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A frontier in the understanding of
synaptic plasticity: Solving the
structure of the postsynaptic density

Matthew G. Gold

The postsynaptic density (PSD) is a massive multi-protein

complex whose functions include positioning signalling

molecules for induction of long-term potentiation (LTP)

and depression (LTD) of synaptic strength. These

processes are thought to underlie memory formation. To

understand how the PSD coordinates bidirectional synap-

tic plasticity with different synaptic activation patterns, it

is necessary to determine its three-dimensional structure.

A structural model of the PSD is emerging from investi-

gation of its molecular composition and connectivity, in

addition to structural studies at different levels of resol-

ution. Technical innovations including mass spectrometry

of cross-linked proteins and super-resolution light micro-

scopy can drive progress. Integrating different information

relating to PSD structure is challenging since the struc-

ture is so large and complex. The reconstruction of a

PSD subcomplex anchored by AKAP79 exemplifies on a

small scale how integration can be achieved. With its

entire molecular structure coming into focus, this is a

unique opportunity to study the PSD.
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Introduction

How does the brain encode memories? Each new experience
leads to a complex pattern of electrochemical communication
between subpopulations of neurons that are interconnected
by synapses. A popular theory is that changes in the strength
of these synapses are an important component of memory
formation [1]: cellular protocols dictate the direction of syn-
aptic plasticity depending on the stimulation pattern of each
synapse. Influential supporting evidence for this theory is that
different artificial stimulation protocols lead to either
strengthening or weakening of synapses between CA3 and
CA1 neurons in the hippocampus. High-frequency tetanic
stimulation of Schaffer collateral axons projected by CA3
neurons leads to an increase in the excitatory postsynaptic
potential elicited in CA1 neurons with which they form syn-
apses. This effect lasts for several hours and is known as long-
term potentiation (LTP), a term coined to describe a similar
phenomenon in excitatory connections on hippocampal gran-
ule cells [2]. Conversely, low-frequency stimulation leads to
long-lasting weakening of the same synaptic population
known as long-term depression (LTD) [3]. Together, LTP and
LTD at Schaffer collateral-CA1 synapses constitute the proto-
typical form of synaptic plasticity. The molecular basis of both
LTP and LTD has been vigorously investigated on the assump-
tion that it will uncover general mechanisms employed by
neurons in modifying synaptic strength. This research has
revealed that signalling in a proteinaceous specialisation of
the dendritic spine called the postsynaptic density (PSD) is
central to the induction of both LTP and LTD [4].

The PSD was first observed in electron micrographs as
‘localised regions of thickening and increased density’ [5]
attached to the postsynaptic [6] membrane of excitatory syn-
apses. The thickness of the PSD was first measured at�50 nm
by electron microscopy (EM) of isolated PSDs [7]. EM of thinly
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sectioned hippocampal neurons indicates that a PSD at the
head of a typical ‘thin’ dendritic spine is disc shaped, with a
surface area of �0.07 mm2 and a thickness of �25 nm [8, 9].
The PSD positions glutamate receptors across from pre-
synaptic glutamate release sites, and links the receptors to
intracellular signalling cascades. The structure is a locus for
mutations causing neurological disease and psychiatric dis-
orders [10], underlining its critical role in synaptic trans-
mission and plasticity. For example mutations in the PSD
scaffold proteins Shank2 [11] and Shank3 [12] are associated
with Autism Spectrum Disorders, while mutations in LGI1 and
ADAM22 are related to epilepsy [13]. Investigation of the mol-
ecular basis of frequency-dependent synaptic plasticity in the
Schaffer collateral pathway has revealed some general
mechanisms for synaptic plasticity: entry of Ca2þ into the
PSD through NMDA-type glutamate receptors (NMDARs) is
often a requirement for both LTP [14, 15] and LTD [3, 16],
and trafficking and regulation of the open probability/single-
channel conductance of AMPA-type glutamate receptors
(AMPARs) is fundamental to changes in the strength of many
types of synapse [17]. However, the field awaits a mechanism to
describe how signalling molecules in the PSD can link Ca2þ

entry to both up or down-regulation of AMPAR currents
depending on the pattern of stimulation. As I shall discuss,
a number of signalling proteins are thought to modify AMPAR
currents [18] in response to Ca2þ entry. However,many different
signalling molecules have been implicated, and the PSD is so
complex that it is difficult to be surewhichmolecules constitute
the ‘core program’ [19] for induction of synaptic plasticity.

