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Abstract: It is necessary to sustain energy from an external reservoir or employ advanced technologies
to enhance oil recovery. A greater volume of oil may be recovered by employing nanofluid flooding.
In this study, we investigated oil extraction in a two-phase incompressible fluid in a two-dimensional
rectangular porous homogenous area filled with oil and having no capillary pressure. The governing
equations that were derived from Darcy’s law and the mass conservation law were solved using the
finite element method. Compared to earlier research, a more efficient numerical model is proposed
here. The proposed model allows for the cost-effective study of heating-based inlet fluid in enhanced
oil recovery (EOR) and uses the empirical correlations of the nanofluid thermophysical properties on
the relative permeability equations of the nanofluid and oil, so it is more accurate than other models
to determine the higher recovery factor of one nanoparticle compared to other nanoparticles. Next,
the effect of nanoparticle volume fraction on flooding was evaluated. EOR via nanofluid flooding
processes and the effect of the intake temperatures (300 and 350 K) were also simulated by comparing
three nanoparticles: SiO2, Al2O3, and CuO. The results show that adding nanoparticles (<5 v%) to a
base fluid enhanced the oil recovery by more than 20%. Increasing the inlet temperature enhanced
the oil recovery due to changes in viscosity and density of oil. Increasing the relative permeability
of nanofluid while simultaneously reducing the relative permeability of oil due to the presence of
nanoparticles was the primary reason for EOR.

Keywords: nanofluid injection; flooding; porous media; enhanced oil recovery; mathematical model

1. Introduction

New technologies are being developed to boost oil production to comply with rising
energy demand [1], while continuously depleting resources. Oil recovery processes are
utilized to obtain maximum oil from hydrocarbon reservoirs [2] under economic feasibil-
ity constraints. Primary recovery refers to extracting oil from a reservoir using natural
energy and pressure. Because the inherent energy of the reservoir declines throughout
the production process, only 5% to 15% of hydrocarbons may be recovered by using this
recovery method.
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Enhanced oil recovery (EOR) is implemented to improve residual oil extraction from
the homogenous medium in the reservoir [3]. The secondary and the tertiary recoveries
are included in the EOR process, typically constituting sophisticated technologies. The
secondary EOR process is achieved through water injection or gas injection [4]. After
primary recovery, fluid injection is used to restore the reservoir pressure. In contrast, the
fluid injection in the tertiary recovery alters the interaction between the reservoir rock and
the fluid [5]. The displacement of oil from porous media using water or solutions including
surfactants or polymer additives is a popular method of extracting oil from terrigenous
sources [6].

Silicon SiO2, aluminum oxide Al2O3, and copper oxide CuO nanoparticles are the most
frequently utilized nanoparticles in EOR. As a result of their characteristics, nanoparticles
can address a few issues with conventional approaches and improve the displacing fluid’s
sweep efficiency, because the base fluids’ thermal conductivity and interfacial characteristics
are both improved by nanoparticles. Furthermore, they can withstand high temperatures
and pressures, are ecologically friendly and are cost-effective. Almost all EOR approaches
are expensive, but the advantages of nanofluid flooding can be more economical. In
addition, nanoparticles can optimize the properties of displacing fluids such as density,
viscosity, the interfacial tension between oil and water, thermal conductivity, and specific
heat [2].

A few EOR approaches involving nanomaterials have been reported recently. Fluids
containing suspended nanoparticles have the potential to significantly enhance oil recovery
procedures and increase oil extraction from reservoirs [7–9]. The incorporation of nanopar-
ticles into the base fluid would affect the heat transport [10–13], the fluid viscosity [14–20],
the thermal conductivity [21–23], and the rheological conductivity [22,24,25]. This approach
is regarded as one of the alternate methods for locating new hydrocarbon reserves [26].

Several papers have recently been published in which nanofluid flooding is proposed
as an agent for EOR [27–31]. The effect of nanofluid flooding on enhancing oil extraction
from porous media has also been reported. Despite several experimental and modeling
investigations, there is currently no exact explanation for the impacts of nanoparticles on
the rise in oil recovery during nanofluid flooding, which limits the adoption of the method
in the industry. Some suggested theories for understanding the influence of nanofluids
on oil extraction include surface tension-lowering techniques [32–35], the alteration of the
porous medium’s wettability [36–38], and the change in viscosity [39–44].

Researchers have looked at the transfer of microscopic particles in a two-phase flow
through an open porous medium to simulate the EOR process [6,45–48]. Polysilicon
nanoparticles were studied by Ju and Fan [49]. Their results showed that the environment
shifts from oily to watery, promoting oil extraction. They developed a mathematical model
for small particle transport in a two-phase flow in porous media [50].

