
Research Article
Ensemble Deep Learning for Biomedical
Time Series Classification

Lin-peng Jin1,2 and Jun Dong1

1Suzhou Institute of Nanotech and Nanobionics, Chinese Academy of Sciences, Suzhou 215123, China
2University of Chinese Academy of Sciences, Beijing 100049, China

Correspondence should be addressed to Jun Dong; jdong2010@sinano.ac.cn

Received 12 January 2016; Revised 10 April 2016; Accepted 4 May 2016

Academic Editor: Leonardo Franco

Copyright © 2016 L.-p. Jin and J. Dong.This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Ensemble learning has been proved to improve the generalization ability effectively in both theory and practice. In this paper, we
briefly outline the current status of research on it first. Then, a new deep neural network-based ensemble method that integrates
filtering views, local views, distorted views, explicit training, implicit training, subview prediction, and Simple Average is proposed
for biomedical time series classification. Finally, we validate its effectiveness on the Chinese Cardiovascular Disease Database
containing a large number of electrocardiogram recordings. The experimental results show that the proposed method has certain
advantages compared to some well-known ensemble methods, such as Bagging and AdaBoost.

1. Introduction

In the field of pattern recognition, the target of classification
is to construct a decision-making function in nature. We
can obtain the best ones via simple calculation for linear
classification problems, while it is not easy to determine
the best ones for nonlinear classification problems, such as
image recognition and biomedical time series classification.
The processing flow of traditional methods is such that
feature vectors are extracted from raw data first (feature
selection is conducted when necessary), and then a suitable
model based on them is employed for classification. If we
let 𝑓(𝑥) and 𝑔(𝑥) be the corresponding function of these
two parts, the constructed decision-making function can
be written as 𝑔(𝑓(𝑥)). However, with many of the existing
feature extraction technologies and classification algorithms,
we cannot have highly complicated nonlinear functions.
For example, principal component analysis and independent
component analysis are both linear dimensionality reduction
algorithms, the wavelet transformation is a simple integral
transformation, and the Gaussian mixture model is made of
a finite number of Gaussian functions. Therefore, many tra-
ditional methods do not perform very well in hard artificial
intelligence task.

Achieving great success in complicated fields of pattern
recognition in recent years, deep learning [1, 2] is a deep
neural network (DNN) with more than 3 layers, which
inherently fuses “feature extraction” and “classification” into
a signal learning body and directly constructs a decision-
making function. Obviously, its ability to construct nonlinear
functions becomes strong with the increasing number of
layers and neurons, but the number of network weights
that need to be adjusted is significantly increased. On the
other hand, with ensemble learning that combines multiple
classifiers [3], we can also have complicated decision-making
functions. As shown in Figure 1, we can obtain a nonlinear
classification model via seven linear classifiers (the filled
and unfilled regions denote two classes, resp.). In fact, the
constructive mechanism of ensemble learning is the same as
that of support vector machine, which constructs nonlinear
functions by combining multiple kernel functions.

The pioneering work of ensemble learning was done in
1990 [4, 5], which proved that multiple weak learning algo-
rithms could be converted into a strong learning algorithm
in theory, and since then many scholars have carried out
widespread and thorough research. In general, ensemble-
learning algorithms consist of two parts: how to generate
differentiated individual classifiers and how to fuse them,

Hindawi Publishing Corporation
Computational Intelligence and Neuroscience
Volume 2016, Article ID 6212684, 13 pages
http://dx.doi.org/10.1155/2016/6212684

http://dx.doi.org/10.1155/2016/6212684


2 Computational Intelligence and Neuroscience

−1

−1

+1

Figure 1: Ensemble learning.

namely, generation strategies and fusion strategies. Next, we
will provide a brief review of both of them.

There are two kinds of generation strategies, namely, the
heterogeneous type and the homogeneous type. The former
is such that individual classifiers are generated using different
learning algorithms. We will not elaborate on this type since
it is relatively simple. The latter uses the same learning
algorithm, so different settings (such as learning parameters
and training samples) are necessary. Many methods have
been developed for this subject and can be divided into four
categories.

