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Whole-genome sequencing of pathogens in outbreaks of infectious disease
provides the potential to reconstruct transmission pathways and enhance the
information contained in conventional epidemiological data. In recent years,
there have been numerous new methods and models developed to exploit
such high-resolution genetic data. However, corresponding methods for model
assessment have been largely overlooked. In this article, we develop both new
modelling methods and new model assessment methods, specifically by build-
ing on the work of Worby et al. Although the methods are generic in nature,
we focus specifically on nosocomial pathogens and analyze a dataset collected
during an outbreak of MRSA in a hospital setting.
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1 INTRODUCTION

Recent years have seen intense research activity directed towards methods for analyzing data on outbreaks of communi-
cable diseases where the data contain high-resolution genetic information, such as whole-genome sequences. Particular
attention has been given to methods for reconstructing transmission trees.1-9 Broadly speaking, such methods fall into
two categories, namely those which require an initial reconstruction of a phylogenetic tree, which itself may be topolog-
ically dissimilar to the transmission tree itself,10 and those which do not. Among the latter are those in which statistical
inference is carried out by defining a probability model conditional on the observed data, meaning that there is no under-
lying model that fully describes how the data were generated. For example, a probability model for possible transmission
trees can be defined conditional upon observed symptom appearance times, but with no explicit model for the times
themselves.6,11 Conversely, both Lau et al12 and Worby et al1 provide such data-generating models that incorporate both
the transmission dynamics of the epidemic and the genetic component. The Lau et al model assumes an underlying model
for the within-host evolution of the pathogen, whereas the Worby et al model uses a phenomenological model for the
observed genetic distances in the data. One advantage of the latter approach is that it avoids detailed assumptions about
microevolution processes, which are often not well-understood.

An attractive aspect of using data-generating models is that they can be used to assess the model fit by quantifying
how plausible the observed data are under the proposed model. However, to our knowledge, there have been no attempts
to date to develop model assessment techniques for transmission tree reconstruction methods which involve some kind
of statistical model. The only partial exception is in Worby et al1 in which a Bayesian posterior predictive approach is used
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to assess model fit, but the focus is on the epidemiological aspects of the observed data rather than the genetic part. One
objective of the current article is to develop a model assessment method for high-resolution genetic data.

Roughly speaking, the models described in Worby et al1 are defined by taking a standard individual-based stochastic
epidemic model, such as a susceptible-infective-removed model, and then generating a random distance between each
pair of infective individuals. Such a distance represents a genetic difference between the pathogen in the two individuals,
and its distribution depends on the relationship between the individuals in the transmission tree. A typical genetic dis-
tance model assumes that distances between pathogens will be positively correlated with some measure of the individuals'
separation in the transmission tree. However, the Worby et al models draw genetic distances in a completely independent
manner, which is somewhat unrealistic. For example, in an infection chain of individuals in which A infects B infects C,
one might reasonably expect that the genetic distance between the pathogens in A and C should not be independent of
the AB and BC distances. A second objective of this article is to provide new genetic distance models, which overcome
this problem by incorporating a natural dependence structure.

Our methods will be illustrated via application to a patient-level dataset taken from an outbreak of methicillin-resistant
Staphylococcus aureus (MRSA) in a hospital in Thailand. The data include both epidemiological information such as the
admission and discharge times of patients, and the dates and results of screening tests, and also genetic information in
the form of whole-genome-sequence data taken from isolates. The latter include examples of multiple isolates taken from
the same patient. Our analysis will provide estimates of both transmission rates and likely transmission routes of the
pathogen.

The article is structured as follows. The transmission model and associated genetic distance models are introduced in
Section 2, and inference methods are described in Section 3. Model assessment methods are described in Section 4, along
with an associated simulation study. The MRSA dataset and subsequent analysis can be found in Section 5 and we finish
with conclusions and discussion in Section 6.

2 STOCHASTIC TRANSMISSION MODELS WITH GENETIC COMPONENTS

We now describe a general stochastic model that describes both the transmission of a pathogen within a single hospital
ward and the way in which observed genetic distances between isolates arise. The model contains parameters which will
be estimated using data that consist of admission and discharge times of individual patients, and the dates and results of
diagnostic tests to detect the pathogen, the latter including genetic data. Since our focus is not on the timing of admissions,
discharges or diagnostic tests, the model will assume such events to be determined by the data. Some of the underlying
assumptions of the model are discussed in more detail in Section 6.

2.1 Transmission model

The model is discrete-time with days as time-units. We assume a study period starting on day TS and ending on day TE.
The ward is assumed to consist of a fixed number of beds, each of which may be empty or be assigned to one patient. As
mentioned above, the times at which patients enter and leave the ward are assumed to be known from data, and thus can
be regarded as deterministic events within the model.

At any time, each patient present on the ward is either susceptible, meaning that they are free from the pathogen
in question, or else colonized, meaning that they carry the pathogen at a detectable level. Note that colonization status
only refers to the presence of the pathogen and does not indicate whether or not the patient has any symptoms or ill-
ness as a result of colonization. We assume that once a patient is colonized, they remain so for the remainder of their
time on the ward. Each patient who enters the ward is, independently of all other patients, assumed to be already colo-
nized with probability p, and otherwise susceptible. Patients who enter the ward as colonized are said to be colonized on
admission.

Patients who are colonized are able to colonize susceptible patients who are on the ward at the same time. In reality
such transmission of the pathogen is likely to be indirect, for instance via healthcare workers who attend the patients on
the ward. We assume that each susceptible patient on day t avoids colonization on that day with probability exp(−𝛽C(t)),
where C(t) denotes the number of colonized patients on the ward on day t, and otherwise is colonized. If colonization
occurs, then (i) the susceptible patient is regarded as being colonized on day t + 1 and able to colonize other patients and
(ii) the patient responsible for the transmission event, who we refer to as the source of the event, is selected uniformly
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at random from the C(t) colonized patients on the ward. Patients who become colonized via transmission events on the
ward are said to be colonized on the ward.