The presence of nanoparticles also has a considerable impact on the thermophysical
properties of the base fluid [51–55]. However, a limited number of research studies are
available on thermophysical properties of nanofluid in porous media for EOR [54]. Fur-
thermore, nanoparticles seem to enhance the effective characteristics of the injected fluid,
particularly in the process of washing the oil from a porous medium [56,57].

In the present study, a numerical method of finite element is used to solve the gov-
erning equations that were derived from Darcy’s law and the mass conservation law of
a two-phase incompressible fluid in a two-dimensional porous homogenous area. The
thermophysical properties of nanoparticles were studied for their volume fraction and their
kind and influence on the extraction of oil. Compared to earlier research, a more efficient
numerical model is proposed. The proposed model allows for the cost-effective study
of heating-based inlet fluid in EOR and uses the empirical correlations of the nanofluid
thermophysical properties on the relative permeability equations of the nanofluid and oil,
so it is more accurate than other models to determine the higher recovery factor of one
nanoparticle compared to other nanoparticles. Moreover, the EOR via nanofluid flooding
processes and the effect of the intake temperatures (300 and 350 K) were also simulated
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by comparing three nanoparticles, SiO2, Al2O3 and CuO, with different nanoparticle vol-
ume fractions. Finally, we studied how increasing the inlet temperature enhanced the oil
recovery due to changes in viscosity and density of oil. This work aims to model the EOR
procedure by flooding, taking into consideration the efficient characteristics of nanofluids
conveyed through a model porous medium.

2. Numerical Implementation

Computational fluid dynamics (CFDs) is a methodology used to examine systems,
such as fluid flow and the heat transport system, through computer simulations. When
compared to experimental investigations, the CFD technique has the potential to study
critical and unique circumstances in a process, reduce response time and research costs,
and gain a complete and detailed understanding of the process [58–64].

FEM techniques, which are one of the most used approaches for CFD research, were
employed here. The primary framework of the employed simulation software COMSOL
Multiphysics is fully based on FEM as a numerical method. The numerical analysis
community frequently uses finite element methods to investigate numerical approaches for
fluid flow.

There is a lot of work on CFD and finite element techniques in literature, particularly
in the EOR process and porous medium modeling [54,65–68]. Four phenomena occur
when nanofluid is introduced into porous media: adsorption, desorption, blockage, and
migration with flowing fluid. This section introduces one proposed model that others have
recently adopted for nanofluid injection in oil reservoirs for EOR [69–72].

2.1. Model Assumptions

The following assumptions were used to build the two-phase flow mathematical
model with distributed nanoparticles [73]:

• Fluids were both incompressible.
• Fluid flow in pore medium obeyed Darcy’s law.
• The flow was in an isothermal state.
• There was no capillary pressure such that permeability and porosity were independent

of time and space and that the impact of gravity was neglected.
• Darcy’s law and the mass conservation law provided the essential equations. Mass conser-

vation was comparable to volume conservation since the two phases are incompressible.

2.2. Geometry Creation

The geometry of the model was produced using COMSOL Multiphysics software with
the following attributes: a 2D porous medium with porosity of 0.3, absolute permeability of
1e− 9 m2, and size of 1× 2 m2. Figure 1 indicates that the porous medium was homogenous
for its distribution.
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The boundary layer mesh is important because the default triangular mesh in COM-
SOL software does not work well for fluid flow problems, and there is a boundary layer
along the contact between the nanofluid and the solid, as shown in Figure 2a. A no-slip
condition from our assumption generated the boundary layer of the nanofluid flow through
a stationary porous medium, and the layer close to the solid has zero velocity. Figure 2b
below depicts the development of a boundary layer mesh for achieving a refined solution
to the fluid flow problems by using extremely small, thin components near the solid wall.
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Figure 2. (a) Mesh geometry using the boundary layer mesh and (b) illustration of the actual structure
of the boundary layer mesh.

2.3. Grid Independency

Varying grid types with different mesh sizes were developed for the investigation of
grid independence. To compare grids, fluid pressure drops in the porous medium were
considered. The total pressure at the entrance and exit were estimated. The mesh size,
number of elements generated, as well as the pressure drop between the intake and exit are
all shown in Table 1. As a result, mesh number 3 is chosen as the ideal mesh number and is
utilized in all the simulations that follow.

Table 1. Pressure drops in model at different grids.

No. No. of Elements ∆P (Pa.)

