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Determination of the volumes of acute cerebral infarct in the magnetic resonance imaging harbors prognostic values. However,
semiautomatic method of segmentation is time-consuming and with high interrater variability. Using diffusion weighted imaging
and apparent diffusion coefficient map from patients with acute infarction in 10 days, we aimed to develop a fully automatic
algorithm to measure infarct volume. It includes an unsupervised classification with fuzzy C-means clustering determination of
the histographic distribution, defining self-adjusted intensity thresholds. The proposed method attained high agreement with the
semiautomatic method, with similarity index 89.9 ± 6.5%, in detecting cerebral infarct lesions from 22 acute stroke patients. We
demonstrated the accuracy of the proposed computer-assisted prompt segmentationmethod, which appeared promising to replace
the laborious, time-consuming, and operator-dependent semiautomatic segmentation.

1. Introduction

Cerebrovascular disease is one of the leading causes of acute
mortality and chronic disability [1]. The volume of infarct is
associated with severity of acute ischemic stroke and corre-
lates with clinical prognosis and the effect of endovascular
therapy [2–4]. A rapid and reliable method of determination

of volume of acute infarct will help predict the prognosis and
facilitate further investigation.

The diffusion weighted imaging (DWI) is more sensitive
than other magnetic resonance imaging (MRI) modalities to
small water diffusion changes in the acute ischemic brain,
especially within 48 hours of the ictus [5–9].
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Figure 1:The histographic characteristics of the raw DWI and the infarct. (a)The raw DWI of patient number 20. (b)The semiautomatically
demarcated infarcts, printed in red, of patient number 20. The infarct volume = 46.828mL.The lower bound of the infarcts = 𝐼peak + 0.24. (c)
The raw DWI of patient number 3. (d) The semiautomatically demarcated infarcts, printed in red, of patient number 3. The infarct volume
= 0.399mL. The lower bound of the infarcts = 𝐼peak + 0.21. (e) The histogram of the normalized voxel intensity within the brain mask of the
whole-brain DWI and the intensity distribution of the semiautomatically demarcated infarcts of patient number 20. (f) The histogram of the
normalized voxel intensity within the brain mask of the whole-brain DWI and the intensity distribution of the semiautomatically demarcated
infarcts of patient number 3.

Automatic algorithms for segmentation for acute infarct
in MRI have been reported [10–15]. The unsupervised
method developed by Li et al. was based on a multistage
procedure including image preprocessing, calculation of ten-
sor field, measurement of diffusion anisotropy, segmentation
of infarct volume based on adaptive multiscale statistical
classification, and partial volume voxel reclassification [11].
Bhanu Prakash et al. used a probabilistic neural network
for selecting infarct slices and an adaptive Gaussian mixture
model for segmentation of the infarcts [12]. Hevia-Montiel
et al. developed a method for cerebral infarct lesion segmen-
tation from DWI by applying nonparametric density esti-
mation [13]. Gupta et al. identified the infarct slices and the
hemisphere automatically in DWI based on the difference in
the percentile characteristics of intensity normalized images
and parameters of infarct slice identification and infarct
hemisphere identification [14]. Shen et al. detected infarct
lesions based on the voxel intensity segmentation and the
spatial location of tissue distribution [15].

We aimed to design a DWI-based computer-assisted
method to provide clinicians a prompt and accurate determi-
nation of the volumes of acute cerebral infarct.The operation

of this method is based on the histographic characteristic
of the output clusters of a fuzzy C-means (FCM) clustering
[16]. Additional measures were taken to ensure the accuracy
of infarct detection, including discriminating infarcts from
artifacts due tomagnetic inhomogeneity by incorporating the
histographic information in the apparent diffusion coefficient
(ADC) map.

2. Materials and Methods

2.1. Subjects and Image Acquisition. Landseed Hospital has
been participating in the nationwide Taiwan Stroke Registry,
which prospectively registered patients with stroke onset
within 10 days according to a preestablished system [17]. For
this study, we recruited 22 patients (11 women and 11 men,
62–83 years of age) with acute cerebral infarction and MRI
examinations during January-February 2011. The protocol
of this research has been reviewed and approved by the
Institutional Review Board (IRB) of Landseed Hospital.

