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Abstract: Protein encoding genes constitute a small fraction of mammalian genomes. In addition to
the protein coding genes, there are other functional units within the genome that are transcribed,
but not translated into protein, the so called non-coding RNAs. There are many types of non-coding
RNAs that have been identified and shown to have important roles in regulating gene expression
either at the transcriptional or post-transcriptional level. A number of recent studies have highlighted
that dietary manipulation in mammals can influence the expression or function of a number of classes
of non-coding RNAs that contribute to the protein translation machinery. The identification of protein
translation as a common target for nutritional regulation underscores the need to investigate how
this may mechanistically contribute to phenotypes and diseases that are modified by nutritional
intervention. Finally, we describe the state of the art and the application of emerging ‘-omics’
technologies to address the regulation of protein translation in response to diet.

Keywords: non-coding RNA; gene-diet interaction; omics; epigenetics; epitranscriptome;
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1. Introduction

There is an increasing body of evidence to suggest that nutrition can alter gene expression,
with genes that encode components of the cellular protein translation machinery representing a
common target (for example: tRNA [1–5], ribosomal protein [6,7], rRNA [8–14]). The targeting of this
pathway is perhaps not surprising given that it is the most energy-consuming cellular process and
therefore needs to be tightly coupled to energy availability. Here we will discuss the recent evidence
from animal models for nutritional modulation of the non-coding RNA elements that contribute to this
machinery and the implications of this for associated phenotypes, namely obesity, insulin resistance
and ‘metabolic disease’ (Figure 1).

We focus on the factors which contribute to the RNA structural components of the ribosome
(ribosomal RNA; rRNA) and the small RNAs which direct its site-specific post-transcriptional
modification (small nucleolar RNAs; snoRNAs). In addition to ribosomal components, we discuss
transfer RNAs (tRNAs), which recruit the amino acids to the site of polypeptide synthesis and their
functional cleavage products (tRNA fragments).

Finally, we address the requirement for further investigation into how nutritional modulation of
these components might contribute to disease and outline how the application of a range of recently
developed ‘-omics’ technologies can be applied to elucidate how nutrition can interact with underlying
genetic variation to modulate gene expression at both transcriptional and post-transcriptional levels.
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Figure 1. Summary of current evidence for dietary modulation of non-coding RNAs that contribute
to the protein translation machinery. Dietary interventions have specific effects depending on the
developmental period (indicated with reference to intergenerational life cycle by the solid bar). Studies
of protein restriction are indicated in the red outlined panel. Studies of obesity/high fat diet are
indicated in the green panel. Measured phenotypes are indicated along with the associated non-coding
RNA changes (italics) (rDNA, ribosomal DNA; tRNA, transfer RNA; snoRNA, small nucleolar RNA;
miRNA, microRNA).

2. Nutritionally Sensitive Non-Coding RNA Species that Contribute to the Regulation of
Protein Translation

2.1. Ribosomal RNA (rRNA)

rRNAs encoded by the ribosomal DNA (rDNA) are an indispensable structural and catalytic
component of the ribosome in which they assist selection of messenger RNA (mRNA) molecules
to be translated and catalyse polypeptide bond formation of the amino acids delivered by tRNAs
during protein translation [15]. Mammalian genomes encode hundreds of copies of the rDNA operon,
arranged in tandem arrays on specific chromosomes (for example: 13, 14, 15, 21, and 22 in human) [16],
yet the precise organisation and sequence of these genes is unknown and not included in current
genome assemblies. Transcription of rRNA is prolific, accounting for ~35% of the total in the cell [17].
However, only a fraction of the rDNA copies within a cell are actively transcribed due to epigenetic
regulation [18–22]. Active copies of rDNA display euchromatic characteristics such as little DNA
methylation and the active histone modifications, H3K4 methylation, and H3K9 acetylation. In contrast,
silent copies of rDNA are in compact chromatin associated with DNA methylation and repressive
histone modifications H3K9 and H4K20 methylation [16]. rDNA copies within a single genome are
genetically polymorphic and the number of copies varies between individuals [23–25]. Little is known
about how genetic variation within the rRNA genes may influence ribosome function.