1 125,000 0.875
2 140,000 0.926
3 250,000 0.932
4 300,000 0.933
5 400,000 0.934

Although COMSOL Multiphysics meshing algorithms attempt to eliminate low-
quality parts, this is not always achievable for all geometries. A quality of 1 is the greatest
feasible value for any quality measure and signifies an ideal element within the specified
quality measure. At the interval’s opposite end, 0 denotes a degraded element. As a result
of the element measurements, the meshing of the present research geometry is of excellent
quality, with a quality of 1, as shown in Figure 3a.



Nanomaterials 2022, 12, 1011 5 of 19

Nanomaterials 2022, 12, x FOR PEER REVIEW 5 of 20 
 

 

Table 1. Pressure drops in model at different grids. 

No. No. of Elements ∆𝑷 (Pa.) 

1 125,000 0.875 

2 140,000 0.926 

3 250,000 0.932 

4 300,000 0.933 

5 400,000 0.934 

 

Figure 3. (a) Inspection of the geometry mesh in COMSOL Multiphysics and (b) convergence plot. 

2.4. Governing Equations 

The equations associated with the mathematical modeling of flooding problems 

using nanofluids accounted for the heat transfer. The nanofluid flooding equations were 

first studied as water flooding equations by assuming that the nanoparticle’s 

concentration equals 0 for examining the mathematical and physical equations of the 

problems in the oil reservoir. The porous medium’s heat equation was then supplied to 

accomplish the model.  

Because the initial pressure difference between the well and the tank was extremely 

large, the oil exited the tank automatically until the well and tank pressures equalized, at 

which time recovery procedures were required. Because it was considered that flow 

cannot exit boundaries 2 and 3, and that flow can only move between boundaries 1 and 4, 

the zero-flow boundary condition was considered. 

In recent years, nanofluids have been used instead of water to increase oil recovery 

and to improve the flooding function [26]. To determine the rate of oil recovery, the 

equations of saturated oil ( 𝑆o ) and water-based nanofluid saturation ( 𝑆nf ) in the 

environment should be determined. The porous medium was first filled with oil. Water-

based nanofluid entered the porous medium from boundary 1 with a velocity 𝐮nf0 of 

0.001 m/s, and displaced oil, which was permitted to flow out of the porous domain via 

boundary 4. At the inlet (boundary 1), the velocity 𝐮o of oil was 0:  

−𝐧. ρo𝐮o  =  0       m/s (1) 

−𝐧. ρnf 𝐮nf  =  0.001   m/s (2) 

The pressure at the outlet (boundary 4) was set to 0 Pa: 

𝑝 = 𝑝nf = 0  Pa  (3) 

The total velocity 𝐮 =  𝐮nf  +  𝐮o  was constant in time and space because of the 

assumptions and boundary conditions stated above, and Darcy’s law and the mass 

conservation law provide the essential equations. Mass conservation is comparable to 

volume conservation since the two phases were assumed to be incompressible. 

For the two phases of water-based nanofluid and oil, Darcy’s law yields [74]: 

Figure 3. (a) Inspection of the geometry mesh in COMSOL Multiphysics and (b) convergence plot.

In addition, Figure 3b depicts the plot of convergence, which is time–domain con-
vergence for time-dependent problems (variables), and finds a solution to the system of
equations with error less than 1e− 5 at a specific time, 250 s.

2.4. Governing Equations

The equations associated with the mathematical modeling of flooding problems using
nanofluids accounted for the heat transfer. The nanofluid flooding equations were first
studied as water flooding equations by assuming that the nanoparticle’s concentration
equals 0 for examining the mathematical and physical equations of the problems in the oil
reservoir. The porous medium’s heat equation was then supplied to accomplish the model.

Because the initial pressure difference between the well and the tank was extremely
large, the oil exited the tank automatically until the well and tank pressures equalized, at
which time recovery procedures were required. Because it was considered that flow cannot
exit boundaries 2 and 3, and that flow can only move between boundaries 1 and 4, the
zero-flow boundary condition was considered.

In recent years, nanofluids have been used instead of water to increase oil recovery and
to improve the flooding function [26]. To determine the rate of oil recovery, the equations of
saturated oil (So) and water-based nanofluid saturation (Snf) in the environment should be
determined. The porous medium was first filled with oil. Water-based nanofluid entered
the porous medium from boundary 1 with a velocity unf0 of 0.001 m/s, and displaced
oil, which was permitted to flow out of the porous domain via boundary 4. At the inlet
(boundary 1), the velocity uo of oil was 0:

−n.ρouo = 0 m/s (1)

−n.ρnf unf = 0.001 m/s (2)

The pressure at the outlet (boundary 4) was set to 0 Pa:

p = pnf = 0 Pa (3)

The total velocity u = unf + uo was constant in time and space because of the assump-
tions and boundary conditions stated above, and Darcy’s law and the mass conservation
law provide the essential equations. Mass conservation is comparable to volume conserva-
tion since the two phases were assumed to be incompressible.