Our assumptions regarding transmission correspond to homogenous mixing insofar as every colonized patient is
equally likely to be able to colonize any susceptible patient. Note also that exp(−𝛽) is the probability that a given susceptible
patient avoids colonization from a given colonized patient during a single day.

2.2 Diagnostic tests and genetic distances

Whilst on the ward, patients may have diagnostic tests to identify the pathogen. Following Worby et al1 we assume
that the tests have perfect specificity, so that a susceptible patient never tests positive, and sensitivity z, mean-
ing that a colonized patient has probability z of testing positive. The assumption of perfect specificity can easily
be relaxed if required. Test outcomes are assumed to be mutually independent given the underlying colonization
states. Some of the isolates obtained via tests may be sequenced. Note that a single patient may have multiple
sequenced isolates.

In order to construct a model that describes genetic distances between isolates, that is, between observed sequences,
we instead define a more general model that describes distances between all sequences, whether they are observed or not.
An implicit assumption is that each colonized patient has one associated sequence if they either have zero or one isolate,
or n sequences if they have n ≥ 2 isolates.

If a patient A has a sequence i as a result of an isolate obtained on day t, then draw a distance 𝜓i, j to each sequence
j generated on or before day t, where 𝜓i, j is a realization of a nonnegative integer-valued random variable Ψi, j. Here, Ψi, j
may depend on both the relative position of the patients associated with i and j in the chain of transmission between
them, if any, and other genetic distances already generated. Specific examples of Ψi, j are given in Section 2.4. Note that
A may have multiple sequences due to tests on different days, and for each one we generate associated distances to other
sequences. Conversely, for a patient B who first enters colonized status on day t and never has an isolate taken, we suppose
that they have an unobserved sequence i on day t and draw distances to all sequences j generated on day t or earlier in
the same manner as for patient A.

Note that although we have described the generation of genetic distances as occurring through time as the outbreak
unfolds according to the transmission model, it is also possible to generate the distances conditional upon the entire
outbreak, since the transmission dynamics do not explicitly depend on the distances. Either way, the genetic distances
have to be generated in time-order if Ψi,j allows dependencies on existing genetic distances, which is the case for the
models in this article.

2.3 Transmission forest and transmission distance

Recall that the model description includes sources, that is, the identities of patients responsible for transmission events.
Thus the model also specifies the transmission forest, that is, a directed graph made up of disconnected components, each
of which has a tree structure in which nodes correspond to colonized patients and an edge from one node to another
corresponds to a transmission event. The root of each tree corresponds to a patient who is colonized on admission. We
refer to a directed path starting at one node and terminating at another as a transmission chain.

For two sequences i and j, respectively, associated with patients A and B we define the transmission distance k =
k(i, j) = k(j, i) to be the length of the transmission chain, if any, from A to B or vice versa in the transmission forest. Thus
k = 1 if A colonized B or vice versa, k = 2 if A colonized C who colonized B or vice versa, and so on. We set k = ∞ if there
is no such transmission chain; note that this is automatically true if A and B are in different trees, but can also be true if
A and B are in the same tree. For example, if C colonizes A and B, then there is no directed path from A to B or vice versa
and so k = ∞. We also define k = 0 if A and B are the same patient, in order to account for patients who have multiple
sequenced isolates.

Suppose now that k(i, j) > 1 and that the transmission chain from A to B is A,C1,… ,Cm,B for some m ≥ 1. For k =
1,… ,m denote by 𝜎(k) the first (ie, earliest in time) sequence associated with patient Ck, and define

D = D(i, j) = 𝜓i,𝜎(1) +
m−1∑
k=1

𝜓𝜎(k),𝜎(k+1) + 𝜓𝜎(m),j,
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where 𝜓k,l denotes the genetic distance between k and l. Thus D is the sum of the genetic distances associated with direct
colonization events along the chain, where we take one pair of sequences for each such event. We will use D to define Ψi,j
in a way that incorporates dependencies on existing genetic differences.

2.4 Specific models for genetic distances

We now provide two basic models for the Ψi,j random variable used to generate genetic distances. Both models involve
the Poisson distribution, which is natural in this context if one assumes that the genetic mutations leading to differences
between sequences are rare events in some sense. However, other desired distributions can also be used, as illustrated
in the MRSA application in Section 5. Both models also include an explicit dependence on existing genetic differences,
unlike the models described in Worby et al1 in which all Ψi, j values are mutually independent.

2.4.1 The Poisson error dependence model

The first new model, the Poisson error model, assumes that the genetic distance between sequences i and j follows a
Poisson distribution with parameter 𝜃G, 𝜃I , or 𝜃 if the corresponding patients are, respectively, not connected by a trans-
mission chain (k(i, j) = ∞), the same patient (k(i, j) = 0), or adjacent in a transmission chain (k(i, j) = 1). It is also assumed
that all these distances are mutually independent. Conversely if k(i, j) > 1, the genetic distance is defined as D(i, j) + 𝜉W,
where P(𝜉 = 1) = P(𝜉 = −1) = 0.5, W is a Poisson random variable with parameter k(i, j)𝛾 truncated at D(i, j), and 𝜉 and
W are independent. The truncation ensures that the genetic distance cannot be negative. The motivation for this part
of the model is that Ψij will equal D(i, j) on average, and have a variance that will increase with k(i, j). It follows that for
x = 0, 1,…,

