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Abstract: The price and scarcity of platinum has driven up the demand for non-precious metal
catalysts such as Fe-N-C. In this study, the effects of phosphoric acid (PA) activation and phosphorus
doping were investigated using Fe-N-C catalysts prepared using SBA-15 as a sacrificial template.
The physical and structural changes caused by the addition of PA were analyzed by nitrogen
adsorption/desorption and X-ray diffraction. Analysis of the electronic states of Fe, N, and P
were conducted by X-ray photoelectron spectroscopy. The amount and size of micropores varied
depending on the PA content, with changes in pore structure observed using 0.066 g of PA. The
electronic states of Fe and N did not change significantly after treatment with PA, and P was mainly
found in states bonded to oxygen or carbon. When 0.135 g of PA was introduced per 1 g of silica, a
catalytic activity which was increased slightly by 10 mV at —3 mA/cm? was observed. A change in
Fe-N-C stability was also observed through the introduction of PA.

Keywords: oxygen reduction reaction; anion exchange membrane fuel cells; Fe-N-C; phosphoric
acid doping; SBA-15

1. Introduction

The greenhouse effect and climate crisis have driven a transition in energy technology
from fossil fuels to renewable energy [1-3]. Fuel cells, which are energy conversion
devices with high efficiency and low emissions, have attracted immense interest in recent
decades [4,5]. However, the sourcing of hydrogen, insufficient hydrogen storage technology,
durability problems, and cost issues with noble metal catalysts, such as platinum, have
hindered the commercialization of fuel cells [6,7]. The limitations have motivated several
studies on lowering the cost of catalysts, which account for 41% of the manufacturing cost
of fuel cells, at 500,000 systems per year [8,9]. As the oxygen reduction reaction (ORR) at
the cathode is sluggish, it requires a greater catalyst amount compared to the hydrogen
oxidation reaction at the anode. Therefore, the major focus has been to reduce the amount
of platinum used in the cathode. Development of Pt-based alloys, low-loadings of platinum,
modifications of the support, and alternative metal catalysts have been considered [10-14].
For example, alloys of noble metals (Pt, Pd) and transition metals (Cu, Co) have been
widely studied [15-19]. Non-noble metal catalysts such as transition metal alloys and
metal oxides supported on carbon materials have also been reported [20,21]. In addition,
modified carbon with heteroatom doping and porosity control has been shown to have a
lower overpotential for ORR than pristine carbon, thus showing great promise for future
ORR catalysts [22-27]. Alloys and low-loading or modified carbon and non-noble metal
approaches have led to improvements in performance, durability, and cost; however, efforts
are underway to develop a new type of platinum-free catalyst [28-31]. The Metal-N-C (M-
N-C) catalyst type has recently attracted significant attention. It consists of carbon supports
and M-Ny active sites advantageous for the ORR [32,33]. As the M-N-C catalysts have
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higher intrinsic activity than Pt/C catalysts under alkaline conditions, the application of M-
N-C to anion exchange membrane fuel cells (AEMFC) is being intensively studied [34,35].
However, due to durability problems with the catalyst and the membrane in single cells, M-
N-C catalysts have shown lower performance than Pt/C catalysts [36]. Fortunately, these
problems have been solved by the development of new polymer membranes and binders,
and a power density of 1.48 W/cm? at 0.6 V was achieved recently [37]. Nevertheless,
the intrinsic activity, stability, and electrode structure need to be improved for maximum
performance [38,39]. In this regard, doping with different elements, such as phosphorus and
sulfur, has been considered, as this can engineer the electronic states of active sites [40,41].

As the M-Ny moieties can be formed at defects surrounded by N atoms during
pyrolysis, and mesopores are needed for mass transfer, microporous and mesoporous
supports such as zeolitic imidazole frameworks have been widely used for both acid
and alkaline conditions [42-45]. Alternatives that immobilize rich M-Ny sites include
methods that exploit silica-coating or silica templates [46,47]. Joo et al. reported a novel
immobilization strategy using silica-coated CNT and found that silica-coating suppressed
the growth of nanoparticles, with mainly M-Ny moieties remaining after pyrolysis [46].
Notably, impregnation into ordered mesoporous silica resulted in suppressed growth of
nanoparticles and agglomerates simultaneously [47]. For these reasons, the application of
ordered mesoporous silica for M-N-C catalysts is being considered.