For the two phases of water-based nanofluid and oil, Darcy’s law yields [74]:

unf = −Kmnf ∇p (4)

and
uo = −Kmo∇p (5)

where the velocities of phase 1 water-based nanofluid and phase 2 oil are unf and uo,
respectively; the mobilities of phases 1 and 2 are mnf and mo, respectively; mnf = krnf/µnf;
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and mo = kro/µo. The functions knf and ko are dependent on the saturation, and K is the
absolute permeability.

The laws of volume conservation are:

∇.(ρnf unf) = −ε ρnf
∂Snf
∂t

(6)

and
∇.(ρo uo) = −ε ρo

∂So

∂t
(7)

where the saturation of phase 1 (nanofluid) is Snf and of phase 2 (oil) is So, while the
porosity is ε. The initial condition was taken as Snf = 0 to solve saturation equations. In the
reservoir, there was often not just oil, but also some water. In this study, for first saturation,
a quantity of 0 was considered. Because the input fluid contains no oil, the inlet nanofluid
saturation (Snf) was 1. It should also be noted that there is a correlation between the amount
of oil saturation and nanofluid flooding [75]:

Snf + So = 1 (8)

Equation (9) was obtained by adding Equations (6) and (7) and by considering the
fluids incompressible, and by using Equation (8).

∇.(unf + uo) = 0 (9)

and
u = unf + uo (10)

The entire volumetric flow (velocity) is denoted by u. In this study, we simplify by
assuming that u is constant.

Equations (4) and (5) are added together, then Equation (10) is used to produce
Equation (11).

u = −K(mnf + mo)∇p (11)

Solving Equation (11) for ∇p and plugging it into Equation (4) led to Equation (12).

unf = (mnf u)/(mnf + mo) (12)

Substitution of Equation (12) for Equation (6) resulted in Equation (13).

∇.(ρnf ((mnf u)/(mnf + mo))) = −ε ρnf
∂Snf
∂t

(13)

Since water-based nanofluid is liquid, the values of effective density and viscosity of
nanofluid to solve Equation (13) should be utilized. Equations (14) and (15) were used to
derive the effective density and viscosity, respectively [76]:

ρnf = ∅ρnp + (1−∅)ρw (14)

µnf = µw

(
1 + 39.11∅+ 533.9∅2

)
(15)

where ρnf and µnf are the density and viscosity of nanofluid, respectively, and ∅ is the
nanoparticle volume fraction of the nanofluid.

Relative permeability was required for water-based nanofluid and oil for solving the
saturation equations. The effective saturation (Se) was utilized in the relative permeabilities:

Se =
Snf − Srnf

1− Srnf − Sro
(16)



Nanomaterials 2022, 12, 1011 7 of 19

where (Se) is the effective saturation, (Srnf) is the residual nanofluid saturation, and (Sro)
is the residual oil saturation. Equation (17) [77] defines the relative permeability of water-
based nanofluid and oil in the Brooks–Corey model:

krnf = Se3 +
2
λ

, kro =
(

1− S2
e

)
×
(

1− S
1+ 2

λ
e

)
(17)

where λ is the distribution index for the pore size, and its value is 1. The capillary pressure
or the difference in pressure between nanofluid and oil equals 0 since it was assumed that
there is no capillary pressure in this model. It can then be expressed as follows.

0 = Pc = Po − Pnf (18)

then
po = pnf = p (19)

The oil temperature in the reservoir increased at a higher heat transfer rate between the
two phases when the intake fluid was high. When nanoparticles were added, the thermal
conductivity coefficient

(
ke f f

)
increased, allowing for more efficient heat transmission

involving nanofluids and oil. Under this situation, the flooding approach would benefit
from two factors as temperatures rise. Lowering the viscosity of the oil eased the nanofluid
for replacing the oil from the porous medium since its stickiness and heavyweight were
reduced, and it drained faster than the same water flow. Another effect of rising tempera-
tures was that oil density decreased, making it lighter in volume and needing a smaller
amount of energy to be evacuated from reservoirs.

