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Blood pressure (BP) is an important vital sign to determine the health of an individual. Although the estimation of average arterial
blood pressure using oscillometricmethods is possible, there are no establishedmethods for obtaining confidence intervals (CIs) for
systolic blood pressure (SBP) and diastolic blood pressure (DBP). In this paper, we propose a two-step pseudomaximum amplitude
(TSPMA) as a novel approach to obtain improved CIs of SBP and DBP using a double bootstrap approach. The weighted median
(WM) filter is employed to reduce impulsive and Gaussian noises in the step of preprocessing. Application of the proposed method
provides tighter CIs and smaller standard deviation of CIs than the pseudomaximum amplitude-envelope andmaximum amplitude
algorithms with Student’s 𝑡-method.

1. Introduction

The maximum amplitude algorithm (MAA) based on oscil-
lometric measurement is the most widely used technique to
estimate the average arterial blood pressure [1–5]. The MAA
approximates the mean blood pressure as the cuff pressure
(CP) at which the maximum oscillation occurs and then
linearly relates the systolic blood pressure (SBP) and diastolic
blood pressure (DBP) [2, 6]. The blood pressure is constantly
changing because of intrinsic physiological oscillations and in
response to factors such as stress, exercise, disease, and food.
Thus, the SBP andDBP can shift up to 20mmHgwithin a few
heartbeats and have larger variations over the course of the
day [7]. This phenomenon and its serious consequences on
blood pressure (BP)measurement are not recognized bymost
physicians, and it is whatmakes accuratemeasurements of BP
a difficult task [8]. The American National Standard Institute
(ANSI)/Association for the Advancement of Medical Instru-
mental (AAMI) [9] recommends a maximum allowable sys-
tem error of ±5mmHg with standard deviation of 8mmHg

compared to a reference reading done simultaneously by at
least two trained nurses. However, the actual physiological
variability, which could reach up 20mmHg, is used to be
ignored [8].

Although the oscillometric blood pressure devices are
popularly used to estimate the SBP and DBP, these devices
provide only one estimate with no confidence interval (CI)
and users are not able to distinguish the statistical variance
in the estimates from the intrinsic variability exhibited by
physiological processes [10]. Since there is no golden standard
technique except for auscultatorymethod, there is nomethod
to determine the variance in BP estimates. If the CI in the BP
estimates is too wide, an alert can recommend discarding the
measurements and initiating another measurement. Without
the CI, it is difficult to make any meaningful decision with
the BP estimates. Based on some aggregate statistics, in a
home-based monitoring setting, the repeated wide CI can
trigger an alarm and alert either the nurse station or the
family doctor. Even though this is an important factor of
blood pressure estimation, until very recently, there was no
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research investigating the estimation of the CI for these blood
pressure measurements. Recently, Krakoff [11] proposed that
the CIs were computed for SBP, DBP, pulse rate, and heart
rate obtained from an Omron HEM725CIC monitor over a
period of 7 days, with four measurements per patient (28
measurements per patient), which is not considered large
BP measurements. Hence, the Student’s 𝑡-distribution (ST),
instead of asymptotic normal distribution, was utilized to
obtain the CI of the SBP and DBP [11]. Although the asymp-
totic normal approximation is generally used to derive CIs,
a large sample size is inevitably required to obtain such CIs.
However, it is not feasible to acquire a large number of mea-
surements for each subject using a noninvasive oscillometric
blood pressure measurement device, as repeatable conditions
for reproduciblemeasurements cannot be guaranteed [12]. As
a consequence, standard methods of obtaining the CI such as
the one presented in [11] cannot be used for obtaining the CI
in blood pressure measurements. This calls for an innovative
method that can obtain the CI from a smaller sample size.
In this regard, bootstrap approaches with oscillometric blood
pressure measurements were presented in [12]. On the other
hand, in our previous study [12], we confirmed that the CI
using the bootstrap method sometimes becomes too wide or
too narrow or too wide in one direction and too narrow in
the other because only fivemeasurements for each subject are
used. That is, the standard variation of CIs is larger than the
average of CIs for the SBP and DBP.Therefore, it is necessary
to develop a method that can correct the problem of the CI
obtained using a small number of measurements [13]. In this
paper, we propose a two-step pseudomaximum amplitude
(TSPMA) as a novel method to obtain improved CIs of SBP
and DBP using a double bootstrap method [14]. The CIs
based on the double bootstrap are significantly to reduce
coverage rate errors obtained from single bootstrap method
[15]. In particular, the TSPMAs are efficiently obtained from
the pseudomaximum amplitudes (PMAs) which are large
resample vectors due to the increase in the number of samples
using the double bootstrap. Thus, we address the problem of
CIs using the TSPMA based on the double bootstrap for the
SBP and DBP. Moreover, we perform various experiments in
the impulse and Gaussian noisy environments to evaluate the
performance of the proposed algorithm. Summarizing our
approach, this paper can be regarded as an expanded version
of the previous paper [12] with the following enhancements:

(i) developing a method that reduces the standard devi-
ation of the CI of PMA [12] using a small number of
measurements;

(ii) using the weighted median (WM) filter to reduce
impulsive and Gaussian noises.

Extensive simulation results show that the proposed algo-
rithm offers tighter CI and smaller CIs’ standard variation
than the conventional algorithms.

2. Methods

Indeed, it is not feasible to obtain a large sample from
each subject in BP measurement due to cost reasons. Even

when cost is not the core issue, experimental conditions
may not provide reproducible BP measurements. In such
scenarios, onemay have to resort to themethod of employing
pseudomeasurements as introduced in [12]. In this study,
pseudomeasurements are also used to obtain the CI using the
double bootstrap technique. The proposed method consists
of two main steps to obtain the TSPMA and pseudoenvelope
(PE) so that our approach is called two-step pseudomaximum
amplitude-pseudoenvelope (TSPMAE).

The block diagram of the proposed approach is given
in Figure 1. The upper path of the block diagram shows
the first step including the PMA and TSPMA parts of the
algorithm, whereas the lower path of the block diagram
shows the second step regarding the PEs. These two steps
are then utilized to get the CI estimate of BP. The envelopes
of oscillometric BP are smoothed using the Gaussian curve
fitting and separated into systolic BP and diastolic BP parts
of the envelope.These envelopes are used in the lower path as
shown in Figure 1. In the upper path, we obtain themaximum
amplitude (MA) locations using the MAA technique. Then,
the PMA locations are obtained using the nonparametric
bootstrap (NPB) [12, 17]. We then also obtain the TSPMA
locations reusing the PMA locations based on the NPB. In
the next step, the upper, middle, and the lower PMAs and
TSPMAs and the locations corresponding to those PMAs and
TSPMAs are determined by using the CI technique [12].

In the lower path where the Gaussian curve fitted
envelopes are adapted to get the same lengths, two sets of
envelope matrices, which are systolic BP and diastolic BP
parts, are constructed. The PEs are obtained for systolic BP
and diastolic BP parts using the bootstrap technique. By
employing the NPB for CI, the upper, middle, and lower PEs
are then obtained. Following this, the results from TSPMA
path are used to link the PEs and TSPMAs; then the CI
estimates are obtained using the mean cuff pressure (MCP)
which is computed based on the CP of the fivemeasurements.
For more details on the PMA and PEs, the interested readers
are referred to [12].

In particular, the preprocessing component is to suppress
a noisy signal using the WM filter [18], which is a set of
𝐾 BP envelope valued weight ⟨𝑊
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where ◊ denotes the replication operator and 𝑊

𝑖
∈ 𝑅

denotes the weighted value for 𝑖 = 1, 2, . . . , 𝐾. Note that the
weight signs are uncoupled from the magnitude values of BP
envelope and are merged with the observation BP envelope
sample as follows [19]:

(1) calculate the threshold 𝑇
0
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𝑖=1
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|;

(2) sort the signed observation sample sgn(𝑊
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)𝑋
𝑖
;

(3) sum the magnitude of the weights corresponding
to the sorted “signed” samples beginning with the
maximum and continuing down in order;
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Figure 1: Procedure of TSPMAE based on NPB for improved confidence interval (CI) estimator.