Linus Pauling opined that ‘It is structure that we look for
when we try to understand anything’ [20]. Structural studies
have been integral to conceptual breakthroughs throughout
the history of neuroscience. Examples include the develop-
ment of neuron theory by Cajal on the basis of characterisation
of the neuronal architecture of the brain using the Golgi
method, and support for chemical transmission through
resolution of the synaptic cleft by EM. Determination of the
layout of ion channels and signalling molecules in the PSD at
high resolution also has the potential to drive conceptual
development. In this review, I shall discuss progress on four
experimental branches that are necessary for a molecular
reconstruction of the PSD (Fig. 1). The complexity of the struc-
ture is such that data integration andmodel building are crucial
for progress, and these topics are also reviewed. Firstly though,
I shall further consider the significance of PSD structure in
research into the molecular basis of synaptic plasticity.

The molecular structure of the PSD
is a blueprint for understanding
synaptic plasticity

Research into the molecular basis of synaptic plasticity has
converged on the regulation of AMPAR phosphorylation by
enzymes that respond to postsynaptic Ca2þ entry. During
LTP, residue Ser831 of GluR1 AMPARs is phosphorylated by
Ca2þ/calmodulin (CaM)-dependent protein kinase II (CaMKII)
and protein kinase C [21, 22], which increases single-channel
conductance [23]. Ser831 phosphorylation is opposed by
phosphatases [21], which are thought to include protein

phosphatase 1 acting downstream of Ca2þ/CaM-activated
protein phosphatase 2B (PP2B) [24]. PP2B also directly
dephosphorylates the cAMP-dependent protein kinase A
(PKA) phosphorylation site Ser845 [21] during LTD, which
both decreases the open probability of AMPARs and
leads to their trafficking out of the PSD. This AMPAR
phosphorylation-centric model [25] of synaptic plasticity is
supported by changes in hippocampal AMPAR phosphoryl-
ation in rats following inhibitory avoidance training [26].

How then can high-frequency tetanic stimulation and low-
frequency stimulation lead to opposite effects when both LTP
and LTD are induced by Ca2þ-sensitive enzymes acting down-
stream of postsynaptic Ca2þ entry? It was suggested that the
direction of synaptic plasticity was dictated by the NMDA
receptor subtype [27] present in a given PSD, but this has
since been refuted [28]. Rather than being determined by the
presence or absence of a particular protein, it is likely that
spatio-temporal subtleties in Ca2þ signals determine the direc-
tion of plasticity. Second messengers, including Ca2þ and
cAMP, are elevated in cellular microdomains [29, 30]; a second
messenger-responsive enzyme will not be activated unless it is
positioned within such a microdomain. Similarly, substrates
must be in proximity to the microdomain or they will not be
acted upon. Three factors that affect whether a second mes-
senger-dependent signalling event falls within a microdomain
are: (i) the size of themicrodomain as determined by the signal
amplitude, for example high-frequency tetanic stimulation
enables maximal Ca2þ entry through NMDARs and thus acti-
vates signalling enzymes over a larger volume; (ii) the position
of enzymes and substrates in relation to the second messenger
generation/entry location, for example the anchoring
protein AKAP79 (AKAP150/AKAP5) positions PKA and PP2B
for bidirectional phosphoregulation of AMPAR GluR1 residue
Ser845 [31, 32]; (iii) the duration of the elevation in second
messenger concentration since the architecture of the signal-
ling microdomain may itself be regulated by the second mes-
senger [33]. Importantly, the Ca2þ/CaM-sensitive enzymes
CaMKII and PP2B are probably positioned at different distan-
ces from the NMDAR mouth in the PSD axiodendritic axis
(Fig. 2), which suggests that PP2Bmay be able to sense smaller
quantities of postsynaptic Ca2þ entry. The significance of
signalling enzyme targeting is underlined by many reports
of protein-protein interactions critical to synaptic plasticity,
including interactions that position CaMKII [34, 35]. Therefore,
to understand synaptic plasticity, it is necessary to determine
how the critical Ca2þ-sensitive signalling enzymes are posi-
tioned relative to Ca2þ entry points and their substrates in the
PSD. Answering this question requires an accurate structural
model of the PSD.