All MRIs were acquired with a Signa HDxt 1.5T Optima
edition (GE Healthcare, Waukesha, WI) and consisted
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Figure 2: Illustrating the procedure of the proposed method with exemplary images. (a) The raw DWI. (b) The brain mask. (c) The region-
of-interest map derived after the preclustering elimination in Step 3. (d) The FCM cluster map for the 50 clusters in Step 4. (e) Canny edge
detection map. (f) The computer-assisted infarct segmentation result. (g) The detected infarct was mapped to raw DWI. (h) The ADC map.
(i) The semiautomatically demarcated infarct regions by the experienced neurologist.

of a DWI scan (TR/TE/Flip angle = 6000ms/82.8ms/90∘,
FOV = 230 × 230mm2, matrix = 128 × 128, in-plane reso-
lution = 1.79 × 1.79mm, 24 axial slices, 5mm slice thickness
with 1mm gap) and an ADC map with 𝑏 = 1000 s/mm2.

2.2. Automatic Infarct Detection Procedure. The proposed
method was developed on a personal computer with Intel
Core i5 CPU, 2.67GHz processor speed, and 4GB RAM.
The infarct detection procedure was carried out mainly with

a MATLAB program (The MathWorks, Inc., Natick, MA).
We utilized the histographic characteristic of the DWI for
infarct detection. Figure 1 illustrates one example with a large
infarct volume and another with a small infarct volume. The
procedure comprised the following steps.

Step 1 (coregistration and intensity normalization). TheADC
map was registered to the corresponding DWI by a rigid
registration (translation and rotation) and a trilinear interpo-
lation based on the normalized mutual information method
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Figure 3: (a) The histogram of the normalized voxel intensity within the brain mask of a whole-brain DWI. (b) The average normalized
intensities of the 50 clusters created in Step 4. (c) The average normalized intensities of the labels from the clusters of candidate voxels of
infarct in Step 5. (d) The histogram of the normalized voxel intensity within the brain mask of an ADC map.

to correct for differences due to head movements [18]. The
DWI and registered ADCmap were normalized so that their
intensities were both distributed in a standardized range
(0, 1).The programwe used to run this step was the Statistical
Parametric Mapping 8 (SPM8, Wellcome Department of
Cognitive Neurology, London, UK).

Step 2 (extracting the brainmask from thewhole-brainDWI).
The brain mask was extracted from the whole-brain DWI
based on the estimation of the inner and outer skull surfaces
by using BET (Brain Extraction Tool), a software package
developed at FMRIB Centre, University of Oxford, Oxford,
United Kingdom [19]. Note that the fractional intensity
threshold was set at 0.3, smaller than the default value 0.5, to
give a larger brain outline estimate, which would completely
enclose the brain. On one hand, the brain mask extraction
would not eliminate any portion of the cerebral infarcts. On

the other hand, no part of the brain skull portion enclosed
by the brain outline would be mistaken as an infarct region
in the subsequence steps, because there are obvious intensity
differences between the cerebral infarcts and brain skull.

Step 3 (preclustering elimination). The histogram of DWI
within the brain mask was smoothed by a third-order
moving-average filter. The peak of the smoothed histogram
was identified. The normalized intensity, denoted by 𝐼peak,
corresponding to this histographic peak was used as a
threshold. The voxels with normalized intensities lower than
or equal to 𝐼peak would be eliminated from further processing.

Step 4 (FCM clustering). The remaining voxels after the
previous step were divided into 50 clusters by an unsuper-
vised classification with the conventional FCM clustering
algorithm.
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Figure 4: Automatically segmented versus semiautomatically seg-
mented infarct volumes.
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Figure 5:The result of the preliminary experiment to determine the
FCM cluster number. Each of the average SI values was the average
SI of the semiprocedure of the proposed method conducted on the
22 patients.

Step 5 (skimming the clusters for candidate voxels). The
clusters with mean normalized intensity larger than the
normalized intensity of the histographic peak plus 0.2, that
is, 𝐼peak + 0.2, were selected. The voxels belonging to these
selected clusters would be treated as candidate voxels of
infarct in the next step.