P(Ψi,j = x) =

⎧⎪⎪⎨⎪⎪⎩

(𝜃x
G∕x!) exp(−𝜃G) if k(i, j) = ∞,

(𝜃x
I ∕x!) exp(−𝜃I) if k(i, j) = 0,

(𝜃x∕x!) exp(−𝜃) if k(i, j) = 1,
(k(i,j)𝛾)|x−D(i,j)||x−D(i,j)|!CD

(
1
2

)1{x≠D(i,j)}
1{x≤2D(i,j)} if k(i, j) > 1,

(1)

where 1A denotes the indicator function of the event A, and CD =
∑D(i,j)

l=0 (k𝛾)l∕l!. Note that although Equation (1) only
specifies the marginal distribution of each Ψi,j, the joint distribution is simply the product of (i) the marginal distributions
for k(i, j) = 0, 1 and ∞ and (ii) the marginal distributions for k(i, j) > 1 conditional on (i). An explicit formula for the joint
distribution is given in Section 3.2.

2.4.2 The Poisson chain dependence model

Our second model has a similar structure to the first but now assumes that for sequences i and j where k(i, j) > 1, the
genetic distance is simply modelled as a Poisson random variable with mean D(i, j). Thus Ψij will equal D(i, j) on average,
and with a variance that will increase with D(i, j). For x = 0, 1,…, we define

P(Ψi,j = x) =

⎧⎪⎪⎨⎪⎪⎩

(𝜃x
G∕x!) exp(−𝜃G) if k(i, j) = ∞,

(𝜃x
I ∕x!) exp(−𝜃I) if k(i, j) = 0,

(𝜃x∕x!) exp(−𝜃) if k(i, j) = 1,
(D(i, j)x∕x!) exp(−D(i, j)) if k(i, j) > 1.

(2)

3 INFERENCE METHODS

We now describe methods for fitting our models to data. We use a Bayesian framework and employ data-augmented
Markov chain Monte Carlo (MCMC) methods.
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3.1 Data

We assume that the available data contain three components, denoted y, x, and 𝝍 . Component y is the set of dates of
admission and discharge, plus the dates of any diagnostic tests, for every patient in the study. These dates are assumed
to be known accurately and we make no attempt to model them. Component x is the set of results, that is, positive or
negative, of all diagnostic tests. Component𝝍 is the set of sequenced isolates obtained during the study. For our purposes
it is sufficient for this to be summarized as the set of all observed genetic distances 𝝍 =

{
𝜓i,j ∶ i < j

}
. Such distances are

typically obtained by counting the number of single nucleotide polymorphisms (SNPs) between a pair of sequences.1,8

It is possible for a single patient to be admitted to the ward several times during the study. For simplicity, we regard
such readmissions as being different patients in the sense that we take no explicit account of a patient's previous history
if they are readmitted. In other words, we will use the term patient to refer to patient episode. However, our methods can
easily be extended to introduce dependencies between readmissions of the same patient, for instance by assuming that a
patient previously colonized will still be colonized if readmitted within a given length of time.13 In practice, the benefit
of such additional modelling depends on the proportion of admissions that are readmissions.

3.2 Bayesian inference and data augmentation

Both models defined in Section 2 have parameters 𝜌 = {p, 𝛽, z,Θ}, where Θ denotes the parameters of the genetic dis-
tance model. In a Bayesian framework, the object of interest is the posterior density 𝜋(𝜌|x, y,𝝍) ∝ 𝜋(x,𝝍|y, 𝜌)𝜋(𝜌), where
𝜋(x,𝝍|y, 𝜌) is the likelihood and 𝜋(𝜌) is the prior density of 𝜌, assumed to be independent of y a priori. However, the
likelihood is analytically and computationally intractable in practice, because its evaluation involves summing over all
possible colonization events and unobserved sequences, both of which are found in the underlying stochastic model. We
therefore proceed by introducing additional parameters T and 𝝍u, corresponding to unobserved colonization events and
unobserved genetic sequences, in order to obtain a tractable augmented likelihood. Specifically we use the decomposition

𝜋(𝜌,T,𝝍u|x, y,𝝍) ∝ 𝜋(x,𝝍 ,𝝍u|𝜌,T, y)𝜋(T|𝜌, y)𝜋(𝜌). (3)

Here, 𝜋(T|𝜌, y) is the likelihood of colonization events, while 𝜋(x,𝝍 ,𝝍u|𝜌,T, y) is the likelihood of the test results and
both observed and unobserved genetic differences conditioned on the colonization events.

Let  denote the set of all patients in the study. For patient k, let ta
k and td

k denote, respectively, the date of their
admission and discharge from the ward. If k is ever colonized set tc

k as the date on which they first enter the colonized
state, and otherwise set tc

k = ∞. Note that tc
k is not observed, and neither is the actual number of colonized patients,

since a colonized patient may avoid detection by never having a diagnostic test or by testing negative. For patient k,
define 𝜙k = 1 if k is colonized on admission and 𝜙k = 0 otherwise, and let  c =

{
k ∈  ∶ 𝜙k = 0, tc

k ≠ ∞
}

denote the
set of patients who are colonized on the ward. For patient k ∈  c, set sk = l if k is colonized by source patient l. Let
(t) =

{
k ∈  ∶ tc

k ≤ t ≤ td
k

}
denote the set of patients in the colonized state on day t. Thus, the number of colonized

patients on day t is given by C(t) = |(t)|.
Define tc =

{
tc
k ∶ k ∈ 

}
, 𝝓 = {𝜙k ∶ k ∈ }, s = {sk ∶ k ∈  c} and define 𝝍u as the set of genetic distances involving

unobserved sequences. Finally, let T = {tc,𝝓, s}.
Under the assumption of perfect specificity of the diagnostic test, each positive test in the data x must be a true positive.