The first way is to manipulate training samples. For
instance, Bagging [7] creates multiple data sets by sampling
with replacement from the original training samples, each of
which is used to train an individual classifier. Boosting [8–10]
is another example, in which the learning algorithm uses a
different weighting or distribution over the training samples
at each iteration, according to the errors of the individual
classifiers. There are also other approaches, such as Cross-
Validated Committees [11],Wagging [12], and Arcing [13]. The
secondway is tomanipulate input features. Random Subspace
[14] generates different randomly selected subsets of input
features and trains an individual classifier on each of them,
while Input Decimation [15] trains the individual classifier
only on the most correlated subset of input features for each
class. There are also other methods, such as Rotation Forest
[16] and Similarity-Based Feature Space [17]. The third way
is to manipulate class labels. For instance, Output Coding
[18–20] decomposes a multiclassification task into a series of
binary-classification subtasks and trains individual classifiers
for them. Class-Switching [21, 22] is another example, which
generates an individual classifier based on randomly chang-
ing the class label of a fraction of the training samples. The
last way is to inject randomness into the learning algorithm.
For example, using the backpropagation (BP) algorithm, the
resulting classifiers can be quite different if neural networks
with different initial weights are applied to the same train-
ing samples [23]. There are also other approaches such as
Randomized First-Order Inductive Learner [24] and Random
Forest [25].

In a word, the core of generation strategies is to make
individual classifiers different (independent errors and diver-
sity), and only when this condition is satisfied can the
classification performance be improved; that is, a good
decision-making function can be constructed. As for fusion
strategies, Major Voting [26] is one of the most popular
methods, in which each individual classifier votes for a
specific class, and the predicted class is the one that collects

the largest number of votes. Simple Average and Weighted
Average [27] are also commonly used. Besides them, one
can also employ other methods to combining individual
classifiers, such as Dempster-Shafer Combination Rules [28],
Stacking Method [29], and Second-Level Trainable Combiners
[30].

Since both deep learning and ensemble learning have
advantages in constructing complicated nonlinear functions,
the combination of the two can better handle hard artificial
intelligence tasks. Deng and Platt [31] adopted linear and
log-linear stacking methods to fuse convolutional, recurrent,
and fully connected DNNs. Xie et al. [32] proposed three
DNN-based ensemble methods, that is, “fusing a series of
classifiers whose inputs are the representation of interme-
diate layers” and “using Major Voting and Stacking Method
to fuse a series of classifiers obtained within a relatively
stable range of epoch.” Zhang et al. [33] presented several
methods for integrating Restricted Boltzmann Machines with
Bagging to construct multiple individual classifiers. Qiu et
al. [34] employed a model of Support Vector Regression
(StackingMethod) to aggregate the outputs from various deep
belief networks. Zhang et al. [35] trained an ensemble of
DNNs whose initial weights were initialized differently and
penalizes the differences between the output of each DNN
and their average output. Huang et al. [36] presented an
ensemble criterion of DNNs based on the reconstruction
error. In conclusion, we can use many existing strategies to
construct a good ensemble of DNNs, such as setting different
architectures, injecting noise, and employing the framework
of AdaBoost [37–41].

In this paper, we propose a novel DNN-based ensemble
method for biomedical time series classification. Based on
the local and distorted view transformations, different types
of digit filters and different validation mechanisms are used
to generate individual classifiers, and “subview prediction”
and “Simple Average” are utilized to fuse them. In what
follows, Section 2 presents our proposed method in detail.
In Sections 3 and 4, the experimental step is described and
the experimental results are reported. Section 5 concludes the
paper.

2. Methodologies

Figure 2 depicts the full process of the proposed method.
First, we utilize different filtering methods to preprocess the
biomedical time series and selectively conduct downsampling
operation and then respectively employ the explicit method
and the implicit method to train two DNNs. In the testing
phase, we independently apply “subview prediction” to two
DNNs first, and then use “Simple Average” to incorporate the
outputs of them.

2.1. Filtering View. In practical application, collected
biomedical time series are often contaminated by interfering
noise. Although we can perform denoising, some useful
information may be lost after doing that. DNNs have the
ability to capture useful information but ignore interfering
noise after learning from a certain number of training



Computational Intelligence and Neuroscience 3

Fi
lte

rin
g 

vi
ew

 A
Fi

lte
rin

g 
vi

ew
 B

D
ow

ns
am

pl
in

g
D

ow
ns

am
pl

in
g

Deep neural network
(explicit training)

Deep neural network
(implicit training)

Subview prediction

Bi
om

ed
ic

al
 ti

m
e s

er
ie

s

Subview prediction

Cl
as

sifi
ca

tio
n

Si
m

pl
e a

ve
ra

ge

Figure 2: Overview of the proposed method.