The PSD structure also provides a foundation for under-
standing how synaptic plasticity is expressed following induc-
tion. For example the machinery for endocytosis of AMPARs is
positioned laterally to the PSD and connected to it by direct
protein-protein interactions [36]. Pre-synaptic changes also con-
tribute to the expression of synaptic plasticity [37]. The emphasis
in this review is on understanding the canonical homosynaptic
frequency-dependent form of synaptic plasticity in the Schaffer
collateral pathway. However, PSD structure is also likely to
contribute to the understanding of forms of plasticity that are
pre-synaptically induced, such as in the mossy fibre pathway
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[38, 39], by explaining how signalling processes operate through
PSD proteins that cross the synaptic cleft; and that are induced
by different stimulation protocols, such as spike-timing depend-
ent plasticity [40]. Given that it is critical to form a structural
model of the PSD, the following sections describe the progress
and outlook of four experimental branches that enable the
molecular structure of the PSD to be pieced together (summar-
ised in Fig. 1).

Determination of the molecular
composition of the PSD is fundamental
to its reconstruction

The starting point for assembling a structural model of the PSD
is the identification and quantification of its constituent mol-
ecules. Methods to purify the PSD are an essential component
of such research. PSD purification protocols are predomi-
nantly derived from the Whittaker synaptosome preparation
[41], in which a sucrose gradient is applied to a particulate
brain fraction to purify the nerve endings. PSDs can be isolated
from synaptosomes by extracting the synaptic membranes
with non-ionic detergent [42] such as 1% Triton X-100 [43].

The first PSD proteins were identified by biochemical
characterisation of the most prominent proteins [44] following
SDS-PAGE of purified PSDs, such as CaMKII [45] and the
membrane-associated guanylate kinase (MAGUK) protein
PSD-95 [46]. Latterly, peptide mass fingerprinting by mass
spectrometry (MS) has revealed that a great diversity of differ-
ent proteins are located in the PSD. For example 1,461 proteins
were identified by this approach in PSDs purified from human
neocortex [10]. Comparison of different proteomic efforts
shows that more than 400 proteins are regularly identified
across different PSD preparations [47] by MS fingerprinting.
Membrane receptors and channels, proteins involved in
signalling by protein phosphorylation and scaffold and
anchoring proteins are well represented in the PSD proteome
[48]. Within the scaffold protein subset, proteins containing
PDZ domains are a hallmark of the PSD.

The presence of a large subset of mitochondrial proteins in
the ‘PSD’ proteome [48] is cautionary. While identification of
PSD proteins by MS fingerprinting is extremely sensitive, the
efficacy of the approach is limited by the quality of the initial

PSD purification. Limitations of the current PSD purification
method include: cellular contaminants including mitochon-
dria, loss of PSD proteins in high concentrations of detergent
during the membrane extraction phase and presence of pre-
synaptic proteins via physical association with PSD proteins
that bridge the synaptic cleft. PSD purification methods are
essentially unchanged in over 30 years [10, 42], so there may
be scope for improvement in this area.

Although the number of proteins identified in the PSD
is daunting, the dimensions of the PSD limit the diversity of
proteins that can be accommodated within it. The Matthew’s
coefficient VM, which is used to assess the solvent content of
protein crystals [49], can be used to estimate the mass of the
PSD from its volume. The most commonly observed values
for VM in protein crystals cluster around 2.15 Å3/Da, which
corresponds to 43% solvent content. If we assume that the PSD
is closely packed to the same degree, for a typical PSD with
a volume of �2 GÅ3 the estimated protein mass is 0.93 GDa.
This is consistent with a mass of �1 GDa measured by
scanning EM of purified PSDs [50], suggesting that �15–
20,000 polypeptide chains make up a single PSD.