(4) output is the signed sample whose weight magnitude
causes the sum to become ≥ 𝑇

0
.

2.1. Short Review of Bootstrap. The fundamental concept of
the bootstrap technique [17] is to provide a large number
of independent bootstrap BP estimates by resampling the
original BP estimate 𝑋 = (𝑥
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drawn with replacement from the original sample 𝑋 with
elements occurring zero, once, or multiple times, where 𝑛
denotes an original sample size and 𝐵 denotes a number
of resamples. Based on the approach done by Efron and
Tibshirani [17], we use 𝐵 = 1000 for CIs. However, this
number relies on the particular application. Specifically, as we
have only five measurements for each subject, the number of
all the possible bootstrap resamples is given as (2𝑛−1)!/[𝑛!(𝑛−
1)!]. This indicates that the number of bootstrap resamples
achieves stability [20] as 𝐵 approaches 126.

In this paper, we determine the CIs of oscillometric BP
measurements using the nonparametric bootstrap [17, 21].
Specifically, the CI 𝜃∗
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where 𝑙 and 𝑢 are the lower and upper bounds of the CI and
𝛼 is set to 0.05.

2.2. Review of PMAUsingNPB [12]. In this section, we briefly
represent the methodology to determine the upper and lower
bounds on the CI for MA and the length position of the
MA on the oscillometric BP envelope. The NPB method is
used to determine the mean of the CI and the range for the
SBP and DBP [12]. Firstly, we obtain the MAs and the length
of occurrence of the MAs from all the five measurements
per subject, respectively, as shown in Figure 2. These raw
parameters of the MAs are utilized to find the final PMAs
which are then used to obtain the TSPMA using the NPB
method [12] as a special case of the double bootstrap method
[14].
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and 𝑗 = 1, . . . , 𝐵. The histograms of the bootstrap estimates
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three positions of the PMA that will be used by the algorithm
to estimate CIs of the SBP and DBP, respectively.

2.3. Proposed TSPMAUsing Double Bootstrap. Themain goal
of the TSPMA technique based on the double bootstrap is to
provide improved CIs of SBP and DBP with respect to the
subject using only five measurements.

In practice, the first step is to abandon the mean as a
measure of center in favor of a statistic that is more resistant
to outliers [13]. The trimmed mean is the mean of only
the center observations in a data set. In particular, the 25%
trimmed mean ignores the smallest and largest 25% of the
observations [13]. Thus, we acquire pseudomeasurements
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where 𝜇∗∗
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denotes the TSPMA and 𝜇∗∗
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positions of TSPMA, which become vectors (1 × 1000). Also,
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In the next step, we also sort the TSPMAs and the length
positions of the TSPMA in increasing order. The desired
100 ⋅ (1 − 𝛼)% double bootstrap’s CIs for position of TSPMA
and the TSPMA are, respectively, given by (𝜇∗∗
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2.4. Review of PE Using NPB [12]. In order to obtain the
PEs for estimating the CI of the SBP and DBP using NPB,
we construct a BP measurement matrix E as shown in
[12] composing BP envelopes for five measurements for
the systolic and diastolic parts of each subject [12]. Each
column of BPmeasurementmatrix E denotes an BP envelope
obtained from the oscillometric measurement. Particularly,
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Figure 2:TheMA’s positions from a subject with fivemeasurements
[12].

all measurements are forced to be of length, either by
extrapolating length if the measurement is shorter or by
truncating the length if the measurement is longer. From the
BP envelope matrix E, employing NPBmethod, we acquire 𝐵
resample envelope matrices E∗

1
, . . . ,E∗

𝐵
, where 𝑗 = 1, . . . , 𝐵(=

1000). The SBP and DBP parts of the envelope are identified
utilizing the peak of the envelope. From the beginning to the
peak of the BP envelope (corresponding to the decreasing
cuff pressure) represents the SBP part and from the peak
to the end of the BP envelope represents the DBP part. We
then reorder the resampled BP envelopematrices (for systolic
and diastolic parts of the envelopes) using the ascending and
descending sort techniques (for SBP and DBP parts of the
envelopes, resp.). It is noted that each of the sorted matrices
has five columns, each corresponding to a BP measurement
of length 𝐿. We then obtain a single BP envelope per subject
as shown in [12]. For more details on the PE, the reader is
referred to [12].