Transcription of rDNA is tightly coupled to both the general cellular metabolism and specific
environmental challenges [12]. Stress conditions including ageing, cancer and viral infection are
associated with reduced rRNA transcription [26]. On the contrary, upregulation of rRNA expression
can be achieved by growth factor stimulation [12,26]. Repression of rRNA was also observed in
response to different dietary interventions including glucose starvation [8–10] and high fat diet [11].
Mutation of genes which encode proteins involved in rRNA biogenesis have been implicated in a
number of human diseases [27]. Given that the rate of ribosome production and thus protein synthesis
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are tightly coupled to cellular growth and proliferation, exquisite control of rRNA expression, the first
step of ribosome biogenesis is therefore fundamental for these processes.

Recently, studies in mice have demonstrated rDNA is a genomic target of early life nutritional
insult which may contribute to lifelong phenotypic consequences. Altered DNA methylation and
transcription of the rRNA genes in offspring of dams fed a protein restricted diet during particular
developmental windows has been shown [13,14]. Diet-induced DNA methylation of rDNA in offspring
of mice subjected to protein restriction from conception to weaning was exclusive to a subset of
rDNA copies within the genome that could be distinguished by a genetic polymorphism within
the rDNA promoter [14]. The extent of DNA methylation at this genetically distinct subset of
rDNA correlated negatively with the amount of growth restriction as measured by weaning weight
induced by the diet [14]. These mice also displayed reduced spontaneous locomotor activity and
reduced glucose-stimulated insulin secretion [14]. Given that birth weight is associated with altered
cardiovascular risk factors [28–31] as well as various type of cancers later in life [32–35], it will be
intriguing to establish if there is a functional link between the extent of diet induced rDNA methylation
and disease risk in this model. Importantly, increased rDNA variant-specific DNA methylation was
also observed in response to both a high fat and an obesogenic ‘Western’ diet from conception to
weaning in the same study [14]. The increased rDNA methylation in this model was independently
validated in a separate study, which further identified that this response was specific to a discreet
period of protein restriction in early life as continual exposure and exclusively post-weaning exposure
did not produce a similar increase in rDNA methylation [5]. These studies identify an interaction
between the rDNA genotype and the early life environment which correlates with a distinct phenotypic
outcome [5,14]. These results are interesting when interpreted in the light of previous studies showing
similar mouse models resulting in altered metabolic phenotypes and increased cardiometabolic disease
in adulthood [36–38].

2.2. Small Nucleolar RNAs (snoRNA)

SnoRNAs are short non-coding RNA molecules of around 60–300 nucleotides in length which are
found mainly in the nucleolus. The well-conserved snoRNA have been reported in a broad variety
of organisms [39,40]. The central function of snoRNAs is direction of 2′-O-ribose methylation and
pseudouridylation of specific rRNA nucleotides [39]. These modifications are important for correct
folding and structural stabilisation of the rRNA [41] and the interaction between rRNAs and other
components of the translational machinery [42] as required for normal ribosome function [43,44].
Outside the nucleoli, snoRNA fragments have been reported to act as precursors for functional
miRNA [45–48] and regulators of alternative splicing [49]. Moreover, upregulation of snoRNAs has
also been reported under various stress conditions [39] and to be dysregulated in cancers [39,50,51],
supporting the physiological relevance of snoRNA function.