Some proteins are present at a high-copy number in the
PSD, which simplifies the problem. The MS ‘absolute quanti-
fication’ method, which uses labelled synthetic peptides as
internal standards, has been utilised to determine the con-
centrations of a selection of proteins in PSDs purified from rat
forebrain [51]. CaMKII isoforms were found to constitute �9%
of total PSD protein by this method [51]. These concentrations
can be used to estimate the copy numbers of different proteins
in the PSD – approximately 5,600 copies in the case of
CaMKII [48, 51]. Scaffold proteins are also over-represented,
with �300�PSD-95, 360�SynGAP, 150�Shank isoforms and
20�AKAP79 per PSD [48]. Copy numbers of PSD proteins
determined by both quantitative gel electrophoresis [50]
and a GFP-based calibration technique [52], are generally
consistent with these numbers. Comparative analysis using
cleavable isotope-coded affinity tag MS shows that there are
regional differences in the protein make-up of the PSD. For
example SynGAP and CaMKII are expressed approximately
five-fold more highly in PSDs purified from forebrain com-
pared to cerebellum [51]. Isobaric tagging MS has enabled
comparative analysis of protein expression and phosphoryl-
ation in the murine cortex, midbrain, cerebellum and hippo-
campus [53]. This revealed that protein phosphorylation is
relatively higher in the hippocampus. Regional differences
in PSD composition reflect regional variations in themolecular
mechanisms underlying synaptic plasticity [18]. Nevertheless,
the majority of proteins compared in forebrain and cerebellum
were not expressed at significantly different levels [51]. This

Figure 1. A multi-faceted experimental scheme for solving the struc-
ture of the PSD. Key observations and techniques are listed for four
experimental branches that are enabling determination of the mol-
ecular structure of the PSD.
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suggests that PSDs perform broadly similar functions through-
out the brain.

Developingmethods are useful for determining the stoichi-
ometries of protein subcomplexes present in the PSD. Mass
calculation of intact protein complexes by native MS can be
sufficiently accurate to enable unambiguous stoichiometric
assignment. A PSD subcomplex nucleated by AKAP79 was
measured at 466 kDa by this method, indicating that the
complex consists of two copies of AKAP79, two copies of
CaM, four copies of PKA and four copies of PP2B [54]. The
single-molecule pull-down assay [55], which relies on fluo-
rescence microscopy and can be applied in vivo, is also likely
to be useful in determining the exact stoichiometries of PSD
subcomplexes. Continued characterisation of the PSD pro-
teome by quantitative techniques will facilitate model build-
ing by establishing howmany copies of each PSD protein must
be positioned within global structural models.

The molecular connectivity of the PSD
limits how its molecular components
can be assembled

Order in the PSD arises from specific interactions between
surfaces presented by its constituent molecules. Determining
these interactions is an important step in reconstructing the
PSD. Protein-protein interactions were initially identified in the
PSDby yeast two-hybrid screening. Examples are the interaction
between the C-terminus of NR2B-type glutamate receptors and
the second PDZ domain of PSD-95 [56], and the AKAP79-PP2B
interaction [57]. SynGAP was identified by this approach using
the third PDZ domain of a MAGUK protein as bait [58].

The yeast two-hybrid system is less well suited to identify-
ing lower affinity interactions found in multi-protein com-
plexes in which each protein simultaneously interacts with
multiple proteins. These interactions are a feature of the PSD.

An alternative approach is to immunoprecipitate a given PSD
protein and characterise its co-precipitants. For example a
MAGUK-associated signalling complex containing approxi-
mately 100 proteins can be purified using either the last six
C-terminal amino acids of NR2B as an affinity ligand, or with
anti-NR2B antibodies [59, 60]. The co-immunoprecipitating
proteins are likely to be in proximity to each other.
Immunoprecipitations are often performed using whole brain
lysate. In the case of NMDAR-associated proteins, care must be
taken to distinguish proteins in complex with synaptic and extra
synaptic NMDARs, which have important functional differences
[61]. Variations on the co-immunopreciptation strategy include
the use of low-background tandem affinity purifications, such as
was used to determine PSDproteins in complexwith PSD-95 [62].

Co-immunoprecipitation does not distinguish direct and
indirect interactions. Follow-up experiments with purified
protein and methods to quantify binding thermodynamics
such as isothermal titration calorimetry can differentiate
between the two interaction modes. However, weaker direct
PSD interactions may still evade detection outside of the
context of the PSD. A novel approach is peptide fingerprinting
of cross-linked peptides following trypsinisation of cross-
linked protein complexes [63]. In this method, protein com-
plexes are chemically cross-linked with a cross-linker of a set
linker length prior to trypsinisation. If the spectrometer
detects a molecule corresponding to peptides from two differ-
ent proteins bridged by the cross-linker this indicates that the
cross-linked residues from the two proteins are within a cer-
tain distance in the native structure [64, 65]. The approach has
been applied on a small scale to identify a homomeric dimer-
isation site in AKAP79 in proximity to residues 328–333 [54]. It
could be applied on a larger scale to map interactions in PSD
subcomplexes or within an intact PSD. Analysis of fragmen-
tation patterns in native MS experiments is another avenue for
determining the connectivity of proteins within multi-protein
complexes [66]. These novel MS-centric approaches are likely
to complement the current methods for determining PSD
connectivity in the future.