In the previous subsection, we obtain the value of the
TSPMAutilizing theNPBapproach.As theTSPMAestimates
may not connect with the end (start) point of the systolic
(diastolic) PEs and also in the amplitudes, it may be needful
to use signal processing (padding and clipping) to ensure that
the location values (both in amplitude and in length) of the
TSPMA are based on the PEs. In the final step, we need to
obtain the MCP to find the CI estimates of SBP and DBP.
In order to estimate the SBP and DBP, systolic and diastolic
ratios must be determined. The systolic and diastolic ratios
used in our algorithm are 0.70 and 0.45, respectively, which
were experimentally decided [1, 2]. Using these ratios, the
SBP and DBP points are identified on the TSPMAE, and they
are mapped back to the MCP in the SBP and DBP values in
mmHg.
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Figure 3: Histograms of the PMA and TSPMA using NPB for one subject. (a) The length positions of the amplitude of the PMA, (b) the
amplitude of the PMA, (c) the length positions of the amplitude of the TSPMA, and (d) the amplitude of the TSPMA.

3. Results

This work was approved by the local research ethics commit-
tee, and all subjects offered informed consent prior to the BP
measurement on the basis of the protocol of the institutional
research ethics board. The oscillometric measurements were
provided by Biosign Technologies Inc., Toronto, Ontario,
Canada, for this work. The experimental BP data set was
acquired from 85 healthy subjects aged from 12 to 80, out of
which thirty-seven were females and forty-eight were males.
Oscillometric BP measurements were obtained from each
volunteer (5 set ×85 subjects = 425 total measurements
based on a wrist worn UFIT TEN-10 blood pressure device)
(Biosign Technologies Inc., Toronto, Ontario, Canada) in
accordance with the recommendations of the ANSI/AAMI
SP 10 standard [9]. In particular, the two nurse reference
readings at the same time are averaged to supply one SBP
and one DBP reading. Nurse reference reading of SBP ranged

from 78 to 147mmHg and DBP ranged from 42 to 99mmHg
across total subjects [22]. Note that our procedure of BP
measurements consists of an oscillometric blood pressure
recoding, followed by readings of SBP and DBP with the
help of two trained nurses after a one-minute pause.This was
then followed by another one-minute break. The procedure
was repeated again four more times to build the recoding
of five measurements [22]. Thus, we only acquired the five
measurements for each subject because it is not practically
possible to obtain a large number of measurements [12].

In order to verify the performance of BP estimation,
the mean absolute error (MAE) and the standard devia-
tion (SD) between the estimated BP and the auscultatory
nurse measurements were calculated [9, 23, 24] as shown
in Table 1. The MAE of the proposed TSPMAE algorithm
was compared to that of the PMAE and MAA methods
as in Table 1. In addition, the standard deviation (SD) was
used to describe a measure of error variability between
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Table 1: Summary (averaging 85 subjects with five measurements) of the MAE and SD between the auscultatory nurse measurements of
TSPMAE, MAA, and PMAE.

BP (mmHg)
MAE (nurse

versus
MAA)

MAE (nurse
versus PMAE)

MAE (nurse
versus

TSPMAE)

SD (nurse
versus MAA)

SD (nurse
versus PMAE)

SD (nurse
versus

TSPMAE)
SBP 6.52 6.49 6.48 5.94 5.91 5.72
DBP 5.63 5.63 5.60 5.32 5.33 5.10

Table 2: Comparison of average results (85 subjects with five measurements) in CIs (95%) of SBP and DBP using the MAAST, MAAGUM,
PMAE, and TSPMAE, where 𝜎 is a standard deviation and L and U are lower and upper limits, respectively. MAA with ST is MAAST. MAA
with the Guide to the Expression of Uncertainty in Measurement (GUM) is MAAGUM [16].