Step 6 (eliminating labels with insufficient intensity). Each
cluster of candidate voxels of infarct was further divided into
one or several labels, at most the same number as the voxel
number in that cluster. A label comprised connected voxels.
The labels with average normalized intensity lower than or

equal to the threshold (𝐼peak + 0.2) were eliminated from
further processing.

Step 7 (eliminating labels with weak edge). The labels with
weak edge were eliminated from further processing.The edge
map was extracted from normalized DWI by using Canny
edge detector [20]. The low and high threshold values were
defined as (0, 0.3). The parameter of the standard deviation
of the Gaussian filter was determined to be 1.

Step 8 (eliminating candidate labels due to magnetic inho-
mogeneity). Let 𝐼peak,ADC denote the intensity correspond-
ing to the histographic peak of the ADC map. Fur-
ther, let 𝐼lower mean,ADC denote the average intensity of the
lower-intensity half of all the voxels in a specific label
on the ADC map. For this specific label, if the ratio
𝐼lowermean,ADC/𝐼peak,ADC ≥ 0.5, this label was considered an
artifact caused by magnetic inhomogeneity. All artifacts thus
defined were detected and eliminated in this step. Finally, all
the voxels in the remaining labels in the remaining clusters
were taken to be infarct.

2.3. Performance Evaluation. A voxelwise comparison be-
tween the proposed automatic segmentation and semiauto-
matic segmentation by the experienced neurologist (Chen)
[21] gives the four parameters of each patient: true positive
(TP), true negative (TN), false positive (FP), and false neg-
ative (FN). The sensitivity (Sen.), specificity (Spe.), positive
prediction value (PPV), and negative prediction value (NPV)
are calculated from the four parameters [22].

The similarity index (SI) is used to indicate the degree
of agreement between the infarcts detected by our method
and those detected semiautomatically by the neurologist.
Its formula is SI = 2 × TP/(2 × TP + FP + FN) [23].
In addition, Cohen’s kappa coefficient is also calculated.
It eliminates the agreement due to random chance and is
considered a conservative measure of interrater agreement.
Infarct volume was calculated as the summation of the
detected infarct area of axial DWIs times the slice thickness
[24]. The agreement evaluation of volume measurements of
the proposed algorithm was carried out by calculating the
intraclass correlation coefficient (ICC) [25].

2.4. Preliminary Experiment. A preliminary experiment was
conducted to find the most suitable cluster numbers for the
FCM clustering in Step 4. Cluster numbers ranging from 6
to 100 were tested. For each of the tested cluster numbers,
a semiprocedure of the proposed method was conducted on
each of the 22 recruited patients to obtain an average SI. The
semiprocedure consisted of Steps E1 to E7, whereof Steps E1
to E5 were the same as Steps 1 to 5. Steps E6 to E7 were as
follows.

Step E6 (selecting infarct labels). Each cluster of candidate
voxels of infarct was further divided into one or several
labels, at most the same number as the voxel number in that
cluster. A label comprised connected voxels. All the labels
containing at least one voxel belonging to a semiautomatically
demarcated infarct region were selected as infarct labels.
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Figure 6: Different colors represent the voxels of the 50 different clusters in a whole-brain DWI of patient number 9 in Step 4.

Step E7 (SI calculation).The SI was calculated with the voxel-
by-voxel comparison between the infarct labels selected in
Step 6 and the semiautomatically demarcated infarct regions.

3. Results

The exemplary images in Figure 2 illustrate the procedure of
the proposed method. Figure 2(a) shows an example of the
DWI slice used as the input to the proposedmethod in Step 1.
Figure 2(b) was a slice of the whole-brain mask extracted
from thewhole-brainDWI in Step 2. Figure 2(c) shows a slice
of the output of the preclustering elimination in Step 3.These
were the DWI voxels with normalized intensities higher
than 𝐼peak within the brain mask. In Figure 2(d), different
colors were used to paint the voxels of different clusters in
an exemplary DWI slice after the FCM clustering in Step 4.
Figure 2(e) shows the corresponding Canny edge detection
map. Figure 2(f) shows an example of the final detected
infarcts after further processing through Steps 5, 6, 7, and
8. Figure 2(g) is a combination of the detected infarcts and
the raw DWI. Figure 2(h) shows the ADC map that was
used in Step 8 to eliminate artifact-induced spurious infarcts.
Figure 2(i) shows the result of the semiautomatic infarct
segmentation by the neurologist on the same input DWI.