Given T, we can also evaluate the number of false negative tests in x since we know the true colonization status of every
patient at every time. Denote the numbers of true positive and false negative tests by TP and FN, respectively. Then the
first term on the right-hand side of Equation (3) is

𝜋(x,𝝍 ,𝝍u|𝜌,T, y) = zTP(1 − z)FNP

( ⋂
(i,j)∈

{
Ψi,j = 𝜓i,j

})
, (4)

where  =
{
(i, j) ∶ i < j, 𝜓i,j ∈ 𝝍 ∪ 𝝍u} is the set of all pairs of sequences.

The joint distribution of genetic distances can be evaluated as

P

( ⋂
(i,j)∈

{
Ψi,j = 𝜓i,j

})
=

( ∏
(i,j)∈1

P
(
Ψi,j = 𝜓i,j

))( ∏
(i,j)∈2

P
(
Ψi,j = 𝜓i,j| {Ψu,v = 𝜓u,v ∶ (u, v) ∈ 1

}))
,
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where1 =  ∩ {(i, j) ∶ k(i, j) ∈ {0, 1,∞}} and2 =  ∩ {(i, j) ∶ k(i, j) > 1}, and where the terms in the products are given
by (1) or (2) depending on the choice of model.

The likelihood of colonization events is given by

𝜋(T|𝜌, y) = p
∑

k𝜙k (1 − p)
∑

k(1−𝜙k)

×
∏
k∈

⎡⎢⎢⎣1{tc
k=ta

k} + 1{tc
k≠ta

k} exp
⎛⎜⎜⎝−

min(tc
k−1,td

k )∑
t=ta

k

𝛽C(t)
⎞⎟⎟⎠
⎤⎥⎥⎦ (5)

×
∏
l∈ c

(1 − exp(−𝛽C(tc
l ))

C(tc
l )

)
1{sl∈(t)}.

The three terms on the right hand side of Equation (5) give the probabilities of (i) the admission status of each patient,
(ii) patients avoiding colonization, and (iii) patients being colonized by the source specified in s. Note that the indicator
function ensures that the source of a patient l who is colonized on the ward must themselves be colonized when l becomes
colonized; otherwise, the likelihood will be zero.

3.3 Markov chain Monte Carlo methods

In order to explore the posterior density defined at Equation (3) , we use an MCMC algorithm to sample from it. Our setting
is sufficiently complex to make the use of standard MCMC software packages infeasible in practice. The algorithm updates
in turn the epidemiological parameters (p, z, and 𝛽), the genetic parameters Θ, and the latent (ie, unobserved) variables T
and𝝍u. Our algorithm is related to that described in Worby et al,1 but includes some extensions and refinements as well as
a number of additional steps to improve the mixing properties of the resulting Markov chain. Full details of the algorithm
can be found in the supplementary material, but here we describe it in outline for the Poisson chain dependence model.

All assigned prior distributions are assumed to be mutually independent. We assume a priori that p and z follow Beta
distributions, 𝛽 and 𝛾 follow improper Uniform prior distributions on (0,∞), and 𝜃, 𝜃I , 𝜃G follow Gamma distributions.
We use the notation 𝜌−p to denote 𝜌 with p removed, and so on.

Algorithm 1. MCMC algorithm to sample from 𝜋(𝜌,T,𝝍u|x, y,𝝍)
Epidemiological parameter updates

Update p by sampling directly from 𝜋(p|𝜌−p,T,𝝍u, x, y,𝝍);
Update z by sampling directly from 𝜋(z|𝜌−z,T,𝝍u, x, y,𝝍);
Update 𝛽 using a Metropolis-Hastings (M-H) step.

Genetic parameter updates
Update 𝜃 by sampling directly from 𝜋(𝜃|𝜌−𝜃,T,𝝍u, x, y,𝝍);
Update 𝜃I by sampling directly from 𝜋(𝜃I|𝜌−𝜃I ,T,𝝍

u, x, y,𝝍);
Update 𝜃G by sampling directly from 𝜋(𝜃G|𝜌−𝜃G ,T,𝝍

u, x, y,𝝍);
Latent variable updates

Propose to add a colonization time;
Propose to remove a colonization time;
Update an existing colonization time;
Change unobserved genetic distances 𝝍u.

Updating the epidemiological and genetic parameters is fairly straightforward; these steps consist of Gibbs updates
of all the corresponding parameters, except 𝛽, where a Gaussian random-walk M-H is employed instead. Updating T is
much less straightforward. For example, proposing to add a colonization time is implemented by (i) selecting uniformly
at random a currently uncolonized patient and propose that they become colonized, (ii) selecting a source of colonization
from the set of colonized patients on this day, also uniformly at random, and (iii) drawing a set of proposed distances to
every other sequence from every colonized patient. To update the genetic distances we first pick a patient uniformly at
random from all those with one or more imputed sequences. We then pick one of their sequences, uniformly at random,
and propose a new set of genetic distances according to the underlying genetic distance models.
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We also perform additional updates, which we found improved the mixing of the Markov chain; in particular, updating
the genetic parameters and distances simultaneously, swapping a patient and their source, and changing a source without
changing colonization times.

Full details of all steps of the MCMC algorithm can be found in the supplementary material.

4 MODEL ASSESSMENT METHODS

Within the Bayesian framework, one natural way to undertake model assessment is to compare one or more summaries
of the observed data with the corresponding quantities under the posterior predictive distribution. This is achieved by (i)
fitting the model to data and generating samples from the posterior distribution of the model parameters 𝜌, (ii) simulat-
ing a number of new datasets using these samples as parameter values in the model, (iii) comparing the observed data
summaries to the distribution of summaries obtained by simulation, typically checking whether or not the former lies
within the central region or the tails of the latter.