BP SBP (𝜎) DBP (𝜎) SBP (𝜎) SBP (𝜎) DBP (𝜎) DBP (𝜎)
(mmHg) CI CI L U L U
MAAST 13.5 8.1 9.3 5.7 106.7 14.3 120.2 16.5 62.4 10.4 71.7 11.0
MAAGUM 14.1 7.8 10.1 5.3 106.4 14.3 120.5 16.4 62.0 10.4 72.1 10.9
PMAE 2.6 3.1 1.5 2.3 112.4 13.9 115.0 14.9 66.7 10.5 68.2 9.9
TSPMAE 2.4 0.9 1.3 0.5 111.4 14.5 113.7 14.8 68.8 10.2 70.1 10.5

the auscultatory nurse measurements and the estimates
obtained using the proposed method. The range of the
CI (mean) of the proposed TSPMAE with the bootstrap
is smaller than that of the pseudomaximum amplitude-
envelope (PMAE) [12] with bootstrap for both SBP and DBP,
most likely because of the decrease in the standard deviation
through the increase in the pseudomeasurements using the
bootstrap method for each subject as shown in Table 2.
Figures 3(c) and 3(d) show that the plot of histograms has
a small bias though they are roughly normal by the TSPMA
using double bootstrap.

Occasionally, the oscillometric wave signal is contami-
nated by additive noise such as impulsive andGaussian noises
generated from subject’s moving artifact, electronic device,
and environmental conditions in the processes of BP mea-
surements. However, it is not well defined with the Gaussian
model [19]. Thus, to evaluate the robustness of the TSPMAE
algorithm in impulsive and Gaussian noisy environments,
we generated the impulsive and Gaussian noise. First, the
impulsive noise is represented by four parameters: a scale
parameter 𝛾 > 0, an index of stability 𝛼 ∈ (0, 2], a skewness
parameter 𝛿 ∈ [−1, 1], and a location parameter 𝛽 ∈ 𝑅. The
scale parameter 𝛾 is a key factor to generate impulsive noise,
which is similar to the variance of the Gaussian distribution.
The stability parameter 𝛼 = 0.5 in our paper measures the
thickness of the tails of the distribution. When the skewness
parameter is set to 𝛿 = 0 in our paper, the stable distribution
is symmetric about the location parameter 𝛽 = 0 [19]. Based
on the generated impulsive noise, we presented simulation
results under impulsive and Gaussian noise environments.
Indeed, Figure 4 shows an example of the preprocessing of
the proposed methodology using the WM filter to reduce
the impulsive noise of the oscillometric wave signal with
respect to one subject. Figure 5 also shows an example of the
processing of the WM filter for a noise artifact caused by
subject movement.

In Table 3, we have presented the CIs of the proposed
method for SBP and DBP, respectively, in impulsive noisy

environments, and also compared the proposed TSPMAE
with weighted median (TSPMAEWM) method with the
conventional methods (MAAST and MAAGUM) in order to
verify the robustness of the proposed method TSPMAEWM.
Here, we can not find that the CI of the TSPMAEWM is
varied due to the decrease of the 𝛾 from 2.0 to 0.5. In this
section, we omitted the explanation of white Gaussian noise’s
generation because it is a basic method. The conventional
MAAST and MAAGUM do not work well in white Gaussian
noise contaminated environments for all SNRs. However, the
proposed TSPMAEWM works well except for SNRs of 5
and 10 dB in white Gaussian noise contaminated scenarios as
given in Table 4.