Figure 3 shows how the histographic information of the
voxel intensity was utilized in the proposed method to facili-
tate the identification of infarct.The blue curve in Figure 3(a)
represents the smoothed histogram of the voxel intensity
of a normalized raw DWI. The intensity corresponding to

the peak of the histogram is referred to as 𝐼peak. In Step 3,
all voxels with normalized intensity lower than or equal to
𝐼peak were eliminated because they very unlikely belonged to
infarct areas. This preclustering elimination greatly reduced
the computation load in the latter steps. Each of the 50 dots
in Figure 3(b) represents the average normalized intensity of
all the voxels in an individual cluster among the 50 output
clusters of the FCM clustering in Step 4. In Step 5, only the
clusters with mean normalized intensity higher than or equal
to 𝐼peak + 0.2 were skimmed (selected) as candidate infarct
clusters. In the example shown in Figure 3(b), only one cluster
became a candidate cluster. Each dot in Figure 3(c) represents
the average normalized intensity of an individual label in
the candidate cluster(s). The labels with average normalized
intensities lower than 𝐼peak + 0.2 were eliminated in Step 6.
Figure 3(d) shows the histogram of the normalized voxel
intensity of the ADCmap. It was used in Step 8 to distinguish
artifacts due to magnetic inhomogeneity.

Verifiedwith the reference by the experienced neurologist
(Chen), our algorithm had high sensitivity, specificity, and SI.
Table 1 tabulates the performance indices of our algorithm
on each of the 22 subjects. Note that we conducted the
proposed method 10 times on each patient’s MRI to get
a (mean ± standard deviation), shown in the supplemen-
tary table (see Supplementary Material available online at
http://dx.doi.org/10.1155/2014/963032), of each performance
index. Table 1 only shows the mean values of the perfor-
mance indices. With total infarct lesion volume ranging from
0.155 to 482.939mL, the sensitivity was 88.036 ± 12.117%,

http://dx.doi.org/10.1155/2014/963032
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Figure 7: Illustrating the input and output images of the proposed algorithm using patient number 9 as an example. This figure shows 6 of
the 23 slices of the whole-brain MRIs of patient 9. (a) Six axial slices of DWI. (b) Six axial slices of ADCmap. (c) Infarct regions, painted red,
semiautomatically demarcated by the neurologist. (d) Infarct regions, painted green, detected automatically by the proposed algorithm.

the specificity 99.992 ± 0.024%, and the SI 89.933 ± 6.460%.
The standard deviations shown in the supplementary table
reveal that the variation due to FCM clustering was low and
acceptable.

Figure 4 shows the relationship in the infarct volumes
obtained by the semiautomatic method and the proposed
method. The infarct volumes determined by the proposed
method correlated well with those determined by the semi-
automatic method with an ICC of 0.991. Notice that patient
number 22 was an outlier, with a much higher infarct volume
than those of the other patients.This patient is not included in
the plot of Figure 4.The ICCwith patient number 22 included
was 0.993.

The result of the preliminary experiment with various
output cluster numbers of the FCM clustering algorithm is
shown in Figure 5. It demonstrates that the number of the
output clusters has substantial influence on the average SI
value. Figure 6 illustrates the result of the FCM clustering by
using different colors to represent the 50 different clusters in
a whole-brain DWI.

To illustrate the effect of the proposed algorithm, the
semiautomatic and the proposed automatic segmentation
results on patient #9 are displayed in Figure 7.

It took our personal computer less than 90 seconds to
execute from Step 1 through Step 8. However, because the
SPM program in Step 1 and the BET program in Step 2
required user intervention, thewhole procedure actually took
nearly 5 minutes. In the future, if the functions currently
executed by the SPM and BET programs are integrated into
the main MATLAB program, the whole procedure will finish
within 90 seconds.