The energy equation in porous media is introduced in this section [78]:

(
ρCp

)
e f f

∂T
∂t

+ ρCpu.∇T +∇.q = 0, q = −ke f f∇T (20)

(
ρCp

)
e f f = θpρpCp,p +

(
1− θp

)
ρCp, ke f f = θpkp +

(
1− θp

)
k (21)

In the environment, the initial temperature is 300 K. The border condition is specified
as Equation (22) for the input of the heat equation:

− nq = ρ∆Hun, ∆H =
∫ T

Tin

CpdT (22)

The target variable for this study is Tin, denoting the temperature of the input fluid
and influencing the performance of the recovery process. The condition of the foreign
border 4 is:

− nq = 0 (23)

Table 2 illustrates the properties of water at a constant temperature. The four fluid
parameters used in the two-phase and energy equations are density, viscosity, specific heat
capacity, and conduction heat transfer coefficient. It also summarizes the results of past
studies on oil characteristics. With rising temperatures, the density and viscosity of water
and oil change. Transferring water heat to oil decreases the viscosity and density of oil.
Therefore, the oil could be transported more readily and recovered. This approach must
be investigated in this study. According to Equation (24), the density of water varies with
temperature (for temperatures ranging from 300 K to 350 K) [79]. Table 3 also shows how
the viscosity of water changes with temperature.

ρ(T) = 838.46613 + 1.400506T1 − 0.00301123T2 + 3.718e− 7T3 (24)
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Table 2. The characteristics of water and oil at a constant temperature.

Properties
Water [80] Oil [81]

Unit
Value Value

Density (ρ) 990 880 kg
m3

Viscosity (µ) 0.001 4.5e− 4 Pa.s
Specific heat capacity (CP) 4200 1670 J

kg.K

Thermal conductivity coefficient
(

ke f f

)
0.6 0.13 W

m.K

Table 3. Effects of temperature on viscosity of water [79].

Temperature Efficiency Viscosity Equation

273.15 < T < 413.15
µ(T) = 1.3799566804− 0.021 ∗ T + 1.36045e – 4 ∗ T2 −

4.6454090e− 7 ∗ T3 + 8.9042735e− 10 ∗ T4 −
9.079069e− 13 ∗ T5 + 3.845733e− 16 ∗ T6

413.15 < T < 553.75 µ(T) = 0.004012− 2.1074e− 5 ∗ T +
3.85772275e – 8 ∗ T 2 − 2.39730284e− 11 ∗ T3

After assessing how temperature affects the density and viscosity of water, the mecha-
nism of temperature in affecting the density and viscosity of the oil was then evaluated.
There are data about oil density at three temperatures. Oil characteristics, like water, are
temperature-dependent. The change in oil density with temperature is shown in Table 4.
Similarly, oil viscosity operates in the same way. Table 5 [82] shows the oil’s viscosity at
three distinct temperatures.

Table 4. Temperature-related changes in oil density [82].

Temperature (◦C) Value of Oil Density ( kg
m3 )

15 837.4
20 833.8
40 819

Table 5. Temperature-related changes in oil viscosity [82].

Temperature (◦C) Value of Oil Viscosity (Pa·s)

15 0.01692
20 0.01384
40 0.006969

As the oil temperature inside the reservoir rises, the viscosity and the density of the
oil gradually reduce, as indicated in Tables 4 and 5. The oil becomes smoother and easier to
evacuate from the porous medium. Therefore, lowering these parameters would also aid
in EOR.

2.5. The Nano-Particles’ Effect on Thermophysical Properties of Nanofluid

The nanoparticles SiO2, Al2O3, and CuO were evaluated in this study. These nanopar-
ticles were combined with water at specific compositions to generate a nanofluid that flows
into the porous medium.

The thermophysical parameters of SiO2, Al2O3, and CuO particles are shown in Table 6.
By using the numerical values of these thermophysical parameters and the nanofluid
empirical equations in Table 7, the nanofluid characteristics were extracted, and the effects of
adding various nanoparticles on the physical characteristics were examined. Furthermore,
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for all three nanofluids, the influence of a volume fraction ranging from 1% to 5% on the
thermophysical characteristics of the base fluid was investigated.

Table 6. Nanoparticle properties.

Properties SiO2 [83] Al2O3 [84] CuO [85] Unit

Density (ρ) 2220 3970 6310 kg
m3

Molecular weight 60 101.96 79.55 g
mol

Specific heat capacity (CP) 745 765 531 J
kg.K

Thermal conductivity
coefficient (K) 36 40 20 W

m.K

Diameter 40 30 30 nm

Table 7. Properties of nanofluids.