4. Discussion

The goal of this paper is to derive the improved CIs for
SBP and DBP estimates when only a small number of blood
pressure measurements are available. The degree of error
variability between the readings obtained with the proposed
method and those obtained with the auscultatory nurse
method as the reference (Table 1) was investigated. TheMAE
of the SBP andDBP obtained through the TSPMAE is similar
to that obtained with the MAA. The proposed TSPMAE
method has a MAE about 5-6mmHg with respect to the
auscultatory nurse measurements. Although the proposed
approach in this paper does not focus on providing robust
blood pressure estimates, the result of the MAE does not
fall within the 5mmHg recommendations of the AAMI SP
10, but the result of the SD is satisfied by the AAMI [9].
In addition, we note that the TSPMAE method has also
much smaller spread (i.e., small standard deviation) in the CI
when compared with the MAAST, MAAGUM, and PMAE
based on the average results for 85 subjects in Table 2. We
also note that the SDs of the SBP and DBP of the TSPMAE
method are similar to those of SBP and DBP of the MAAST
as shown in columns 4 to 7 of Table 2. According to the
bootstrap principle, the distributions of the SBP and DBP
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Table 3: Comparison of average results (85 subjects with five measurements) in CIs of SBP and DBP using the PMAEWM and TSPMAEWM
in impulsive noisy environments within 𝛾 = 2.0 and 𝛾 = 0.5 where 𝜎 is a standard deviation and N/A denotes not available.

BP (mmHg) 𝛾 SBP (𝜎) DBP (𝜎) CI SBP (𝜎) CI DBP (𝜎)
MAAST and MAAGUM 2.0 N/A N/A N/A N/A
MAAST and MAAGUM 1.5 N/A N/A N/A N/A
MAAST and MAAGUM 1.0 N/A N/A N/A N/A
MAAST and MAAGUM 0.5 N/A N/A N/A N/A
PMAEWM 2.0 114.1 14.2 67.6 10.3 2.6 3.0 1.6 2.4
PMAEWM 1.5 114.2 14.2 67.5 10.2 2.6 3.0 1.5 2.4
PMAEWM 1.0 114.2 14.3 67.5 10.2 2.6 3.0 1.5 2.3
PMAEWM 0.5 114.1 14.2 67.5 10.2 2.6 3.0 1.6 2.3
TSPMAEWM 2.0 113.5 14.1 68.6 10.3 2.5 1.0 1.4 0.6
TSPMAEWM 1.5 113.2 14.2 68.5 10.2 2.4 0.9 1.3 0.6
TSPMAEWM 1.0 113.2 14.1 68.6 10.2 2.4 0.9 1.3 0.5
TSPMAEWM 0.5 113.1 14.2 68.6 10.2 2.4 0.9 1.2 0.5

Table 4: Comparison of average results in CIs of SBP and DBP using the PMAEWM and TSPMAEWMunder Gaussian noisy environments
within SNR 5 dB to SNR 20 dBwhere 𝑛 (= 85) is the number of subjects with fivemeasurements and 𝜎 is a standard deviation andN/A denotes
not available.

BP (mmHg) SNR SBP (𝜎) DBP (𝜎) CI SBP (𝜎) CI DBP (𝜎)
MAAST and MAAGUM 5dB N/A N/A N/A N/A
MAAST and MAAGUM 10 dB N/A N/A N/A N/A
MAAST and MAAGUM 15 dB N/A N/A N/A N/A
MAAST and MAAGUM 20 dB N/A N/A N/A N/A
PMAEWM 5dB N/A N/A N/A N/A
PMAEWM 10 dB N/A N/A N/A N/A
PMAEWM 15 dB 114.3 14.8 67.4 10.1 3.5 4.4 1.7 2.5
PMAEWM 20 dB 114.1 14.1 67.4 10.2 3.1 5.3 1.5 2.1
TSPMAEWM 5dB N/A N/A N/A N/A
TSPMAEWM 10 dB N/A N/A N/A N/A
TSPMAEWM 15 dB 113.3 14.8 68.4 10.1 3.5 1.5 1.7 0.8
TSPMAEWM 20 dB 113.1 14.1 68.4 10.2 3.1 1.4 1.5 0.7
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Figure 4: This figure shows examples as (a) oscillometric waveform (OMW); (b) OMW with impulsive noise (𝛾 = 2.0); (c) enlarged figure
of an OMWwith impulsive noise (𝛾 = 2.0); (d) cleaned OMW used the WM filter, where 𝛾 is a scale parameter.



8 BioMed Research International

0 10 20 30 40 50 60 70

0

5

10

15

A
m

pl
itu

de
 (a

.u
.)