4. Discussion

Wereported a high SI of our algorithm.Themethodproposed
by Bhanu Prakash et al. attained 60% in SI [12].The SI of their
proposed method two years later [10] was improved to 67%.
Another method [14] proposed by the same team attained
67.6% in SI. The method [15] by Shen et al. could attain
87.9% in the average SI, obtained with simulated lesions.
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Figure 8: The effect of threshold variation of clusters skimming in Step 5. (a) Each red dot represents the average normalized intensity of an
individual cluster among the 50 output clusters of the FCM clustering. (b)The raw DWI. (c)The detected infarct lesions with skimming from
𝐼peak + 0.15. (d) The detected infarct lesions with skimming from 𝐼peak + 0.2. (e) The detected infarct lesions with skimming from 𝐼peak + 0.25.
The SI values of the three cases were 88.4%, 93.3%, and 99.2%, whereas the sensitivities were 100.0%, 99.9%, and 98.4%, respectively.

The method [11] proposed by Li et al. attained SI above 92%.
In comparison, the performance of ourmethod in terms of SI
is higher than those of Prakash and Gupta’s team, similar to
the method of Shen et al., and only next to that of the method
of Li et al. It is worth noting that the SI values reported
by different research teams were based on different gold
standards and calculated from different experiment setups.

Hence, there is no fair comparison among the performances
of these methods.

We attribute the high SI of our method to the following
key points.

First, we used a self-adaptive threshold, that is, 𝐼peak, in
the preclustering elimination step (Step 3). The purpose of
the preclustering elimination was to increase the efficiency of



BioMed Research International 9

0 10 20 30 40 50 60
Number of labels

0.56

0.60

0.64

0.68

0.72

0.76

Av
er

ag
e i

nt
en

sit
y 

of
 ea

ch
 la

be
l

Ipeak + 0.20

(a)

(b) (c)

(d) (e)

Figure 9: In Step 6, labels in the skimmed cluster(s) would be eliminated if their individual average normalized intensities were lower than
or equal to the threshold level, namely, 𝐼peak + 0.2. (a) The red dots represent the average normalized intensities of the labels in the cluster(s)
that had been skimmed in Step 5. The blue line indicates the threshold level in this step. (b) A typical label, pointed to by the arrow, with its
average normalized intensity higher than the threshold level would appear white possibly with a faint suburb. (c) Such a label, painted green,
was classified as an infarct region. (d)The arrows point to labels with individual average normalized intensities lower than the threshold level.
They appeared faint all over. (e) Such labels, painted red, were classified as noninfarct regions.
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Figure 10: In Step 7, labels selected in Step 6 would be eliminated if their edges were weak. (a)-(b) The labels pointed to by the arrows were
all labels that had been selected in Step 6 for further processing. (c) In the Canny edge detection map, the arrow-pointed-to labels in (a) did
not have corresponding edges because their edges were weak. (d) In the Canny edge detection map, the arrow-pointed-to labels in (b) had
corresponding edges because their edges were not weak. (e) The arrow-pointed-to labels in (b) were classified as noninfarct regions, painted
red. (f) The arrow-pointed-to labels in (b) were classified as infarct regions, painted green.

fuzzy clustering and reduce the computation time. The his-
tographic peak corresponded to the most abundant intensity
of the DWI image. The voxels with intensity lower than 𝐼peak
were very unlikely to belong to an infarct, so it is safe to
eliminate them from further processing. The threshold was
self-adaptable in that the 𝐼peak of every patient served the
purpose well.

Second, we used an optimal value for the output cluster
number of the FCM clustering algorithm in Step 4. It was
chosen to be 50 since this was a value that would lead to high
SI values, as was demonstrated in Figure 5.

Third, in Step 5, we selected the mean demarcation
threshold, 𝐼peak +0.2, used by the neurologist as the threshold
for skimming the clusters for candidate voxels. As illustrated
in Figures 8(c), 8(d), and 8(e), different extents of skimming
led to different SI values. We found that the difference
between 𝐼peak and the minimum normalized intensity of
the infarct regions demarcated semiautomatically by the
neurologist averaged around 0.2. In the proposed algorithm,
the normalized intensity value that was 0.2 higher than
𝐼peak was selected for the value from which the skimming
started. Note that the demarcation threshold 𝐼peak + 0.2 had
been determined based on the statistics of the experienced
neurologist’s semiautomatic demarcation results. The level of
this threshold can be changed to accommodate for different
neurologists, scanners, and acquisition parameters. A suitable
new threshold can be obtained by statistical analysis on a
training set, making the proposed algorithm adoptable to all
situations.