Electron and super-resolution light
microscopy are revealing PSD
structure at low resolution

EM continues to play an important role in interrogating global
PSD structure, following the first imaging of the PSD by this
method in the 1950s. Structures as small as 3–4 nm in

Figure 2. Laminar organisation of PSD signalling molecules involved
in AMPAR phosphoregulation. Approximate distances are illustrated
from the internal edge of the postsynaptic bilayer in the axodendritic
axis. Distances are derived from immuno-EM [67, 70, 105] studies,
with the exception of the AKAP79 complex, whose position is
approximated on the basis that the N-terminus of AKAP79 binds to
membrane phospholipids [106]. Protein outlines of a MAGUK protein
(SAP97), Homer, the AKAP79 complex and the CaMKII holoenzyme
are approximately to scale [54, 68, 72, 84]. The lateral organisation
of proteins in the diagram is not intended to be realistic.
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diameter can be resolved within 1–1.5 nm-thick virtual sec-
tions following electron tomography of dendritic spines [67].
This approach reveals that ‘vertical’ filaments approximately
5 nm wide and 20 nm long are uniformly spaced throughout
the PSD with a nearest neighbour distance of 13.4 nm. At this
spacing roughly 400 vertical filaments punctuate a PSD
400 nm in diameter. Comparison with single-particle images
of the MAGUK protein SAP97 by EM indicates that the vertical
filaments are approximately the length of an extendedMAGUK
protein [68]. Immunogold labelling studies, and the patchy
loss of vertical filaments [69] in PSD-95 knockdown neurons,
suggests that MAGUK proteins with their N-termini proximal
to the membrane correspond to vertical filaments. Laminar
organisation is a general feature of the PSD, with the peak
concentrations of different proteins at different distances from
the membrane [70] (Fig. 2). Classification of AMPA and NMDA-
type glutamate receptors as well as horizontal and vertical
filaments has enabled construction of a model of the core
filamentous structure of the PSD [67]. PSD horizontal filaments
fall into two morphological classes, which may correspond to
the scaffold proteins GKAP and Shank [67]. Negative stain EM
demonstrates that Shank3 is filamentous [71] and that a 1:1
mixture of purified Homer1b and Shank1C polymerises to form
a network structure. Therefore, Homer and Shank may con-
stitute an important component of the horizontal filament
network [72]. Immunogold labelling also reveals that the
endocytic machinery (AP-2, clathrin and dynamin) is sequen-
tially organised laterally to the PSD in dendritic spines [73].
This suggests that receptors decouple from the PSD prior to
endocytosis in an adjacent functional domain. Additional
ultrastructural features, including filaments linking the PSD
and actin cytoskeleton [74], are visible following high-pres-
sure freezing. This approach likely produces more realistic
images than normal aldehyde fixation.

‘Super-resolution’ light microscopy techniques, based on
single-molecule detection, are contributing to investigations
of PSD ultrastructure [75, 76]. Spatial resolution approaching
20 nm has been achieved using photo-activated localisation
microscopy (PALM) [76] and the related stochastic optical recon-
struction microscopy (STORM) [77]. The axial distributions of
synaptic proteins measured using STORM [77] are broadly con-
sistent with prior immuno-EM studies [70]. Two advantages of
PALM/STORM compared to EMare the ability to observe dynam-
ics and to simultaneously visualise multiple molecules. These
were showcased in a recent study of actin spine dynamics [78].
Quantum dot imaging is another powerful method for following
in vivo dynamics at high resolution, for example this approach
has been applied to show that GluR1 AMPAR mobility is
restricted in active synapses [79]. Super-resolution light micro-
scopy, in tandem with two and three-dimensional EM
approaches, should enable a three-dimensionalmap of constitu-
ent proteins to be assembled at lower resolution.