Since it was reported that a dopant that can break the electroneutrality of a carbon
matrix can change ORR activity, interest in dopants with lower electronegativity than
C such as B and P began to attract attention [48]. In the case of P, with Fe-P bonding,
the result of improving ORR activity by effectively controlling the electronic state of the
metal is drawing attention [49]. In addition, P-O can cause charge delocalization of the
carbon matrix, which leads to the change of the electronegativity of O; therefore, it could
be advantageous in adsorbing O, and breaking the double bond of O=0 [40,50]. Several
studies have been reported using the properties of these P dopants. For example, Guo
et al. reported that P, N-doped Co encapsulated carbon nanotubes with Co-P bonding have
ORR activity in both acidic and alkaline mediums [51]. Chen et al. developed an active
alkaline ORR catalyst by developing N, P co-doped Fe—C composed of a large mesopore
and macropore of several tens of nm size using polystyrene as a hard template. However,
as previously reported, since the pore distribution can have a major influence on the activity
of the ORR catalysis in acidic conditions, further studies on relatively small mesopores
(2-10 nm) are required for alkaline conditions [34,52]. Deng et al. reported on the catalysts
that used phytic acid as a self-template and P-dopant simultaneously, to synthesize N-P-Fe-
tridoped carbon with a hierarchical porous structure to synthesize an ORR catalyst with an
excellent half-wave potential of 926 mV at 0.1 M KOH [53]. As described above, studies on
P-doped Fe-N-C to improve the activity are actively being conducted, but when a template
is used, there is no specific study about the effect of charge delocalization by P and the
effect of pore structure by a P precursor.

In this study, a silica-templated Fe-N-C catalyst activated by PA was examined. In
a previous study, PA activation of ordered mesoporous carbon resulted in changes in
the pore structure [54]. However, a detailed investigation of the structural change and
activity of Fe-N-C as an ORR catalyst in alkaline conditions from the addition of PA was
not conducted. Therefore, in the present work, the role of PA during M-N-C synthesis and
the co-doping effect for ORR were studied. The catalysts were analyzed in detail by X-ray
photoelectron spectroscopy (XPS), X-ray diffraction (XRD), electrochemical characterization,
scanning electron microscopy (SEM), transmission electron microscopy (TEM) and N
adsorption/desorption techniques. Through these analyses, it was confirmed that the pore
structure of the catalyst was modified according to the amount of PA, and a modest change
in the ORR activity was observed. Therefore, further heterogeneous element doping studies
need to be conducted to elaborate the effect of heteroatom doping in catalyst structures
and ORR activity in alkaline media.
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2. Materials and Methods
2.1. Synthesis of Ordered Mesoporous Silica Template, SBA-15

For the grain-type SBA-15, 18 g of Poly(ethylene glycol)-block-poly(propylene glycol)-
block-poly(ethylene glycol), denoted as P123 (Average My = 5800, Sigma-Aldrich, St. Louis,
MO, USA) was dispersed in 730 mL of distilled water (DIW), 128.5 mL of HCl (37%,
Junsei Chemical, EP, Tokyo, Japan) and 2.16 g of ammonium molybdate tetrahydrate (99%,
DUSKAN, EP, Seoul, Korea) mixture. The above solution was heated at 35 °C in a water
bath with stirring at 350 rpm for thermal equilibrium for a minimum of 6 h. 42 mL of
tetraethyl orthosilicate (95%, SAMCHUN, Seoul, Korea) was added, followed by 5 min of
stirring. Then, after leaving it at 35 °C for 24 h, it was moved to an oven at 100 °C for the
aging process for an additional 24 h. Thereafter, the solution was taken out, filtered, and
washed with DIW and ethanol, and dried overnight at 80 °C. After collecting the white
powder that formed, a calcination process was performed at 550 °C for 3 h to completely
remove P123 with 3 °C/min of ramping rate.