Fourth, we eliminated false-positive labels in the candi-
date clusters. The results before adopting Step 6 had shown
that there would be some false-positive infarct regions in the
result if all the voxels of the skimmed clusters were taken
as infarct. In Step 6, by dividing each skimmed cluster into
labels and eliminating labels with low intensity, the false
positives could mostly become true negatives. As illustrated
in Figure 9(a), the labels with average normalized intensity
higher than or equal to 𝐼peak + 0.2 were retained in the candi-
dates and the others were eliminated. Figure 9(b) exemplifies
a true-positive infarct label, which looked white and might
have a faint suburb. Such a label was classified as an infarct
region, painted green in Figure 9(c). Figure 9(d) shows some
labels with average normalized intensity lower than 𝐼peak+0.2;
these labels looked faint all over. Such labels were classified as
noninfarct regions, painted red in Figure 9(e).

Fifth, edge detection was used to further eliminate labels
with weaker edges. The results of Step 6 still contained a few
false-positive labels. That is to say, some noninfarct labels
had sufficient normalized intensity to pass the decisions in
Steps 5 and 6. However, these false-positive labels had weaker
edges than real infarct labels had. Step 7 used this edge for
eliminating the false-positive labels. Figure 10 demonstrates
the function of this step with real examples.

Sixth, we detected and eliminated the false-positive labels
due to magnetic-inhomogeneity artifacts.The result of Step 7
still contained false-positive labels, which were actually
artifacts caused by the magnetic susceptibility differences
between adjacent air and cerebrospinal fluid structures and
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Figure 11: In Step 8, candidate labels due to magnetic inhomogeneity were eliminated. (a) In this example, the two labels pointed by arrows
had intensities higher than 𝐼peak + 0.2 and appeared equally bright in the DWI. (b) The two labels had different intensities in the ADC map.
(c) The artifact (blue) was differentiated from the infarct (green) in Step 8.

the surrounding soft tissues with echo-planar imaging tech-
niques [26]. In theDWI, themagnetic inhomogeneity created
artifacts with intensities commensurate with those of infarcts.
It had been a difficult task to eliminate the artifacts [12].
However, in the ADC map, the artifact intensity was higher
than the infarct intensity. This property was used in Step 8
to detect and eliminate the artifacts caused by magnetic
inhomogeneity. Figure 11 illustrates this phenomenon.

The proposed method had the second lowest SI
(79.722%), despite of 100.000% sensitivity, for patient
number 13 among the 22 patients. That was actually due to
inconsistent selection of threshold by the neurologist. Notice
from Table 1 that the demarcation boundary selected by the
neurologist for patient number 13 was 𝐼peak + 0.31, which
was much higher than the average value. In other words, the
neurologist included fewer voxels into infarct than usual.
The demarcation boundary selected by the neurologist for
patient number 14 was 𝐼peak + 0.14, much lower than the
average value. That is to say, more voxels than usual were
included into the infarct by the neurologist. That was why
the proposed method had the lowest SI (74.359%) and the
lowest sensitivity (59.444%) for patient number 14 among
all the patients. These cases demonstrated the inconsistency
in the semiautomatic way of segmentation. In contrast,

the proposed method attained consistent segmentation,
because it used the same value as the threshold in all cases.

Although the performance of the proposed method has
been satisfactory, an even higher SI is still desirable. At
present, the magnetic inhomogeneity does pose a limitation
in further increasing the accuracy of infarct detection. To
attain higher SI, it will be necessary to find a smarter way
than the method we use in Step 8 to identify artifacts due to
magnetic inhomogeneity.

This proposed infarct detectionmethodwill also be useful
for the development of the automatic detection of white
matter lesions. It can increase the accuracy of white matter
lesion detection by excluding infarct lesions, which could be
mistook for white matter lesions easily.