×10
4

Envelope length (s)

(a)

0 10 20 30 40 50 60 70

0

5

10

15

A
m

pl
itu

de
 (a

.u
.)

×10
4

Envelope length (s)

(b)

Figure 5: Comparison of envelops: (a) top panel, envelope, and (b)
bottom panel, envelope with the WM filter.

of the TSPMAE represent the sampling distribution of the
original measurement successfully. An interesting point is
that the SDs of the CI obtained from the TSPMAE method
havemuch smaller SDs than the CI obtained from the PMAE,
but the average range of the CIs for both methods is very
similar. This indicates that the range of the CI fluctuates
higher for the method which uses the PMAE. The range
of the CI developed using the TSPMAE method is more
stable across the 85 subjects. The decrease of the standard
deviation in the CI results obtained by our method is clear
and it demonstrates the advantage of the proposed TSPMAE
method over the existing PMAEmethod for obtaining the CI
from a small set of measurements as shown in Table 2.

The bottom histograms of Figure 3 confirm that TSPMA
produces the distributions tighter than the PMA. Note that
Figures 3(c) and 3(d) represent the histograms’ plot along
with frequency closer to normal than PMA as shown in
Figures 3(a) and 3(b). Thus, we also confirmed TSPMA to
overcome the weakness of small measurement of the PMA
[12]. And Table 3 shows that the comparisons of CIs of
the PMAE with WM (PMAEWM) and TSPMAEWM are
almost unaffected in impulsive noise contaminated scenario.
On the contrary, it is found that the conventional methods
(MAAST andMAAGUM) represent a very weak characteris-
tic on impulsive noise contaminated scenario. In Table 3, the
PMAEWM and TSPMAEWMmethods are well represented
in that the robust characteristic is made regardless of the
variation of the impulsive noise at contaminated scenarios
from 𝛾 = 2.0 to 𝛾 = 0.5. However, the proposedTSPMAEalso
does not work well in low SNRs of 5 and 10 dBwhite Gaussian

noise contaminated scenarios as given in Table 4. Unfortu-
nately, the conventional methods (MAAST and MAAGUM)
also do not work in white Gaussian noise contaminated
environments from SNRs of 5 to 20 dB. In Figures 4 and 5,
we present simulation results under impulsive and Gaussian
noise environments. Indeed, we used the calculation of the
correlation coefficient to verify the robustness of the pro-
posed TSPMAEWM in impulsive noise contaminated oscil-
lometric waveform. As a result, the correlation coefficient
between the top panel of Figure 4(a) and the bottom panel of
Figure 4(d) was 0.99, which can be considered relatively very
high. In Figure 5, the measured envelope abruptly fluctuates
(compared to envelopes in top and bottom panels). As a
result, the measured envelope becomes smooth (compared
to envelopes in top and bottom panels at envelope’s length
from 18 to 30 sec and from 57 to 60 sec), and all small notches
in the contaminated oscillometric envelope are eliminated.
Therefore, the proposed TSPMAEWM is quite effective in
impulsive and Gaussian noise environments.

5. Conclusion

In conclusion, we demonstrated that the CI obtained using
the proposed method is narrower and has a narrower stan-
dard deviation than CIs obtained using other methods. Note
that this paper does not focus on accuracy directly while
the accuracy in the estimates can be obtained through the
standard error from the golden reference. If the standard
deviation of the estimate is low and if there is no bias, then
the estimates may be deemed to be accurate. The decrease
of the standard deviation in the CI results is attributed
to the increase in the effective number of samples due to
resampling using bootstrap principles. The results indicate
that the proposed methodology reduces the standard devi-
ation and consequently improved the accuracy. Our results
imply that the proposed methodology is the best available
to deal with small samples of blood pressure measurements.
Our proposed method outperformed conventional methods
for obtaining the CI under regular recording, impulsive,
and white Gaussian noisy conditions. Indeed, the proposed
technique can be used extensively as a potential application
for self- and home-based monitoring scenario. We expect
further studies to extend this methodology for older people
with stiff arteries andwide pulse pressures andwewill present
these results in a near future.
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