Although direct evidence connecting nutrition to changes in snoRNA expression are limited,
a recent study has shown that mice fed a protein-restricted diet from weaning into adulthood have
altered snoRNA composition within their sperm small RNA complement [5]. This, together with the
suggestion that specific snoRNA-targeted sites in the rRNA are modified on some, but not all molecules,
suggests that changes in snoRNA expression could alter the modification profile of rRNA [52].
Alterations in rRNA modification have been implicated in influencing ribosome function [53].
Intriguingly, in lower model organisms, deletion of the rRNA modifying enzyme, (NOP2/Sun RNA
methyltransferase family member 5, NSUN5) induces alterations in protein translation and organism
longevity that only become apparent after a nutritional insult [54]. In mice, the rRNA modifying
enzyme Nucleomethylin (NML) was shown to be associated with high fat diet-induced obesity [11].
These studies indicate both the importance and convergence of control of protein translation and
nutritional modulation of health.
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2.3. Transfer RNA (tRNA)

Transfer RNAs (tRNAs) are the most abundant small non-coding RNA molecules making up
4–10% of all cellular RNA [55]. They are well known for their role in delivering amino acids to the
ribosome to decode the genetic information on the mRNA for protein synthesis [56]. Beyond this
canonical role, tRNAs have also been found to perform additional functions including regulation of
global protein synthesis under amino acid starvation [57].

Recent studies using high-throughput sequencing have identified small non-coding RNA
fragments that are derived from tRNAs [58–60]. These tRNA fragments are generated from site-specific
cleavage of precursor or mature tRNAs by specific ribonucleases and are divided into distinct categories
and sub-categories based on their origin, length, and mapping positions [57,61–63]. One class,
tRNA-derived fragments (tRFs) are small RNAs of about 14–30 nt in length that map to the ends or
the internal region of precursor or mature tRNA [63,64]. A second class of tRNA fragment are tRNA
halves which are generated by specific cleavage in the anticodon loop of a mature tRNA molecule to
produce 30–40 nt 5′ and 3′ fragments. These tRNA fragments display cell-type specific expression and
have important functions, including the regulation of translation through mechanisms that are distinct
to the role of mature tRNAs in amino acid delivery [63–65]. It is however noteworthy that these tRNA
fragments are quite heterogeneous with the multiple possible cleavage sites on the tRNA molecule
and the involvement of different tRNA isoaccetpors and isodecoders.

Numerous tRNA fragment types are elevated under stress conditions, and alteration in their
abundance has been associated with various human diseases including cancer and neurodegenerative
diseases [62,64]. A number of recent studies based on rodent models have shown adult nutrition
influences the relative abundance of specific tRNA fragments in sperm and that this may influence
post-fertilisation gene expression, development, and adult metabolic phenotypes in offspring [2–5].
In the interest of this review, we will focus on reviewing findings involving 5′ tRNA halves which
were shown to be associated with dietary intervention.

Sharma et al. showed that sperm derived from male mice fed a low protein diet display a 2-3-fold
increase in multiple types of 5′ tRNA halves (most notably 5′ halves of tRNA-Gly-CCC/TCC/GCC,
Lys-CTT and His-GTG) and use 5′ halves of tRNA-glycine-GCC as an example [2]. Knock-down of
5′ tRNA-glycine-GCC halves in mouse embryonic stem cells correlated with upregulation of about
70 genes that are naturally highly expressed in pre-implantation embryos [2]. Interestingly, injection
of the small RNA fraction purified from sperm of low-protein fed males (containing increased 5′

tRNA-glycine-GCC halves) reduced the transcript abundance of these same targets in normal two-cell
embryos [2]. Adult offspring of these low-protein fed males had altered expression of the transcript
encoding a cholesterol biosynthesis enzyme (squalene epoxidase) in the liver [2]. This suggests
a mechanistic role for 5′ tRNA-glycine-GCC halves in regulating transcript abundance in early
embryogenesis in a manner which might influence cholesterol metabolism in the adult.