Analysis of purified protein substructures
reveals PSD structural features at
high resolution

A low-resolution model of the PSD could be drawn up using
information gathered by the techniques outlined in the three

preceding sections. In order to add molecular detail, high
(�3 Å or better) resolution structural information is required.
Progress has been made in determining high-resolution struc-
tures of the proteins that comprise the AMPAR phosphoryl-
ation-centric model of bidirectional synaptic plasticity [49].
The crystal structure of the transmembrane and extracellular
domains of the GluA2 AMPAR has been determined [80]. Crystal
structures of the ligand-binding domains of the NMDAR [81]
provide insights into the arrangement of the receptor subunits.
The structure of the NMDAR pore, which corresponds to the
entry sites of Ca2þ into the PSD, is yet to be determined. The
three-dimensional structures of the globular signalling enzymes
that control the phosphorylation state of AMPA receptors have
been solved [82–85]. These include a crystal structure of the
majority of the PKA holoenzyme in which the cAMP-binding
domains of the RII subunit form multiple contact points with
the catalytic subunit [82]; and the CaMKII holoenzyme structure
showing that the CaM-binding sites are inaccessible in the auto
inhibited kinase dodecamer [84].

High-resolution structures detailing PSD protein-protein
interactions are particularly constructive. MAGUK family
proteins, which simultaneously interact with multiple integral
membrane proteins via PDZ domain interactions, are essential
for the structural integrity of the PSD [69]. The molecular
basis of selective PDZ domain interactions has been
established [86]. Further important interactions that have been
determined at high resolution include the anchoring mechan-
isms for PKA and PP2B. AKAP79 associates with the N-terminal
dimerisation and docking (D/D) domain of PKA RII subunits
through a hydrophobic interface presented by an amphipathic
helix that is conserved in the AKAP family [87, 88]. An
additional structural motif in AKAP79 simultaneously anchors
two copies of PP2B [54]. The anchoring protein contributes the
central strand of a three-stranded b-sheet, in which the outer b-
strands correspond to b-14 strands of PP2B catalytic A subunits
[89, 90]. It can be difficult to obtain high-resolution structures
of full-length anchoring and scaffold proteins, which are gener-
ally too large for nuclear magnetic resonance and lack tertiary
structure elements that favour crystallisation. Crystallising
protein complexes is also challenging. In such cases comp-
lementary techniques including small angle X-ray scattering
[84] and single-particle averaging by EM can generate electron
density maps at a resolution that is at least sufficient to locate
protein subdomains [68]. These approaches may also reveal
large-scale dynamics, for example between the PDZ and SH3-
GK domains of SAP97 [68].

For PSD proteins where no high-resolution structure is
available, structure can potentially be modelled by homology
to proteins of known structure. If not, application of the
battery of approaches detailed above is likely to yield useful
information.

Integration of PSD structural data into
inclusive models will present
functional insights

Francis Crick thought that ‘A good model. . . should serve to
unite evidence from several different approaches’ [91]. In the
case of the PSD, information concerning its structure contin-
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ues to accumulate from different approaches. Perhaps the
greater challenge is uniting the data into a comprehensive
model. The postsynaptic AKAP79 signalling complex [31, 32]
exemplifies on a relatively small scale how different types of
structural information can be integrated. In this case we know
that its interacting proteins include PP2B, PKA and CaM; the
location of its dimerisation site (Fig. 3A); the structures of
associated proteins PKA, PP2B and CaM at high resolution;
and the structures of interfaces between PP2B-CaM (Fig. 3B),
AKAP79-PP2B [89] (Fig. 3C), AKAP79-PKA [87, 88] (Fig. 3D)
and PKA RII and C subunits (Fig. 3E) at high resolution. Given
the stoichiometry of the complex, which was measured using
native MS [54], we can draw up the model shown in Fig. 3F.

The model suggests that the complex is
approximately 20 nm in its longest dimen-
sion, and likely spans the depth of the PSD
(Fig. 2). It also suggests that the Ca2þ/CaM-
sensitive elements of AKAP79 and PP2B
are proximal to the membrane, whereas
the cAMP-binding elements of PKA are
distal to the membrane, with the catalytic
sites of anchored enzymes PKA and PP2B
in-between.