5. Conclusion

This proposed algorithm for acute infarct segmentation
provides a prompt calculation of acute infarct volume from
the DWI and ADC map. The infarct detection was achieved
with fuzzy clustering that divided the DWI into ordered
clusters based on voxel intensities. Under careful scrutiny on
the intensity spectrum, candidate clusters were skimmed and
deceptive labels further eliminated. Additionally, the ADC
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Table 1: Demographics and the statistics of the computer-assisted cerebral infarct segmentation results of individual patients after repeating
the proposed method for 10 times.

Patient Sex Age Demar. Total infarct volume (mL)
ΔVol. SI (%) Kappa (%) Sen. (%) Spe. (%) PPV (%) NPV (%)

Semi-auto. Auto.
1 M 73 0.27 0.155 0.212 36.6% 84.661 84.661 100.000 99.999 73.529 100.000
2 M 80 0.19 0.358 0.377 5.3% 97.438 97.438 100.000 100.000 95.014 100.000
3 F 69 0.21 0.399 0.381 −4.4% 97.716 97.716 95.556 100.000 100.000 100.000
4 F 84 0.22 0.474 0.378 −20.3% 86.835 86.834 78.037 100.000 98.349 99.998
5 F 70 0.2 0.501 0.337 −32.7% 91.662 91.662 93.398 100.000 91.723 100.000
6 M 63 0.19 0.545 0.451 −17.2% 90.413 90.412 82.764 100.000 100.000 99.999
7 M 55 0.2 0.612 0.471 −22.9% 82.684 82.683 73.190 100.000 95.072 99.998
8 F 66 0.15 0.644 0.479 −25.6% 85.332 85.331 74.436 100.000 100.000 99.998
9 M 61 0.21 0.796 0.895 12.5% 94.143 94.142 100.000 99.999 88.938 100.000
10 M 64 0.19 1.003 1.019 1.6% 98.927 98.927 99.710 100.000 98.171 100.000
11 F 75 0.25 1.675 1.794 7.1% 94.373 94.372 97.619 99.998 91.568 99.999
12 F 56 0.19 1.966 1.497 −23.9% 86.438 86.434 76.140 100.000 100.000 99.992
13 F 74 0.31 2.141 3.232 51.0% 79.722 79.715 100.000 99.984 66.312 100.000
14 F 86 0.14 3.749 2.228 −40.6% 74.359 74.349 59.444 100.000 100.000 99.977
15 M 76 0.19 4.143 3.448 −16.8% 85.827 85.819 78.898 99.997 95.789 99.987
16 F 87 0.17 10.108 8.351 −17.4% 90.453 90.440 82.621 100.000 100.000 99.975
17 F 83 0.16 12.657 10.088 −20.3% 88.603 88.582 79.662 100.000 99.952 99.958
18 F 57 0.19 13.063 13.492 3.3% 97.656 97.652 99.254 99.992 96.124 99.999
19 M 72 0.19 15.014 11.611 −22.7% 87.181 87.159 77.332 100.000 99.992 99.955
20 M 80 0.24 46.828 54.497 16.4% 92.426 92.374 99.990 99.894 85.933 100.000
21 M 74 0.22 56.517 59.147 4.7% 97.526 97.503 99.793 99.956 95.365 99.998
22 M 91 0.1 482.939 429.534 −11.1% 94.147 93.675 88.942 100.000 100.000 99.056
Mean 72.5 0.20 −6.2% 89.933 89.904 88.036 99.992 94.174 99.949
STDEV 10.4 0.04 22.3% 6.460 6.446 12.117 0.024 8.886 0.200
Note: Demar.: the lowest intensity, above 𝐼peak, of the infarcts demarcated by the neurologist; SI: similarity index; Sen.: sensitivity; Spe.: specificity; PPV: positive
predictive value; NPV: negative predictive value; STDEV: standard deviation; ΔVol. = (Semi-auto. vol. − Auto. vol.)/Semi-auto. vol.

map was used to help identify spurious infarcts that were
actually artifacts caused by magnetic inhomogeneity. This
method attained high similarity indices. With the semiau-
tomatic segmentation by the experienced neurologist for
comparison, this automatic method attained high similarity
indices.

Our future research will emphasize finding a more
effective way to deal with the magnetic inhomogeneity to
attain a higher accuracy in infarct segmentation. Applying
the proposed infarct detection method to facilitate accurate
computer-assisted segmentation of white matter lesions will
also be our future effort.
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