Altered expression profile of a subset of 5′ tRNA halves were also observed in the sperm of
mice fed a high-fat diet [3]. These 5′ tRNA halves displayed altered RNA modifications, including an
increase in 5-methylcytidine (m5C) [3]. This specific tRNA modification is mediated by the enzyme
DNA (cytosine-5)-methyltransferase-like protein 2 (DNMT2), which has been previously implicated in
genetic deletion studies as having a role in paternal transmission of putative ‘epigenetic’ phenotypes
in mice [66]. Injection of small RNA fractions from the sperm of high-fat fed males into normal zygotes
correlated with downregulation of metabolic pathway genes in eight-cell embryos and blastocysts [3].
Adult offspring derived from this technique had altered regulation of glucose homeostasis associated
with downregulation of genes involved in metabolic pathways in pancreatic islets [3]. Another
independent study also found that offspring of obese sires have no overt phenotypes unless fed
a high saturated fat and sugar ‘Western diet’, which led to male offspring having exacerbated fat
deposition, glucose intolerance, hyperinsulinemia and hepatic steatosis [4]. Interestingly, these first
generation offspring which were not fed a Western diet and appeared metabolically normal had
altered miRNA distribution and increased expression of 5′ tRNA halves (derived from tRNA-Gly-GCC,
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Glu-CTC, Val-CAC and His-GTG) in their sperm and produced second generation offspring that were
also hypersensitive to Western diet induced metabolic disease [4].

Taken together, these data indicate that gene regulation in the early embryo can be affected by
paternal diet via sperm tRNA fragments, with potential consequences for embryonic development
and lifetime phenotypes as a result. The molecular mechanisms for how tRNA fragments mediate
these alterations in gene expression are still elusive.

3. ‘Omics’ Approaches

Increasingly, there are a diverse array of ‘-omics’ approaches available to profile the molecular
landscape of choice. These approaches are characterised by being, to some extent, ‘hypothesis neutral,’
that is, to capture all changes that occur in response to an exposure, rather than looking at a particular
predetermined molecular target.

High-throughput sequencing approaches have been developed to profile nucleic acid sequences
(DNA and RNA) in a quantitative manner. With the increased cost-effectiveness of sequencing,
whole-genome sequencing now allows for the high resolution mapping of inter-individual genetic
variation. However, understanding the functional consequences of sequence variation and how
it interacts with environmental factors such as nutrition requires correlating genomic sequence
variation with changes in the expression, structure, and function of gene products. Furthermore,
these relationships are likely to be both cell type and exposure dependent.

RNA sequencing is a well-established technique and has greatly assisted with understanding
how sequence variants can influence the level of transcripts (either mRNA, lncRNA, or small RNAs),
leading to the identification of expression quantitative trait loci (eQTLs) [67]. However, the level of
mRNA for a particular gene does not necessarily reflect the amount of corresponding protein [68].
Given that the ribosome and other factors involved in the regulation of protein translation have been
identified as common targets for nutritional modulation, here we will discuss recently developed
techniques that can be used to profile factors which may influence ribosome structure and function,
as well as protein translation. Integration of these techniques with well-established DNA and RNA
sequencing approaches will be key to creating a more complete understanding of how nutrition and
other environmental factors interact with genetic variation to contribute to phenotypes.

3.1. Understanding the Consequences of Altered Expression and Post-Transcriptional Modification of
Non-Coding RNA Components of the Protein Translation Machinery

As discussed above, there is evidence that both snoRNA expression and tRNA modification
and fragmentation can be altered by diet in mice [2–5], implying that both rRNA and tRNA
post-transcriptional modifications are nutrient sensitive. tRNA and rRNA are the most highly modified
class of RNAs with about 17% and 2% of their nucleotides being modified, respectively [53,69].
These modifications can impact translational control and are implicated in human diseases [53,55].

Some examples in organisms ranging from yeast to human highlight that post-transcriptional
modification of rRNA can impact ribosome function in protein translation and may contribute to
regulatory functions. The importance of rRNA modifications is demonstrated by the genetic loss
of multiple snoRNAs which direct site-specific rRNA modifications causing altered translation
efficiency [70–72], impaired stop codon termination, and shifts in the translated reading frame [44].
While other changes in rRNA pseudouridylation influence translation initiation from internal ribosome
entry sites (IRES) on a specific subset of mRNAs by altering the affinity of the ribosome for these
mRNA structures [42,73,74]. In the case of the N1-specific pseudouridine methyltransferase (EMG1)
gene mutation that underlies the fatal Bowen-Conradi syndrome [75,76], reduced pseudo uridine
methylation is associated with a failure of ribosome small subunit assembly [77,78].