Evidence from different approaches
would enable the model to be improved:
If an electron density map of the complex
could be determined this would allow

docking of the respective crystal structures, as has been
achieved with other multi-protein complexes [92]. Absolute
quantitation MS estimated that approximately 20 copies of
AKAP79 are present per PSD [51]; determination of the location
of these complexes within the PSD by a technique such as
PALM would enable extension of the model to the scale of the
PSD. Finally AKAP79 is known to interact with MAGUK
proteins [93], but this interaction is poorly characterised.
With the molecular basis of this interaction in hand, themodel
could be integrated with structural models of MAGUK proteins
in the PSD. Given that the AKAP79 signalling complex con-
stitutes 788 kD, the presence of �20 copies of AKAP79 per
PSD, and an estimated mass of �1 GDa per PSD, the AKAP79

Figure 3. Structure of the postsynaptic AKAP79 signalling complex. A: AKAP79 homo-
meric cross-linking sites indicate that AKAP79 forms a parallel dimer and that there is likely
to be a dimerisation site in proximity to residues 328–333 [54]. B: Crystal structure of a
complex between PP2B (blue) and CaM (green; PDB ID 2R28) [107]. C: Crystal structure
of the AKAP79 phosphatase anchoring peptide (grey) in complex with two PP2B A subunits
(blue; PDB ID 3LL8) [90]. D: Molecular basis of PKA anchoring to AKAP79. AKAP79
presents an amphipathic helix (grey) for interaction with a hydrophobic face on the PKA RII
D/D domain (pink; PDB ID 2IZX) [87]. E: Crystal structure of a complex between PKA RII
(light red) and C (dark red) subunits (PDB ID 2QVS) [82]. F: The stoichiometry of an intact
2�AKAP79:2�CaM:4�PP2B:4�PKA complex was determined by native mass spectrometry
[54]. In the central model, protein outlines and the scale bar are derived from crystal struc-
tures with the exception of AKAP79, the C-terminal 150 amino acids of PP2B A and the
linker (residues 46–90) between the PKA RII D/D and cAMP-binding domains.
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signalling complex may contribute as much as �1.6% of the
total mass of the PSD. Reconstructing the PSD from discrete
PSD subcomplexes such as the AKAP79 complex is one way to
make PSD complexity more manageable.

Bioinformatics tools and resources can facilitate PSD model
building (Table 1). The Genes to Cognition server details the
content of different PSD proteomes and PSD subcomplexes [10],
and public databases of mammalian protein-protein inter-
actions include the STRING database [94]. The worldwide data-
bank (wwPDB) is valuable for sharing larger models of PSD
structure that incorporate data collected using EM [95]. Freely
available programs for docking crystal structures into electron
density maps [96–98] can assist construction of these models.
There is a general trend inmolecular biology from reductionism
towards synthesis [99] reflected in the burgeoning field of
systems biology. Signalling in the PSD is an appropriate subject
for systems biologists, since the field is at the point where many
different signalling molecules have been implicated but how
they function together is poorly understood.

Computational modelling is an integral part of systems
biology and the field is being driven by the development of
new programs for modelling cellular systems [100]. However,
the most advanced network models will fail to reveal the
underlying biology unless they closely resemble the structures
that determine the attributes of their functional networks
[101]. Therefore, PSD structure can serve as a template
for development and analysis of dynamic models of PSD
signalling. Dynamics are an important consideration when
constructing PSD structural models. Many proteins translo-
cate into and out of the PSD, including AKAP79 [102], and
dynamics within the PSD must also be considered [103]. It is
likely that PSD horizontal and vertical filaments provide a
framework for signalling enzymes of relatively greater mobi-
lity. The rearrangement of signalling microdomains over time
following Ca2þ entry through NMDARs may reposition the key

signalling enzymes CaMKII and PP2B in relation to critical
substrates such as AMPARs. The best dynamic models of PSD
signalling will also account for the effects of changes in
membrane potential [101], such as depolarisation-induced
release of NMDAR Mg2þblock [104]. Better structural models
of the PSD should also provide insight into how mutations of
PSD proteins pathologically affect synaptic signalling [11, 12].