Channel 2

Channel 1

Channel 3

CU-A1 CU-B1 CU-C1

CU-A2 CU-B2 CU-C2

CU-A3 CU-B3 CU-C3
FC layer

LR layer

1D-Cov 1D-Cov 1D-Cov

1D-Cov

1D-Cov

1D-Cov 1D-Cov

1D-Cov 1D-Cov

Figure 3: Architecture of MCNN.

samples, and an effective strategy for homogeneous ensemble
learning is to make input data different. Therefore, we just
extract different view data from raw biomedical time series.

2.2. Deep Neural Network. At present, DNNs mainly include
convolutional neural networks (CNNs) [42], deep belief
networks [43], and stacked denosing autoencoders [44],
among which CNNs utilize “weight sharing” and “pooling”
to make the number of weights not increase dramatically
when the numbers of input neurons and layers are very large,
so that they can be widely used in various fields of pattern
recognition. However, as a model developed for images,
CNNs perform convolution operations in both horizontal
and vertical directions. It is a reasonable thing to do since
image data are relevant in both directions. However, for
biomedical time serieswithmultiple channels (also organized
as amatrix), directly employing CNNs for classification is not
very appropriate since the data in the horizontal direction
(intrachannel) are relevant while the data in the vertical
direction (interchannel) are independent. For this, the previ-
ous works [6, 45, 46] developed multichannel convolutional
neural networks (MCNNs)which possess better classification
performance.

An example of 3-stage MCNN is shown in Figure 3:
data of each channel go through three different convolution

units (CU) first, and then information from all the channels
is inputted into a fully connected (FC) layer; finally, the
predictive value is outputted by a logistic regression (LR)
layer. Note that a CU consists of a convolutional layer
and a subsampling layer (max-pooling layer) and “1D-Cov”
denotes a one-dimensional convolution operation.

2.3. Explicit Training. The DNN can construct a nonlinear
function when each network weigh is assigned a value.
Obviously, the number of constructed nonlinear functions
becomes large with the increasing number of weights. The
nature of network training is to determine which function
is the best for a given problem. As a most common used
method, the BP algorithm cannot find out a good nonlinear
function unless there are enough training samples. It does not
mean to increase the size of training set really but to increase
the number of training samples presented to the network.
Fortunately, the virtual sample technology is up to this task,
whose core is to perform a transformation on biomedical
time series under the premise of preserving class labels.There
are mainly the local view transformation and the distorted
view transformation. The former is to extract subseries and
the latter is to add distortion (e.g., adding random data with
low amplitude or burst one).



4 Computational Intelligence and Neuroscience

[Algorithm]: Explicit Training
[Input]: Training Samples𝑋 = {(𝑥𝑡[𝑖], 𝑦𝑡[𝑖]), 𝑖 = 1, 2, . . . , 𝑁1}, Validation Samples 𝑉 = {(𝑥V[𝑖], 𝑦V[𝑖]), 𝑖 = 1, 2, . . . , 𝑁2}
[Output]: An DNNModel
Begin

Best = 0
while (!StopCondition)
dW = {0, 0, . . . , 0} //Initialize the weight changes
for 𝑖 = 1 to 𝑁1
𝑥𝑡1[𝑖] = LocalViewTransform(𝑥𝑡[𝑖], rand) //Perform the local view transformation (start from a random position)
𝑥𝑡2[𝑖] = DistortedViewTransform(𝑥𝑡1[𝑖], rand) //Perform the distorted view transformation with high probability
dW = dW + BackPropagation(𝑥𝑡2[𝑖], 𝑦𝑡[𝑖]) //Invoke Backpropagation and accumulate 𝑑𝑊
if (𝑖% 𝑃𝑀𝑎𝑥 == 0) //𝑃𝑀𝑎𝑥 training samples have been presented to the network
UpdateNN(dW) //Adjust the weights
dW = {0, 0, . . . , 0}
𝐶Matrix = {0, 0, . . . , 0} //Initialize the confusion matrix
for 𝑗 = 1 to 𝑁2
𝑥V1[𝑗] = LocalViewTransform(𝑥V[𝑗], fixed) //Perform the local view transformation (start from a particular position)
𝐶Matrix = 𝐶Matrix + Test(𝑥V1[𝑗], 𝑦V[𝑗]) //Test the current DNN model

end
if (Performance(𝐶Matrix) > Best)

Best = Performance(𝐶Matrix)
SaveNN(Model)

end
end

end
end

End

Algorithm 1: Pseudocode of explicit training.