tRNA post-transcriptional modifications have also been shown to influence protein translation.
Modification of uridine at the wobble position (nucleoside 34) modulates the decoding preference
of tRNAs [79], with loss of this modification leading to a reduced rate of protein translation [80].
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A range of tRNA modifications have been genetically linked to developmental and metabolic
disease. Mutation of NOP2/Sun RNA methyltransferase family member 2 (NSUN2), which methylates
cytosine-5 of tRNAs is associated with microcephaly in humans and mice [81], while mutation
of Threonylcarbamoyladenosine tRNA methylthiotransferase (CDKAL1), which catalyses the
2-methylthio-N6-threonylcarbamoyladenosine (ms2t6A) modification of A37 in tRNA-Lys-UUU is
associated with increased risk of type 2 diabetes mellitus in humans and mice [82–84].

These few examples highlight that RNA modifications to the rRNA and tRNA contribute an
additional and possibly regulatory mechanism to translational regulation. However, getting a complete
picture of the landscape of these modifications is currently limited by the lack of methodologies
available to comprehensively map RNA modifications. Here we will discuss techniques to map some
specific modifications conferred through snoRNAs and modifications known to be prevalent in tRNAs.
Identifying the sites and prevalence of these modifications is an important step in understanding their
functional significance.

Pseudo uridine is a highly abundant modified nucleoside found in both rRNA (where its site-specific
modification involves the H/ACA family of snoRNAs) and in tRNA [85]. Pseudouridylation in rRNA
contributes to translational fidelity and regulation of the translation of specific transcripts that contain
internal ribosome entry sites and can undergo cap-independent translation [73]. Recently, two methods
for the profiling of pseudo uridine have been developed, both relying on the stable addition of a
chemical adduct to pseudo uridine, which causes premature termination of the reverse transcriptase
during subsequent library preparation for high-throughput sequencing. These methods allow for the
identification of modified sites, as the termination of the sequencing read is significantly enriched at
sites of modification compared to libraries prepared from untreated RNA [85,86].

The other snoRNA-mediated rRNA modification is ribose 2′-O-methylation (via box C/D
snoRNAs), which has also recently been implicated in modulating the capacity for ribosomes to initiate
translation from internal ribosome entry sites rather than the 7-methylguanylate cap (m7G-cap) [87].
A comparable technique for non-biased mapping of ribose 2′-O-methylation sites has been developed.
This technique relies on the resistance of the phosphodiester bond 3′ to the site of modification to
random alkaline induced fragmentation. Protection from fragmentation leads to under-representation
of sequencing reads that start or end at sites of ribose 2′-O-methylation [88].

tRNA modifications have been implicated in regulating the level of fragmentation in response to
nutritional insults [3]. One of these modifications is 5-methylcytidine [89]. A robust methodology for
the quantitative mapping of this modification in RNA has been developed and is akin to busulfite-based
profiling of 5-methylcytosine in DNA [90]. This technique relies on the resistance of 5-methyl
cytidine residues to deamination by sodium bisulfite, while non-methylated residues are converted.
After reverse transcription and library preparation, methylated residues are read as cytosine, whereas
unmethylated residues are read as thymine. This is used to determine the methylation status of sites
after mapping back to the genome.

There are more than 150 RNA modifications that have been identified, each with a unique set of
biochemical properties [69]. So far, only a limited number of modifications have been successfully
profiled using a high-throughput sequencing based, genome-wide assay. While the techniques that
have been developed represent a significant technological advancement by permitting the identification
of novel sites of modification and the relative quantitation (i.e., the stoichiometry), they cannot
determine the absolute level of modification or the prevalence of co-modification on a single RNA
molecule. The diversity of RNA modifications may mean that obtaining a complete picture of
the RNA modification landscape may remain intractable. However, it will be interesting to see
how improvements in the capacity for direct RNA sequencing technologies to distinguish RNA
modifications will impact this field in the future [91].
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3.2. Understanding the Regulation of Protein Translation by Nutrition