2.2. Synthesis of Fe-N-C Catalysts

First, 0.87 g of 1,10-phenanthroline monohydrate (>99%, DAEJUNG, GR, Seoul, Korea)
and phosphoric acid (85%, DAEJUNG, EP, Seoul, Korea) were mixed with 3 g of methanol
(DUKSAN, HPLC, Seoul, Korea). The above solution was combined with 1 g of SBA-15
and then dried in a convection oven at 80 °C for 1 h. Then, it was polymerized in an oven
at 160 °C for 6 h, and the resulting white powder was collected, which was then mixed
with 0.65 g of FeCl3 hexahydrate (Sigma-Aldrich, St. Louis, MO, USA) using a mortar and
pestle. The yellowish red powder that formed was collected and pyrolyzed to 900 °C at
a ramping rate of 2 °C/min under an Ar flow. The temperature was maintained for 3 h,
and then cooled to room temperature. The resultant black powder was dispersed in HF
(50%, SAMCHUN, EP, Seoul, Korea), diluted with a DIW and ethanol solution (DIW:EtOH
= 1:1) to remove silica, stirred for 1 h, and then washed with DIW. It was dried overnight
in an oven at 80 °C. To remove unwanted species such as iron oxide and iron nanoparticles,
0.1 g of the powder was dispersed in 100 mL of a 0.5 M sulfuric acid solution, followed
by stirring at 80 °C for 8 h. It was filtered, washed with DIW, and pyrolyzed to repair the
carbon support structure at 900 °C for 1 h under Ar flow. For the last 20 min, NH3 gas was
mixed with Ar at the volumetric ratio of 4:1 (Ar:NHj3). After cooling to room temperature
under only Ar flow, it was noted that the product was as Fe-N-C_PA-x, where x is the
amount of PA solution added (x: 0.066, 0.100, 0.135) per gram of silica. For comparison,
a catalyst without PA was synthesized. The synthesis procedure was the same as above,
except for the absence of PA, and it was denoted as Fe-N-C.

2.3. Physical Characterization

SEM images were taken using a Hitachi S4700. XRD analysis was performed using
the X’Pert PRO Multi-Purpose X-Ray diffractometer (Malvern PANalytical, Malvern, UK).
The pore structure of catalysts was investigated by TEM (Tecnai G2 F30 S-Twin, Hillsboro,
OR, USA). N; adsorption/desorption experiments were performed on a BELSORP MAX
(Microtrac MRB, Osaka, Japan) to measure the specific surface areas and pore structure of
silica and carbon. The catalyst samples were pre-treated at 200 °C for 4 h under vacuum
before the measurement. The specific surface area was determined by the Brunauer—
Emmett-Teller (BET) method. The pore size distribution and pore volume of SBA-15
and Fe-N-Cs were determined by the non-local density functional theory using cylinder
(SBA-15) and slit (Fe-N-C) shape pore model, Tikhonov regularization for fitting, and solid
definition for pore width. XPS was used to assess the electronic state of the elements at the
surface of catalysts by NEXSA (Thermo Fisher Scientific, Waltham, MA, USA).

2.4. Electrochemical Characterization

The electrochemical activity of the catalyst was evaluated through a half-cell test
using a rotating disk electrode (RDE) technique. A 0.196 cm? glassy carbon electrode
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was used as the working electrode, and a graphite rod and a Hg/HgO electrode were
used as counter and reference electrodes, respectively. The electrolyte was 0.1 M KOH,
and the potential relative to Hg/HgO was converted to the RHE (Reversible Hydrogen
Electrode) by calibration in hydrogen purged electrolytes. The surface of the glassy carbon
was polished with 0.3 pm alumina in order to be mirror-clear. For Fe-N-C, catalyst ink
was made by dispersing 7.5 mg of catalyst to 0.1 mL of DIW, 1.23 mL of anhydrous ethyl
alcohol (99.9%, DAEJUNG, Seoul, Korea), and 18.8 uL Nafion perfluorinated resin (aqueous
dispersion, 10 wt.%, Sigma-Aldrich, St. Louis, MO, USA) This was then sonicated for at
least 80 min. 7.8 pL of ink was dropped on the surface of the glassy carbon electrode and
240 pug/cm? of the catalyst was loaded. For comparison 40 wt.% Pt/ Vulcan (FC Catalyst,
Fuel Cell store, College Station, TX, USA) was used. 3.5 mg of catalyst was dispersed in
0.1 mL of DIW, 1.24 mL of ethyl alcohol anhydrous, and 10.5 uL of Nafion perfluorinated
resin. The sonication condition was the same as used for Fe-N-C. Next, 7 uL. of ink was
coated on the glassy carbon achieving 40 pgp;/cm?. Before the ORR activity test, the
catalyst was purged with Ny and activated by 20 cycles at 100 mV /s in the range of
0.05-1.0 V. The catalyst activity for ORR was measured at a sweep rate of 10 mV /s from
1.2 to 0.1 V while rotating at 1600 rpm with O, purged. An accelerated stress test (AST)
was conducted for Fe-N-C_PA-0.135 and 40 wt.% Pt/Vulcan. The potential cycling range
was from 0.6 to 1.0 V at 50 mV /s of sweep rate with O, purged for 10,000 cycles and
oxygen reduction activity was measured after AST. Solution resistance was compensated
by 85% for measuring ORR catalytic activity. This compensation was not applied to the
durability test.