For the epidemiological aspects of the data, suitable data summaries include the proportion of patients with a positive
test result or with a positive test on admission.1 Although a similar approach can be taken for the genetic aspects of the
data, we found that in practice this can be problematic. Specifically, we considered five summaries of the genetic data,
namely, the mean, median, range, interquartile range, and sum of the genetic distances. In each case, we first simulated
a number of datasets, then carried out the model fitting and assessment procedure, fitting both the true model used to
create the dataset and also an alternative model with a different model for the genetic distances. We found that using
these posterior predictive checks provided evidence against the fit of the wrong model, but also, for some datasets, gave
evidence against the fit of the true model.14

A key reason why single summaries of genetic distance may be misleading is that the distances are conditional upon
the transmission forest, and even simulating the correct model with the true parameter values may only rarely lead to a
transmission forest compatible with the observed data. This motivates us to consider an alternative approach in which
simulations are generated using samples from the posterior distribution of both 𝜌 and the transmission forest described
by T.

4.1 Model assessment for genetic distances

The following procedure produces N simulated sets of genetic distances 𝝍̃1,… , 𝝍̃N which can be compared with the
observed data 𝝍 . Suppose we have M posterior samples of (𝜌,T) from the MCMC algorithm. We assume that the
population of patients  and the dates contained in y are the same as in the observed data.

1. For k = 1,… ,N, choose a posterior sample (𝜌,T) uniformly at random from the M available.
2. Simulate a set of genetic distances 𝝍k between all colonized patients using Θ, tc, and s from (𝜌,T).
3. Set 𝝍̃k as the restriction of 𝝍k to the distances corresponding to those in 𝝍 .

Note that step 3 is necessary because the transmission forest described by T may well include patients who do not
correspond to any of the observed sequenced isolates. Conversely, since T has to be compatible with the observed data
then for every 𝜓i,j ∈ 𝝍 , there is a corresponding 𝜓̃(i,j)k ∈ 𝝍̃k, k = 1,… ,N. Thus, each of 𝝍̃1,… , 𝝍̃N is a set of simulated
distances for the same set of sequenced isolates as the data 𝝍 .

In order to compare 𝝍̃1,… , 𝝍̃N with𝝍 , we assign each 𝜓i,j ∈ 𝝍 a value 𝛼i,j that describes how typical it is with respect
to the distribution of simulated values 𝝍̃ i,j = (𝜓̃(i,j)1 ,… , 𝜓̃(i,j)N ). Ways to do this include a binary cutoff (eg, set 𝛼i,j as the
indicator function of the event that 𝜓i,j lies within the 90% highest probability region of 𝝍̃) or setting 𝛼i,j as the smallest 𝛼
such that 𝜓i,j lies within the (100 × 𝛼)% highest probability region of 𝝍̃ (so the smaller 𝛼i,j, the more typical𝜓i,j is.) Finally,
the set of 𝛼i,j values can be presented graphically; an example is given below.

4.2 Simulation study

We conducted a brief simulation study to evaluate the model assessment method described above. Three datasets were
simulated, with parameters as shown in Table 1. Admission dates for patients were chosen uniformly at random and
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T A B L E 1 Models and parameters
used in simulation study

Simulation 1 Simulation 2 Simulation 3

Study length (days) 100 200 100

Number of patients 100 200 100

Average length of stay (days) 7 5 7

True model Poisson error Poisson chain Poisson error

p 0.06 0.06 0.06

z 0.8 0.8 0.8

𝛽 0.01 0.02 0.02

𝜃 40 40 2

𝜃G 200 200 200

𝛾 30 — 40

independently from the study period, and each patient's length of stay was independently drawn from a Poisson distribu-
tion with a given mean. Swabs were taken from all patients on the ward every other day. Each positive swab was assumed
to produce an observed sequence. Genetic distances were generated using either the Poisson error model or the Poisson
chain model.

For each simulated dataset, we fitted three models, namely the two Poisson models and also a geometric model
described in Section 5.2, and carried out the model assessment procedure for genetic distances defined in Section 4.1. The
results are shown graphically in Figure 1, where we use a binary cutoff. Each subfigure shows, for each pair of sequences
in the simulated data, whether or not the observed genetic distance lies within the central 95% posterior predictive prob-
ability region, with light shading used to indicate that it does. The first column shows results when the fitted model is the
same as the model used to produce the simulated data, with the other columns showing results when the fitted model
is different. It can be seen that the model assessment procedure is largely successful in identifying the true model in
each case.

5 APPLICATION TO MRSA

5.1 Data

We now apply our methods to data on an outbreak of MRSA in a hospital in Thailand in 2008. These data were col-
lected during a study on two intensive care units (ICUs) in the same 1000 bed hospital in northeast Thailand.15 The
data include 83 MRSA genome sequences from 51 distinct patients, which were aligned to a reference genome of the
dominant lineage (ST 239 strain TW20) of MRSA in the hospital. A total of 2591 nucleotides changed from the refer-
ence genome in at least one patient sequence. The data were collected by repeat screening for MRSA of patients on two
ICUs, one surgical and one pediatric, over 3 months. Table 2 summarizes the data from each ICU and Figure 2 dis-
plays timelines for each of the patients who ever had a positive swab test. Further details of the dataset can be found
in Tong et al.15