Nanofluid Properties Equation (Combining
Nanoparticle and Water) Unit

Density (ρnf) [86] ρnf = ∅ρnp + (1−∅)ρw
kg
m3

Specific heat capacity
(
CPnf ) [87] CPnf =

∅ρnpCPnp+(1−∅)ρwCPw
ρn f

J
kg.K

Thermal conductivity coefficient (Knf ) [88,89] Knf = kw
knp+2kw−2∅(kw−knp)
knp+2kw+∅(kw−knp)

W
m.K

Viscosity (µnf ) [90,91] µnf = µw
(
1 + 39.11∅+ 533.9∅2) Pa.s

The impact of the volume fraction on the density of water nanofluids SiO2, Al2O3,
and CuO is shown in Figure 4a. The density of all three types of nanofluids increased as
the volume fraction increased, with the increase being greater for CuO water nanofluids
than SiO2 water and Al2O3 nanofluids. Due to the lowest density of SiO2 nanoparticles
compared to the others, SiO2 water showed the lowest nanofluid density.
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Figure 4. (a) The influence of nanoparticles on density and (b) nanoparticles’ influence on thermal
capacity.

Figure 4b depicts the effect of increasing the amount of nanoparticles in the base
fluid on thermal capacity. It demonstrates a reduction in thermal capacity as the ∅ value
increases. The analysis of the three nanofluid combinations revealed that SiO2 in the base
water had the maximum thermal capacity. The thermal capacity varies depending on the
nanofluid density and the nanoparticles’ thermal capacity.

Figure 5a demonstrates how increasing the concentration of nanoparticles ∅ influ-
ences the nanofluid’s viscosity. Using the viscosity equation (see Table 7), it is clear that the
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viscosity was only impacted by the parameter ∅ and viscosity of the base fluid and was un-
affected by the kind of nanoparticle. The viscosity increased with increasing concentration
for all three nanoparticles. Figure 5b shows the impact of increasing the concentration of
nanoparticles on the nanofluid’s thermal conductivity. As the concentration of nanoparti-
cles increases, so does the heat conductivity. The greatest thermal conductivity was found
in an Al2O3 water nanofluid, followed by SiO2 and CuO.
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The fluid characteristics were a mixture of nanofluids and oils, and their saturation
must also be considered in the case of heat transmission. Table 8 shows the thermophysical
properties of the energy equation.

Table 8. Total characteristics that may be used in the energy equation.

Nanofluid Properties Equation (Combining
Nanoparticle and Water) Unit

Density (ρtot ) ρtot = Snfρnf + (1− Snf)ρo
kg
m3

Specific heat capacity
(
Cptot

)
Cptot = SnfCpnf + (1− Snf)Cpo

J
kg.K

Thermal conductivity coefficient (Ktot) Ktot = SnfKnf + (1− Snf)ko
W

m.K

The reservoir rock characteristics were required in the energy calculation for a porous
medium. The Rafaat et al. [73] model was adopted because the relative permeability
requires the diameter of the granules inside the reservoir; these characteristics are provided
in Table 9.

Table 9. Properties of reservoir rocks [92].

Properties of Reservoir Rocks Value Unit

Density (ρ) 2714 kg
m3

Specific heat capacity (CP) 851 J
kg.K

Thermal conductivity coefficient
(

ke f f

)
2.2 W

m.K

Diameter of particle 3 nm

2.6. Verification

The simulation was compared to the findings of an experimental study provided
by Maghzi et al. [78] to validate the numerical solver. In their experiment, the silica



Nanomaterials 2022, 12, 1011 11 of 19

nanoparticles in distilled water were employed to increase the amount of oil recovered
from the porous medium. The geometry of their model featured a 2D porous medium with
porosity of 0.33, absolute permeability of 200 mD, and size of 6× 6 cm2. In this work, the
results are provided utilizing the COMSOL solver. In Figure 6, the experimental data are
compared to the model findings for changes in the amount of oil retrieved from the medium
versus pore volume and exhibited a good agreement with experimental findings [93].

Nanomaterials 2022, 12, x FOR PEER REVIEW 11 of 20 
 

 

Table 9. Properties of reservoir rocks [92]. 

Properties of Reservoir Rocks Value Unit 

Density (ρ) 2714 
kg

m3
 

Specific heat capacity (CP) 851 
J

kg. K
 

Thermal conductivity coefficient (𝑘𝑒𝑓𝑓) 2.2 
W

m. K
 

Diameter of particle 3 nm 

2.6. Verification 

The simulation was compared to the findings of an experimental study provided by 

Maghzi et al. [78] to validate the numerical solver. In their experiment, the silica 

nanoparticles in distilled water were employed to increase the amount of oil recovered 

from the porous medium. The geometry of their model featured a 2D porous medium 

with porosity of 0.33, absolute permeability of 200 mD, and size of 6 × 6 cm2. In this 

work, the results are provided utilizing the COMSOL solver. In Figure 6, the experimental 

data are compared to the model findings for changes in the amount of oil retrieved from 

the medium versus pore volume and exhibited a good agreement with experimental 

findings [93]. 