3. Results and Discussion

Prior to the synthesis of Fe-N-C, the physical properties of SBA-15 used as a sacrificial
template were characterized. Based on the SEM image, the silica particles had an ovoid
shape with a width and length of approximately 700 nm, and individual particles were
separated without agglomeration (Figure 1a). In the XRD pattern, three main peaks were
observed near 1°, 1.5°, and 2°, which corresponded to the (100), (110), and (200) planes
of the ordered pore arrangement, respectively (Figure 1b) [55]. In the nitrogen isotherm
curves, an IUPAC type IV shape was observed, which is typical for mesoporous materials
(Figure 1c) [56]. The pore shape was confirmed to be cylindrical, according to the shape
of hysteresis [56]. Pores of SBA-15 were mainly composed of mesopores with a size of
approximately 12 nm, and micropores or small mesopores with a size close to 2 nm were
also found to exist, as displayed in Figure 1d.

After the synthesis of Fe-N-C, according to the method mentioned above, the parti-
cle morphologies of the synthesized Fe-N-C catalysts were observed through SEM and
TEM (Figure 2). Differences in particle shape and size according to the PA content were
negligible in the SEM images. Since a small amount of PA could act as an acid catalyst
for polymerization outside the particles, PA was confirmed to activate at the nanometer
level [54]. In TEM images, it was confirmed that the pore structure of the carbon derived
from SBA-15 consisted of well-arranged straight mesopores. The pore structure did not
show any significant difference according to the addition of PA. This suggested that the
change in pore structure caused by PA was suppressed by the carbon structure graphiti-
zation effect by Fe [57]. In addition, there was no byproduct of large Fe particles, which
indicated that silica excluded iron particles and composites by inhibiting the growth of Fe
particles [58], as mentioned in the Section 1.
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Figure 1. Physical characteristics. (a) SEM image; (b) X-ray diffraction pattern; (c) N, isotherm;
(d) Pore size distribution of SBA-15.

3.00 pm

(8) (h)
Figure 2. SEM and TEM images of (a,c) pristine Fe-N-C, (b,d) Fe-N-C_PA-0.066, (e,g) Fe-N-C_PA-0.100, and (f,h) Fe-N_PA-0.135.

A change in the pore structures of micropores and mesopores was observed through
XRD and nitrogen adsorption/desorption measurements. The XRD pattern of Fe-N-C
catalysts was measured in two areas. The region less than 10° was for observing a peak
due to an ordered pore structure [59]. First, in the case of Fe-N-C without PA, two of three
peaks derived from SBA-15 could not be found (Figure 3a). In the nano-replication process,
the (110) and (200) peaks, which were smaller than the peak of the (100) plane, were hardly
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observed. When PA was added, the peak broadened for Fe-N-C_PA-0.066 (Figure 3b). In
Fe-N-C_PA-0.100 with a higher PA content, a small (100) peak was observed (Figure 3c). In
Fe-N-C_PA-0.135, the peak of the (100) plane was eliminated and a new peak at 2° appeared
(Figure 3d). These results indicated that the ordered pore structure of Fe-N-C was modified
by the addition of PA. As most of the iron particles or iron compounds were removed by
the acid treatment process, only the XRD peak due to carbon was observed. The broad
peaks around 23° and 45° were due to the amorphous carbon structure, and the sharp peak
around 26° was due to the crystallinity of graphitic carbon [60,61]. Interestingly, the size
of the graphitic peak decreased as the PA content increased, and the peak disappeared
in the Fe-N-C_PA-0.135 pattern (Figure 3h). It was inferred that PA interfered with the
crystallization of carbon while modifying the carbon structure during activation. Thus, the
degree of change in the carbon support structure increased as more PA was added.

To analyze the change in pore structure in a quantitative way, the specific surface
area, pore volume, and pore size distribution of the Fe-N-C catalysts were determined
using nitrogen adsorption/desorption isotherms. All of the obtained N, isotherms had
a slit-type pore shape with or without PA (Figure 4a) [56]. The BET specific surface areas
were 1070, 1050, 1110, and 1200 m2/ g for Fe-N-C, Fe-N-C_PA-0.066, Fe-N-C_PA-0.100, and
Fe-N-C_PA-0.135, respectively, as listed in Table 1. In the case of Fe-N-C, nanopores with a
size of 1 nm to 3 nm developed (Figure 4b).

