottom) peak regions without known cancer genes or large genes. (c) Illustration of 

locations of peak regions within chromosomes four and eight (other chromosomes are 

displayed in Supplementary Figure 3) across cancer types (designated by boxes on top and 

bottom colored according to the scheme in panel a) and the Pan-Cancer analysis (right-most 

column, denoted by a black line). Peaks are designated by candidate targets for each region, 

selected according to criteria described in the Methods.
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Figure 4. Correlations between SCNAs
(a) Illustration of question, displaying a heatmap of copy-number profiles across 4934 

cancers (x-axis), arranged in order of increasing genomic disruption. (b) Fraction of region 

pairs exhibiting significant positive correlation (left), negative correlation (right), or neither 

(middle), using standard analysis techniques (top) and after controlling for variations in 

genomic disruption (bottom). (c) Fraction of genome involved in focal SCNAs in samples 

displayed in panel (a) among observed data (red line), permutations generated by standard 

techniques (blue line) and permutations that maintain levels of genomic disruption (black 
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dashed line). (d) Genetic interactome map for high-level SCNAs. Nodes represent peak 

regions with fewer than 25 genes and are connected by edges if focal high-level SCNAs 

(amplifications to >4.4 copies and deletions to <1 copy) are significantly anticorrelated. (e) 

The number of significant anticorrelations that overlap known protein-protein interactions in 

the observed genetic interactome network (red arrow) and permuted networks (blue bars). 

These results are from the analysis of all SCNAs; results from the high-level analysis are 

displayed in Supplementary Figure 4d. (f) Distribution of connectivity values (number of 

nodes to which each node is connected) for the observed genetic interactome network (red 

dots) and permuted networks (box plots) in the all-SCNAs analysis.
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