 

Figure 6. Evaluation of curve changes in the amount of oil recovered from porous medium 

computed from the model and experimental data [93]. 

3. Results 

The solution domain and porous medium were considered homogenous in this 

study. Our research focus was the impacts of nanofluids in water flooding applications. 

The simulations were run twice, once for water and again for nanofluid inlet flow. As 

previously stated, empirical research has shown that this technique significantly impacts 

petroleum outflow. The purpose of this study was to validate and analyze its relevance 

and impact on EOR. The problem was initially addressed with a concentration of 0 

(purified water) and then by contemplating the 5% nanoparticle concentration with water, 

assuming silicone nanoparticles and water fluid usage. 

As demonstrated in Figure 7a–c, the quantity of nanofluid saturation in the 

environment was significantly larger and the extracted oil from porous media was 

0.0 0.2 0.4 0.6 0.8 1.0 1.2
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

 Experimental Results

 Present Study

O
il

 R
ec

o
v

er
y
 F

ac
to

r

PV of Injected Fluid

Figure 6. Evaluation of curve changes in the amount of oil recovered from porous medium computed
from the model and experimental data [93].

3. Results

The solution domain and porous medium were considered homogenous in this study.
Our research focus was the impacts of nanofluids in water flooding applications. The
simulations were run twice, once for water and again for nanofluid inlet flow. As previously
stated, empirical research has shown that this technique significantly impacts petroleum
outflow. The purpose of this study was to validate and analyze its relevance and impact on
EOR. The problem was initially addressed with a concentration of 0 (purified water) and
then by contemplating the 5% nanoparticle concentration with water, assuming silicone
nanoparticles and water fluid usage.

As demonstrated in Figure 7a–c, the quantity of nanofluid saturation in the environ-
ment was significantly larger and the extracted oil from porous media was boosted. In
Figure 7a–c, the red contour depicts the porous medium region where the trapped oil was
replaced by the nanofluid, and the oil was extracted. The blue area of the contour refers to
a porous medium region that held oil that had not yet been released.
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As demonstrated in Figure 8a–c, the quantity of oil saturation in the environment
was significantly lower and the nanofluid inserted into porous media was boosted. In
Figure 8a–c, the blue contour depicts the porous medium region where the trapped oil was
replaced by the nanofluid, and the oil was extracted. The red area of the contour refers to a
porous medium region that has held oil that has not yet been released.

Nanomaterials 2022, 12, x FOR PEER REVIEW 13 of 20 
 

 

 

Figure 8. (a) Saturation of the oil at 200 s, (b) saturation of the oil at 400 s, and (c) saturation of the 

oil at 600 s. 

 

Figure 9. (a) Pressure distribution inside the porous medium at 200 s, (b) pressure distribution inside 

the porous medium at 400 s, and (c) pressure distribution inside the porous medium at 600 s. 

 

Figure 10. Comparison of the water and the nanofluid recovery factor. 

0.0 0.2 0.4 0.6 0.8 1.0 1.2
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

O
il

 R
ec

o
v

er
y

 F
a

ct
o

r

PV of Injected Fluid

 Water

 SiO2

Figure 8. (a) Saturation of the oil at 200 s, (b) saturation of the oil at 400 s, and (c) saturation of the oil
at 600 s.

As seen in Figure 9a–c, the quantity of pressure in the porous medium did not change
significantly as a result of pressure varying with velocity. Since Darcy’s law is only applica-
ble for slow flow, most groundwater flow cases fall into this category. In this investigation,
the velocity unf0 was 0.001 m/s, implying a Reynolds number smaller than unity, indicating
that the flow was laminar, and that Darcy’s equation was used.
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Figure 9. (a) Pressure distribution inside the porous medium at 200 s, (b) pressure distribution inside
the porous medium at 400 s, and (c) pressure distribution inside the porous medium at 600 s.

Figure 10 presents the oil recovery factors for flooding of water and nanofluids. This
figure shows that flooding by nanofluids was more effective than flooding by water. As
demonstrated in Figure 10, adding nanoparticles to the base fluid improved the recovery
factor. The addition of nanoparticles to the base fluid increased the relative weight of the
input fluid, increasing energy and allowing for more efficient oil production. Furthermore,
because of the nanoparticles’ strong thermal transfer characteristics, the heat was trans-
ferred to the oil inside the reservoir more quickly. Oil recovery was improved due to the
decreased viscosity and density of reservoir oil.