5.2 Models

We initially fitted the two Poisson distribution models for genetic distance defined in Sections 2.4.1 and 2.4.2. As shown
below, these models did not provide a convincing fit to the data and so we also developed four additional models. These
four models have the same assumptions as the Poisson models for distances between sequences in a chain of transmission
with transmission distance k(i, j) > 1, but differ by having alternative distributions for other distances. In particular we
used geometric distributions, as employed in Worby et al,1 and negative binomial distributions, to allow separate mod-
elling of the mean and variance of those genetic distances that were not well described by one-parameter distributions.
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F I G U R E 1 Results from simulation study on model assessment. The axes in each figure refer to the sequences, and each point shows
whether the observed genetic distance between a sequence pair falls in the central 95% posterior predictive probability region (light shading)
or not (dark shading). Each row shows results of fitting three models with true model (either Poisson error dependence or Poisson chain
dependence) in first column, the other Poisson model in the second column and a geometric distribution version of the true model in the
third column. Rows top to bottom correspond to simulations 1 to 3, respectively (see Table 1).
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T A B L E 2 Summary of the MRSA data ICU 1 ICU 2

Ward type Surgery Pediatric

Number of patients admitted 170 114

Number of distinct patients 169 98

Number of patients with at least one positive swab 20 29

Total number of positive swabs collected 51 89

Total number of swabs sequenced 43 40

Abbreviations: ICU, intensive care unit; MRSA, methicillin-resistant Staphylococcus aureus.

F I G U R E 2
Methicillin-resistant
Staphylococcus aureus data:
timelines for patients with a
positive swab test. Each patient's
line corresponds to their stay on
the ward, with shading changing
from light to dark on the date of
their positive swab test. Day 1
and day 70 refer to real-time days
during the study.
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Poisson
models

Geometric
models

Negative binomial
models

k(i, j) = ∞ Pois(𝜃G) Geom(𝜑G) NB(𝜇G, 𝜎
2
G)

k(i, j) = 0 Pois(𝜃I) Geom(𝜑I) Geom(𝜑I)

k(i, j) = 1 Pois(𝜃) Geom(𝜑) NB(𝜇, 𝜎2)

Note: k(i, j) is the transmission distance between i and j as defined in Section 2.3,
Pois(𝜃) is a Poisson distribution with mean 𝜃, Geom(𝜑) is a geometric distribution with
mean 𝜑−1 and NB(𝜇, 𝜎2) is a negative binomial distribution with mean 𝜇 and variance
𝜎2. For k(i, j) > 1, all models use the distributions specified in Equations (1) or (2).

T A B L E 3 Distribution of the genetic distance Ψi,j

between sequences i and j for the six models used for the
methicillin-resistant Staphylococcus aureus data analysis

T A B L E 4 Methicillin-resistant Staphylococcus aureus data: posterior means and equal-tailed 95% credible intervals for the
epidemiological parameters

Ward 1 Ward 2

Model p z 𝜷 p z 𝜷

Poisson error 0.048 0.72 0.013 0.067 0.79 0.010

(0.02,0.09) (0.59,0.83) (0.007,0.021) (0.028,0.12) (0.68,0.84) (0.006,0.014)

Poisson chain 0.049 0.71 0.012 0.033 0.81 0.013

(0.019,0.092) (0.58,0.81) (0.007,0.019) (0.007,0.076) (0.71,0.90) (0.008,0.019)

Geometric error 0.060 0.68 0.015 0.10 0.78 0.011

(0.024,0.11) (0.56,0.80) (0.008,0.025) (0.04,0.19) (0.68,0.88) (0.006,0.016)

Geometric chain 0.034 0.69 0.017 0.11 0.84 0.011

(0.01,0.071) (0.57,0.80) (0.009,0.027) (0.053,0.19) (0.74,0.91) (0.007,0.018)

Neg bin error 0.038 0.72 0.016 0.084 0.83 0.012

(0.013,0.076) (0.60,0.83) (0.009,0.024) (0.036,0.15) (0.74,0.90) (0.007,0.018)

Neg bin chain 0.030 0.71 0.016 0.12 0.79 0.011

(0.008,0.066) (0.59,0.82) (0.009,0.024) (0.057,0.20) (0.70,0.87) (0.006,0.017)

For each distribution, we considered both error dependence and chain dependence versions. A summary of all six models
is given in Table 3.

We assigned uninformative prior distributions to the model parameters; full details are given in the supplementary
material.

5.3 Results

Table 4 contains results from all six models for the epidemiological parameters. There is reasonable agreement across
all models, particularly for the transmission parameter 𝛽 and test sensitivity z, the latter being around 70% for ward 1
and 80% for ward 2. The proportion of patients estimated to be colonized on admission shows more variability between
models, ranging from 3% to 6% on ward 1 and from 3% to 12% on ward 2.

It is of interest to see how much the whole-genome-sequence data tell us about the epidemiological parameters. It is
possible to fit the underlying transmission model without using any genetic data, and this yields posterior mean estimates
(p, z, 𝛽) = (0.046, 0.759, 0.012) and (0.193, 0.862, 0.007) for wards 1 and 2, respectively.16 The sensitivity and transmission
rate parameters are broadly similar to those in Table 4, but in ward 2, the probability of being colonized on admission
is far higher if the genetic data are ignored. In this case, the genetic data thus suggest more within-ward transmission
than that inferred from epidemiological data alone. The probability of being colonized on admission and the within-ward
transmission rate are typically negatively correlated a posteriori when estimated solely by epidemiological data, since
they represent competing ways of explaining the test results, and our results show that the whole-genome-sequence data
provide a way of partially resolving this issue.
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T A B L E 5 Methicillin-resistant Staphylococcus aureus data: posterior means and equal-tailed 95% credible intervals for the mean and
variance of the genetic distance between sequenced isolates that are in different transmission chains (separate), taken from the same
patient (within-patient) or taken from patients directly connected in a transmission tree (direct)

Separate Within-patient Direct

Model Mean Variance Mean Variance Mean Variance

Ward 1

Poisson error 380.9 380.9 37.2 37.2 39.6 39.6

(378.8,383.2) (378.8,383.2) (36.3,38.1) (36.3,38.1) (38.1,41.1) (38.1,41.1)