Table 1. Specific surface areas and pore volumes of SBA-15 and Fe-N-C catalysts. (Sger: BET specific
surface area. Vp: pore volume, Vp micro: micropore volume, Vp meso: mesopore volume).

SBET Vp Vp,micro Vp,meso

(m?/g) (cm3/g) (cm3/g) (cm3/g)
SBA-15 680 0.96 0.11 0.85
Fe-N-C 1070 0.83 0.34 0.49
Fe-N-C_PA-0.066 1050 0.60 0.31 0.29
Fe-N-C_PA-0.100 1110 0.68 0.30 0.38
Fe-N-C_PA-0.135 1200 0.69 0.34 0.35

Interestingly, in the case of the PA-0.066 sample, it was confirmed that the amount of
micropore and mesopore decreased compared to Fe-N-C, and then gradually recovered as
the phosphoric acid content increased. In addition, in the case of the PA-0.066 sample, pores
between 0.8 and 1.0 nm increased, suggesting that pore expansion occurred. However,
in the PA-0.100 and PA-0.135 samples, the micropore of 0.6 nm size increased and the
mesopore decreased. For the PA-0.066, the PA amount was not sufficient to cover the entire
carbon surface; therefore, partial activation of the carbon surface induced the irregular
activation of carbon. It was considered that the micropores could not be formed, and rather
collapsed, and PA-covered carbon underwent activation with pore expansion. Since PA
was not uniformly distributed, therefore, it was expected that added PA excessively existed
in some regions, resulting in pore expansion. This can be confirmed in XRD as well. The
XRD peak near 1.3° due to the regular pore structure of Fe-NC occurs as the pore structure
of PA-0.066 expanded, and the peak broadening occurs in PA-0.100 and PA-0.135. Although
there was some scattering, it was confirmed that a peak appeared at a similar location
again. Through this, it was confirmed that when PA completely covered the carbon surface,
the pore structure changed relatively regularly. Further research is needed on the detailed
mechanism and process.
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Figure 3. X-ray diffraction patterns of (a,e) pristine Fe-N-C, (b,f) Fe-N-C_PA-0.066, (c,g) Fe-N-C_PA-
0.100, and (d,h) Fe-N_PA-0.135.
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Figure 4. (a) N isotherm and (b) pore size distribution of Fe-N-C catalysts. (V,: adsorbed volume; dVy,: differential pore

volume; de /dW: pore area distribution).

XPS was performed to examine the effect of PA addition on the electronic properties of
the Fe-N-C catalyst (Figure 5). Calibration was performed at 284.8 eV based on the C 1s peak.
The compositions of the catalysts derived from the XPS survey are presented in Table 2. The N
1s spectra was deconvoluted into pyridinic N (398.2 & 0.1 eV), Fe-Ny (399.8 & 0.1 eV), pyrrolic
N (400.6 £ 0.1 eV), graphitic N (401.2 £ 0.1 eV) and two oxidized N (402.4 £ 0.1 eV and
404.8 = 0.1 eV) [30,62,63]. Graphitic N was dominant through two heat treatment processes in
all catalysts. There was no significant difference among the compositions of N in the catalysts,
and only oxidized N with a high oxidation number was observed in some samples, but this was
presumed to be due to oxidation in air. P 2p spectra was deconvoluted into P-C (132.1 £ 0.1 eV)
and two oxidized P (133.0 £ 0.1 eV and 133.9 £ 0.1 eV) peaks [64—66]. In the synthesis method,
PA was polymerized with 1,10-phenanthroline; therefore, bare interaction between Fe and P
was observed. The change of P species according to the amount of phosphoric acid added
was not obviously observed; however, the content of P was in proportion to the amount of
phosphoric acid. Fe 2p spectra were deconvoluted with FeO (709.2 eV), Fe-N/Fe;O3 (711.9 eV),
Fe hydroxides (713.8 eV), and satellite peaks (718.9 eV) [67] (Figure 6). Due to the low content
of Fe, it was difficult to precisely reveal the electronic state of Fe; this has been reported by
previous studies on M-N-C [41,47]. Generally, the peak due to Fe-N or Fe,O3; was dominant,
and the difference between the catalysts was insignificant. The interaction between Fe and P
did not appear as in the P 2p spectra. Therefore, it was confirmed that P did not interact with
Fe and was simply located in the carbon matrix.