Nanomaterials 2022, 12, 1011 13 of 19

Nanomaterials 2022, 12, x FOR PEER REVIEW 13 of 20 
 

 

 

Figure 8. (a) Saturation of the oil at 200 s, (b) saturation of the oil at 400 s, and (c) saturation of the 

oil at 600 s. 

 

Figure 9. (a) Pressure distribution inside the porous medium at 200 s, (b) pressure distribution inside 

the porous medium at 400 s, and (c) pressure distribution inside the porous medium at 600 s. 

 

Figure 10. Comparison of the water and the nanofluid recovery factor. 

0.0 0.2 0.4 0.6 0.8 1.0 1.2
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

O
il

 R
ec

o
v

er
y

 F
a

ct
o

r

PV of Injected Fluid

 Water

 SiO2

Figure 10. Comparison of the water and the nanofluid recovery factor.

Another critical parameter in EOR and the solution of two-phase flows is the relative
permeability of the two fluids. In the current study, the relative permeability of water and
oil fluid was altered when nanoparticles were added to the water. As demonstrated in
Figure 11, raising the relative permeability of nanofluid while simultaneously reducing the
permeability of oil due to the presence of nanoparticles were the primary reasons for EOR.
Because the relative permeability of the water was enhanced as a result of this procedure, it
drove the oil flow better. In conclusion, employing nanofluids instead of water increased
the performance of the EOR process.
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Figure 11. Comparing water/oil relative permeability with null and 5% volumetric nanoparticles in
the homogenous porous medium.

There are several ways nanofluids may be used with nanoparticles, and they are
dependent on the purposes. Nanoparticles with smaller diameters and higher densities are
preferred over other particles in the EOR process. When the input fluid reached the reservoir
at a high temperature, the thermal characteristics of the nanoparticles were also considered.
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According to the characteristics indicated, the three widely utilized nanoparticles in the
procedure were SiO2, Al2O3, and CuO. As seen in Figure 12, these three nanoparticles have
only a different impact on the recovery factor of EOR. However, the recovery rate of silicon
nanoparticles is approximately 2% higher than that of the other nanoparticles.
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Figure 12. Comparison of nanoparticles SiO3, Al2O3, and CuO recovery coefficients.

By using nanoparticles in the fluid, the specific heat capacity of the fluid decreased,
and the heat transfer coefficient of the fluid was exceptionally high. Due to the ease and
speed of heat transfer input temperature, in this case, rapid changes and increased process
performance were possible. The recovery coefficient was determined for two different
fluid input temperatures in Figure 13. The amount of oil produced from the reservoir
increased dramatically when the fluid intake temperature rose. Furthermore, because of
the nanoparticles’ strong thermal transfer characteristics, the heat was transferred to the
oil inside the reservoir more quickly. As a result of the decreased viscosity and density of
reservoir oil, the recovery factor was improved.

Figure 13. The effect of inlet fluid temperature in a porous homogenous medium.
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4. Conclusions

To simulate nanofluid and oil reservoir flooding, a two-dimensional rectangular
porous homogenous area was filled with oil to simulate nanofluid and oil reservoir flooding.
The effect of nanoparticle volume fraction on flooding and how it varied from water
flooding was investigated. The EOR process was also simulated and compared with three
types of nanoparticles: SiO2, Al2O3, and CuO. Studies were conducted to determine how
the fluid intake temperatures affect the recovery factor, leading to the following conclusions:

• Adding 5% silicon nanoparticles to a base fluid in a porous homogenous medium
enhanced the oil recovery by more than 20%.

• Even though the difference in the effects of the three nanoparticles described was less
than 2%, silicon had a 2% better oil recovery rate than Al2O3 and CuO.

• Using two different temperatures to calculate the EOR recovery coefficient for hetero-
geneous porous geometry of 300 and 350 K revealed that temperature was crucial in
the EOR process due to its influence on oil viscosity and density decrease. This impact
was amplified when utilizing nanofluids for heat transmission due to the efficient and
rapid heat transfer.

• Raising the relative permeability of nanofluid while simultaneously reducing the
relative permeability of oil due to the presence of nanoparticles was the primary
reason for EOR.

• The recovery factor of silicon nanoparticles is higher than the recovery factors of
aluminum oxide and copper oxide nanoparticles.

• Using the empirical correlations of the nanofluid thermophysical properties on the
relative permeability equations of the nanofluid and oil in the proposed model, it
is more accurate than other models to determine the higher recovery factor of one
nanoparticle compared to other nanoparticles.
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