Poisson chain 380.6 380.6 37.2 37.2 40.2 40.2

(378.9,382.2) (378.9,382.2) (36.3,38.1) (36.3,38.1) (39.1,41.4) (39.1,41.4)

Geometric error 367.1 1.35 ×105 38.2 1.43 ×103 47.5 2.30 ×103

(335.1,401.5) (1.12,1.61)×105 (33.1,44.2) (1.06,1.91)×103 (32.5,69.0) (1.02,4.70)×103

Geometric chain 369.2 1.36 ×105 38.2 1.43 ×103 93.7 9.63 ×103

(338.7,402.2) (1.15,1.62)×105 (33.0,44.1) (1.06,1.92) ×103 (48.3,134.6) (2.52,18.1)×103

Neg bin error 386.1 4.72 ×104 38.2 1.43 ×103 120.5 1.95×104

(365.6,406.8) (3.52,5.82)×104 (33.1,44.3) (1.10,1.92)×103 (96.7,155.5) (1.15,3.50)×104

Neg bin chain 383.60 4.55 ×104 38.2 1.43×103 131.5 2.38×104

(364.1,404.0) (3.82,5.40)×104 (33.0,44.2) (1.10,1.92)×103 (106.7,157.1) (1.41,3.63)×104

Ward 2

Poisson error 339.0 339.0 8.0 8.0 52.3 52.3

(337.1,341.2) (337.1,341.2) (6.33,9.84) (6.33,9.84) (50.3,54.3) (50.3,54.3)

Poisson chain 212.0 212.0 8.0 8.0 61.7 61.7

(209.5,214.5) (209.5,214.5) (6.32,9.87) (6.32,9.87) (59.3,68.4) (59.3,68.4)

Geometric error 223.6 4.99 ×104 9.11 80.6 65.6 2.34 ×103

(204.7,243.1) (4.17,5.88) ×104 (5.18,16.1) (21.6, 231.7) (41.2,124.6) (1.09,4.69) ×103

Geometric chain 222.0 4.92 ×104 9.10 81.9 42.0 2.02 ×103

(204.7,240.0) (4.18,5.73)×104 (5.16,16.1) (21.6,242.9) (20.5,79.5) (4.00,62.7)×103

Neg bin error 217.7 6.70 ×104 9.10 82.2 55.2 2.51 ×103

(196.7,240.3) (5.29,8.35) ×104 (5.18,16.3) (21.7,248.5) (41.6,76.2) (1.10,6.17) ×103

Neg bin chain 208.0 5.81 ×104 9.09 81.8 183.2 9.27 ×104

(190.0,228.9) (4.72,7.22) ×104 (5.18,16.1) (21.8,237.6) (95.4,365.2) (1.81,37.2) ×104

Table 5 shows genetic parameter estimates for all six models. The estimates for mean genetic distance for
within-patient isolates in a given ward are comparable across all models. The corresponding variances are deter-
mined by the mean values, since the underlying assumed distribution is either Poisson or geometric. The mean
estimates for distances between patients in a given ward who are in different transmission trees are broadly compa-
rable. Again, the corresponding variances are determined for the Poisson and geometric models, but for the negative
binomial models, the variance can be estimated separately and found to be considerably different from the Pois-
son models. This suggests that the Poisson models fit the data less well in this respect. Similar conclusions hold for
the parameters associated with direct transmission, although here the mean values are less similar across the three
model types.

Figures 3 and 4 show inferred transmission forests for each model. Broadly speaking, the error dependence and chain
dependence versions of each model give similar results, whereas more variation is seen across the three different dis-
tributions. In particular, the negative binomial models suggest slightly more transmission within the ward, and fewer
imported cases, than the Poisson or geometric models. This is most likely due to the fact that the former allow for greater
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ICU 1: Inferred transmission network
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(A) Poisson Error Model
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(B) Poisson Chain Model

ICU 1: Inferred transmission network
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(C) Geometric Error Model

ICU 1: Inferred transmission network
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(D) Geometric Chain Model

ICU 1: Inferred transmission network
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(E) Negative Binomial Error Model

ICU 1: Inferred transmission network
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(F) Negative Binomial Chain Model

F I G U R E 3 Methicillin-resistant Staphylococcus aureus data: estimated transmission forest under each model for ward 1
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ICU 2: Inferred transmission network
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(A) Poisson Error Model

ICU 2: Inferred transmission network
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(B) Poisson Chain Model

ICU 2: Inferred transmission network
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(C) Geometric Error Model

ICU 2: Inferred transmission network
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(D) Geometric Chain Model

ICU 2: Inferred transmission network
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(E) Negative Binomial Error Model

ICU 2: Inferred transmission network
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(F) Negative Binomial Chain Model

F I G U R E 4 Methicillin-resistant Staphylococcus aureus data: estimated transmission forest under each model for ward 2
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Model Ward 1 Ward 2

Poisson error (7,53) (5,28)

Poisson chain (2,33) (1,32)

Geometric error (2,53) (4,39)

Geometric chain (1,34) (7,49)

Neg bin error (7,56) (6,33)

Neg bin chain (1,31) (7,44)

T A B L E 6 Methicillin-resistant Staphylococcus aureus data: 95% highest posterior
predictive probability regions for the total number of patients to have a positive swab.
The observed values were 30 patients for ward 1 and 22 patients for ward 2

variance in the genetic distances in direct transmission, which in turn makes such transmission more likely given the
observed data.

Within ward 1, all models suggest that there are two principle transmission chains, initiated by patients
T0771.1 and T126.1. Patient T126.1 in particular appears to be the source of colonization for numerous other
patients; one possible reason for this is that particular patient was present on the ward for far longer than
any of the others. A previous analysis, using completely different methods, also found patient T126.1 to be
responsible for many of the colonization events.15 Within ward 2, the results are more variable across mod-
els, although there is still evidence of patients who act as the source of colonization for several other patients,
such as patients T012.2 and T159.1, the former again being present on the ward for longer than most other
patients.