It should be acknowledged that there are limitations to
research targeted at PSD structure. PSDs are not truly unitary,
as demonstrated by the heterogeneity in the composition of
cerebellar and forebrain PSD preparations [51]. Since the
Schaffer collateral pathway is the canonical pathway for syn-
aptic plasticity, it is logical to focus studies of PSD structure on
the PSD located in the dendritic spines of CA1 neurons. It
would be particularly helpful to have quantitative proteomic
information relating to this PSD type. As discussed, PSD
structure is dynamic [33, 78, 79, 102, 103]. One solution to
this complication is to attempt to ‘capture’ the PSD in different
structural states, for example before and after prolonged Ca2þ

elevation.
Finally, one must consider what level of accuracy is

necessary for structural models to become functionally useful.
Francis Crick provided this scientific parable in criticising a
rival’s model: ‘Why then was his model of so little use? . . .The
reason is that his model did not approximate the real thing
closely enough’ [91]. Schematic and topographic models that
are commonly presented in relation to PSD function tend to
bear little similarity to realistic dimensions and often deal with
only a selection of signalling molecules. Such models are
likely to fall into the Crickian category of ‘existence proofs’
that do not lead to the generation of testable theories [91]. We
should continue to improve models that attempt to incorpor-
ate all PSD molecules in three dimensions until they are ‘close
enough’ to reality to generate hypotheses that lead to deeper
functional understanding. Given the progress of research in

Table 1. Bioinformatics for integrating data to develop structural PSD models

Category Tool/resource Capabilities

Databases G2Cdb

STRING
wwPDB

The Genes to Cognition consortium’s database includes proteins identified by mass

spectrometry in complex with the mouse NMDA receptor, present in the mouse

postsynaptic proteome and present in PSDs isolated from human neocortex [10]

Extensive database of known and predicted protein interactions [94]
The Worldwide Protein Data Bank consists of the major international organisations for

archiving macromolecular structural data, including the RCSB PDB. The EM Data Bank is

to join the archive in 2012 [95]
Utilising atomic

coordinates

and electron
density maps

Chimera

CCP4 suite

NORMA

Extensible program for visualisation, analysis and editing of molecular structures,

well suited to handling supramolecular assemblies and manually positioning crystal

structures in electron density maps [96]
Includes programs for atomic model building (Coot) and exploration of macromolecular

interfaces, surfaces and assemblies (PDBePISA) [97]

Automated flexible fitting of high-resolution protein structures into electron-microscopy-

derived electron density maps [98]
Physiological

modeling

CellDesigner

NEURON

Models of gene-regulatory and biochemical networks, based upon differential equations,

are stored using the versatile Systems Biology Markup Language (SBML). Provides support
for graphical model construction [100]

Enables kinetic modelling of ion concentrations, membrane voltage, and ion channels in

compartmentalised neurons [109]

Examples of freely available tools and resources are listed in three categories. Tools for physiological modelling and deep curation of protein-
protein interactions were recently subject to an exhaustive review [108].
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the four areas described in this review, this moment could
soon be upon us.

Conclusions

Evidence from four experimental branches is bringing the
molecular structure of the PSD into focus. MS fingerprinting
and quantitative analysis of PSD proteomes has revealed that,
although a great diversity of proteins are accommodated
within the PSD, some proteins are present at very high-copy
numbers. Novel MS approaches are enabling a shift to a
quantitative description of PSD composition. More systemic
analysis of protein-protein interactions by MS analysis of
cross-linked protein complexes is set to complement current
approaches to characterising PSD protein-protein inter-
actions. Structural proteins have been tentatively assigned
to filaments running vertically and horizontally through the
PSD and PALM/STORM will accelerate characterisation of the
PSD ultrastructure at lower resolution. High-resolution crystal
structures have been determined for several proteins with key
roles in synaptic plasticity such as the NMDAR and CaMKII.
High-resolution structures of PSD subcomplexes are very con-
structive, and progress is being made in this direction assisted
by docking of crystal structures in electron density maps
generated by single-particle averaging cryo-EM and small-
angle X-ray scattering. Development of programs that enable
dynamic systems biology modelling of complex signalling
networks will aid integration of PSD structural data and the
development of new theories to explain the molecular basis of
synaptic plasticity.

As our understanding of themolecular structure of the PSD
improves, it is likely to reveal mechanisms that provide deeper
explanations of molecular processes at the synapse. Most
significantly the structure provides a framework for under-
standing signalling in the induction of bidirectional synaptic
plasticity, which is thought to enable information storage in
the brain. Piecing together PSD structure is a challenge that
should appeal to structural biologists who are redirecting their
research towards the study of multi-protein complexes [101];
and to systems biologists looking to model complex signalling
networks of profound functional importance. The field is at a
transition point, with different types of structural data
approaching synthesis: this is an exciting time to be involved
in structural biology of the PSD.
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