We and others have previously shown that dietary nutrition can influence the expression of distinct
genetic variants of the core protein translation machinery [2,5,14]. However, how these effects impact
the activity of the translational machinery is unknown. To understand the functional consequences
of these diet-induced effects, it is necessary to profile the translatome. The translatome refers to the
entirety of mRNA in a cell that is being translated at a given moment and is inferred through an
enrichment of specific mRNAs with ribosomes. Two unbiased, high throughput sequencing-based
approaches have been developed to date. Both rely on the chemical cross-linking of ribosomes to the
mRNA species that they are actively translating.

Polysome profiling involves size-fractionating the cellular lysate and collecting fractions
containing the small and large ribosome subunits, monosomes, or polysomes. Highly translated
mRNAs are engaged with multiple ribosomes and will be contained in the heavier polysome fraction.
Poorly translated mRNA will be found in the other fractions. The RNA is then extracted from each
fraction and used to prepare high-throughput sequencing libraries. The relative enrichment of specific
mRNA species in each fraction compared to the non-fractionated input material is then determined [92].

An alternative approach that provides higher resolution is ribosome profiling [93]. After cross-
linking, the resulting mRNA-ribosome complexes are digested with nucleases, such that only the
regions of the mRNA that were bound to a ribosome are protected from degradation. These mRNA
fragments are then purified and subjected to deep-sequencing. The density of ribosome footprints
is calculated for each mRNA transcript and normalised to transcript length and abundance in the
original sample.

While translatome profiling technologies provide a snapshot, it is necessary to gain an
understanding of how both genetic variation and nutritional interventions impact the stable proteome
and metabolic status. Quantitative mass-spectrometry based approaches exist to profile proteins
or metabolites. The sensitivity of these techniques is ever-improving, permitting detection of an
increasing proportion of the abundant components of any biological sample. The integration of these
techniques in parallel to the application of the translatome profiling technologies described above
is required to understand the link of changes in translational regulation to cellular and, ultimately,
organismal phenotypes.

4. Summary and Conclusions

It is well established that both genes and environment contribute to health and disease. Here we
highlight that the non-coding RNA molecules involved in protein translation present a common
target of nutritional modulation. The study of such effects has so far been limited to animal models.
This is because even when genetic background is controlled for (e.g., by using inbred mouse strains),
the extent of genetic variation in some of these components (e.g., the genes encoding rRNA) is yet
to be determined comprehensively. This is due to the genes encoding these elements of the protein
translation machinery being present in very high numbers within a single genome. This greatly
reduces the ability to produce accurate assemblies of these genes using the relatively short-read
sequencing technologies commonly applied to study genetic variation. As such, the extent of within
and inter-individual genetic variation within these non-coding RNA is unknown. Even less is known
how both genetic variation and nutritional modulation of these components impact the regulation of
protein translation.

Elucidating nutritional regulation of the protein translation machinery will need to be driven
by animal models in the shorter term due to the limitations of what is known regarding genetic
variation within the key components. However, while long-read sequencing technologies hold
the promise to resolve our capacity to map and then explore genetic diversity at these elements,
a reverse function-over-form approach can be undertaken simultaneously. Integration of the existing
‘-omics’ approaches to study the translatome and proteome will be useful in establishing just how
nutritionally responsive post-transcriptional gene regulation is and what role it might have in directing
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phenotypes, particularly those associated with altered metabolic function, as indicated from studies
to date. While most studies of gene-environment interactions (including the impact of nutrition) to
date have focussed on classic ‘epigenetic’ markers associated with altered gene transcription (e.g.,
DNA methylation), it is highly likely that genetic variation within and nutritional regulation of
the protein translational machinery will impact substantially on how an individual will respond to
nutritional challenges phenotypically. Now that technology exists to explore these processes, we are
posed with an exciting challenge that promises to increase our understanding of how nutrition modifies
developmental outcomes and adult disease risk.
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