5.4 Model assessment

We carried out model assessment of both the epidemiological and genetic aspects of the models. For the former, we
first compared the observed total number of patients with a positive swab test result, namely, 30 patients in ward
1 and 22 in ward 2, with the corresponding number obtained from the posterior predictive distribution. Specifically,
we performed 1000 simulations of each model with all admission, discharge and test dates fixed to the known val-
ues from the data, with parameters drawn from the posterior distribution, that is, from the MCMC algorithm output
for the model in question. Table 6 shows 95% probability intervals from the simulations, all of which contain the
observed values.

We next considered a time-dependent quantity for model assessment, namely, the number of patients on the ward on
a given day who have had a positive swab on that day or any previous day. Figures 5 and 6 show 95% probability intervals
from the simulations. In each case, the observed data lie well within the probability intervals for all, or all but a few days,
and so there is no material evidence against any of the models.

To assess the genetic part of the model, we used the method described in Section 4. Figure 7 shows results based on
1000 genetic distance matrices drawn from the posterior predictive distribution for each model. It is clear that the Poisson
models have inferior model fit compared with the geometric and negative binomial models, with the latter providing a
reasonable fit to the data.

6 CONCLUSION AND DISCUSSION

We have developed new models for analyzing whole-genome-sequence data by introducing natural dependencies
into the class of models developed by Worby et al.1 In addition we have developed model assessment methods that
provide a means for quantifying how well the models fit the genetic data. Although we have focused on noso-
comial pathogens, the methods themselves are generic in nature and could easily be adapted to other infectious
disease settings.

Whole-genome-sequence data offer the potential to reconstruct transmission pathways in a disease outbreak with less
uncertainty than that provided by standard epidemiological data alone. In healthcare settings, one clinically important
consequence is that it becomes more feasible to accurately identify which cases have arisen due to internal trans-
mission as opposed to being imported cases. Such information can be used to inform infection control policies and
procedures.
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(A) Poisson Error Model
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(B) Poisson Chain Model
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(C) Geometric Error Model
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(D) Geometric Chain Model
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(E) Negative Binomial Error Model
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(F) Negative Binomial Chain Model

F I G U R E 5 Posterior prediction of the number of patients on the ward with a positive swab over time under each model for ward 1. The
black step-function-like line shows the observed data, the rapidly-varying line shows the posterior predictive mean, and the shaded area is
the posterior predictive 95% probability interval.

We used Poisson, geometric, and negative binomial distributions for genetic distance models. Choosing which dis-
tributions to use can be dependent on the dataset under consideration, although in our experience there is often little
material difference in the resulting inference for who-infected-whom. There is some loose justification for the use of Pois-
son distributions insofar as the genetic mutations counted by SNPs could be reasonably thought of as rare events, for which
the Poisson distribution is a standard modelling choice. However, SNP data themselves arise via complex sequencing pro-
cedures, and hence the distributions in our models are effectively attempting to capture the output from the combination
of underlying biological mechanisms and laboratory methods.

The genetic distance models employed in this article do not make explicit use of time, but instead depend on the num-
ber of links along transmission chains. However, it is natural to suppose that the genetic distances along a transmission
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(B) Poisson Chain Model
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(C) Geometric Error Model
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(D) Geometric Chain Model
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(E) Negative Binomial Error Model
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(F) Negative Binomial Chain Model

F I G U R E 6 Posterior prediction of the number of patients on the ward with a positive swab over time under each model for ward 2. The
black step-function-like line shows the observed data, the rapidly-varying line shows the posterior predictive mean, and the shaded area is
the posterior predictive 95% probability interval.

chain may depend on the times between successive colonization events. We found that incorporating this idea into our
models had little material impact on the results for the MRSA data.14 One reason for this is that most patients only remain
in the ward for a few days, so there is relatively little variability in the times between successive colonization events, and
thus the number of links in the transmission chain is almost as informative as the times themselves.

Our models are defined in discrete-time, although our methods can equally be applied to continuous-time models.14

For hospital infection models, small estimation biases can arise if a discrete-time model is used in a setting where the
data are assumed to be generated from a continuous-time model,17 although some of the underlying assumptions in the
transmission mechanisms of both discrete-time and continuous-time models are questionable in reality. For instance,
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F I G U R E 7 Methicillin-resistant Staphylococcus aureus data: model assessment using methods described in main text. The axes in each
figure refer to the observed sequences, and each point shows whether the observed genetic distance between a sequence pair falls in the
central 95% posterior predictive probability region (light shading) or not (dark shading). A-F, Ward 1. G-L, Ward 2
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continuous-time models typically assume that transmission potentially occurs at any time of day or night, but most ICUs
see more potential colonization opportunities during the day as healthcare workers, other staff, and visitors are far less
likely to be active on the ward during the night. Conversely, discrete-time models aggregate events together into time
units such as days, but this simplification can be unrealistic, particularly if multiple colonization events are likely to occur
within one time unit. For the MRSA data we have considered, there are relatively a few colonization events, which helps
motivate our choice of discrete-time models.

We have assumed that if individuals become colonized then they remain so for the duration of their time on the
hospital ward. This is a fairly common assumption13,18,19 and is reasonable for wards such as ICUs where patient stays are
typically fairly short, and in particular likely to be shorter than the time taken for clearance of pathogen carriage. However,
the methods we have described could equally be applied to models that include carriage clearance, and also readmission
of patients, since the data-augmentation methods keep track of the required information such as the transmission forest.
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