- Pyridinic N —
3 =}
8 s
= =
3 Oxidized N | g
£ £
[ >
Pyrrolic NFe-N,
1 1 1 1
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Figure 5. Cont.
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Figure 5. (a) N 1 s spectra of Fe-N-C; N 1 s spectra and P 2p spectra of (b) Fe-N-C_PA-0.066,

(c) Fe-N-C_PA-0.100, and (d) Fe-N-C_PA-0.135.

Table 2. Compositions of Fe-N-C catalysts from XPS survey.

at% Fe P N C
Fe-N-C <0.1 — 3.26 94.44
Fe-N-C_PA-0.066 <0.1 0.18 3.31 93.32
Fe-N-C_PA-0.100 <0.1 0.29 3.15 93.27
Fe-N-C_PA-0.135 <0.1 0.56 3.20 92.79
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Figure 6. Fe 2p spectra of (a) Fe-N-C, (b) Fe-N-C_PA-0.066, (c) Fe-N-C_PA-0.100, and (d) Fe-N-C_PA-0.135.

The effect of the analyzed properties of catalysts on the ORR was examined using
a half-cell RDE technique. As shown in Figure 7a, all of the Fe-N-C catalysts had higher
activity than the Pt/C catalyst in the alkaline medium. The potentials at the kinetic region
of catalysis, —3 mA/ cm?, were 867 mV for Pt/C and 903 mV for Fe-N-C. The potential for
Fe-N-C_PA-0.066 was found to be 907 mV, which is slightly higher than that of Fe-N-C. In
the case of Fe-N-C_PA-0.100 and Fe-N-C_PA-0.135, the mesopore amount decreased and
micropore distribution changed compared to that of Fe-N-C. The potential at 3 mA /cm?
was found to be 910 mV and 913 mV, which were 10 mV higher than that of Fe-N-C.
The durability of the Fe-N-C, Fe-N-C_PA-0.135 and Pt/C catalysts was tested via AST.
After performing 10,000 cycles of AST, potential at —3 mA /cm? of Fe-N-C was negatively
shifted by 27 mV, Fe-N-C_PA-0.135 by 28 mV and Pt/C by 41 mV. Through acid treatment
and two heat treatment processes, unstable Fe species were removed, and the carbon
support was more graphitized, resulting in relatively higher durability than Pt/C. After
AST, interestingly, the current of Fe-N-C at mass transport region (@0.6 V) decreased about
15.7%, which was 3.5 and 2.9 times of 4.5% of PA-0.135 and 5.4% of Pt/C, respectively.
These results were expected to be due to changes in carbon stability due to P doping. The Fe-
N-C_PA-0.135 was found to have high activity in the kinetic region despite the low loading
amount compared to the previously reported alkaline ORR catalysts (Figure 7c) [53,68-78].
These results are expected to contribute to solving the water transport problem by electrode
thickness [36].

4. Conclusions

In summary, a detailed study on the role of PA in the synthesis of Fe-N-C catalysts
was conducted. The effect of changes in the pore structure and the change in the elec-
tronic state and ORR activity due to P doping were analyzed. Based on the nitrogen
adsorption/desorption measurements and XRD analysis, it was concluded that PA alters
the pore structure. Interestingly, the activity that was higher by 10 mV was observed in
Fe-N-C_PA-0.135, even though the porosity rather decreased compared to Fe-N-C prepared
without PA.

As a result of introducing PA into Fe-N-C, changes in the pore structure and P dop-
ing were observed. The regular pore structure of Fe-N-C was partially changed by the
introduction of PA, and caused a decrease in overall porosity, as investigated from XRD
and N adsorption experiments, respectively. Despite the decrease in porosity, the ORR
activity was maintained or showed modest improvement, which is thought to be due to
the trade-off of the decrease in porosity and P doping. However, when PA was added,
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the durability of the catalyst in the mass transport region increased, which showed the
possibility that P could stabilize the structure of the Fe-N-C.
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Figure 7. (a) Linear sweep voltammograms of Fe-N-C catalysts and Pt/C catalyst; (b) durability test
result cycling between 0.6 and 1.0 V for 10,000 cycles at a sweep rate of 50 mV/s. The amount of
Fe-N-C_PA-0.135 was 480 pg/cm?. (c) Comparison with reported alkaline ORR Fe-N-C catalysts
with potential at —3 mA/cm? along the different catalyst loading amount.
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