Generally speaking, “explicit training” is adopted to train
a DNN in supervised learning; that is, besides training
samples, there are a small number of independent validation
samples used to evaluate the obtained model during the
training phase. Suppose the size of the biomedical time series
is 𝐶 × 𝐹1 (C is the number of channels; F1 is the number of
data points in each channel) and the number of input neurons
is 𝐶 × 𝐹2 (F2 < F1); the training process can be described
as follows: a random 𝐶 × 𝐹2 subseries is extracted from the
𝐶 × 𝐹1 training sample first (the local view transformation),
and then it is added with some type of distortion with
high probability (the distorted view transformation); finally,
backpropagation is invoked. When PMax training samples
have been presented to the network, the weights will be
adjusted and the current DNN model will be tested by
particular𝐶×𝐹2 subseries extracted from validation samples.
If the accuracy (or other metrics) is the highest up to the
present, the current DNN model will be saved. Afterwards,
the next training sample is chosen to repeat the process.
Algorithm 1 gives the pseudocode of this training method.

2.4. Implicit Training. In “explicit training,” the DNNmodel
is tested by validation samples at regular intervals in order to
avoid overfitting, which also means that the selection of val-
idation samples will significantly influence the classification
performance. However, handpicking representative samples
is not easy and limited by practical conditions in some case.
For this, we develop “implicit training” in this study. As

shown in Algorithm 2, most of the steps are the same as
those shown in Algorithm 1; the main difference lies in the
validation mechanism. When PMax training samples have
been presented to the network, the weights will be adjusted
and the currentDNNmodelwill be tested by particular𝐶×𝐹2
subseries extracted from the training samples, which is used
between two adjacent weight-updating processes. At the end
of every training epoch, the DNN model will be saved if
the total accuracy (or other metrics) is the highest up to the
present.

Someone may think that this method will result in
overfitting, but this is a false judgment. For training, we
extract random subseries and add distortion to them with
high probability; and for validation, we extract particular
subseries and do not add distortion to them. Hence, the
probability of overlap is very small. Of course, we can use
such validation mode only in the situation where the virtual
sample technology is used.

2.5. Subview Prediction. The output of the DNN is a proba-
bility value that ranges from 0 to 1. If the value is about 0.5,
the classification confidence is low. On the other hand, in
the training phase, we utilize the virtual sample technology
including the local view transformation and the distorted
view transformation (collectively called the view transforma-
tion) to increase the number of training samples presented to
the network. With these considerations in mind, we develop
a new testing method called “subview prediction.”



Computational Intelligence and Neuroscience 5

[Algorithm]: Implicit Training
[Input]: Training Samples𝑋 = {(𝑥𝑡[𝑖], 𝑦𝑡[𝑖]), 𝑖 = 1, 2, . . . , 𝑁}
[Output]: An DNNModel
Begin
Best = 0
while (!StopCondition)

dW = {0, 0, . . . , 0} //Initialize the weight changes
𝐶Matrix = {0, 0, . . . , 0} //Initialize the confusion matrix
for 𝑖 = 1 to N
𝑥𝑡1[𝑖] = LocalViewTransform(𝑥𝑡[𝑖], rand) //Perform the local view transformation (start from a random position)
𝑥𝑡2[𝑖] = DistortedViewTransform(𝑥𝑡1[𝑖], rand) //Perform the distorted view transformation with high probability
dW = dW + BackPropagation(𝑥𝑡2[𝑖], 𝑦𝑡[𝑖]) //Invoke Backpropagation and accumulate 𝑑𝑊
if (𝑖% 𝑃𝑀𝑎𝑥 == 0) //𝑃𝑀𝑎𝑥 training samples have been presented to the network
UpdateNN(dW) //Adjust the weights
dW = {0, 0, . . . , 0}
for 𝑗 = 1 to 𝑃𝑀𝑎𝑥 //Training samples used between two adjacent weight-updating processes
𝑥𝑡1[𝑖 − 𝑗 + 1] = LocalViewTransform (𝑥𝑡[𝑖 − 𝑗 + 1],

fixed) //Perform the local view transformation (start from a particular position)
𝐶Matrix = 𝐶Matrix + Test({𝑥𝑡1[𝑖 − 𝑗 + 1], 𝑦𝑡[𝑖 − 𝑗 + 1]}) //Test the current DNN model

end
end

end
if (Performance(𝐶Matrix) > Best)
Best = Performance(𝐶Matrix)
SaveNN(Model)

end
end

End

Algorithm 2: Pseudocode of implicit training.

As shown in Figure 4, the testing process can be described
as follows: 𝑛𝐶 × 𝐹2 subseries which start from 𝑛 different
positions are, respectively, extracted from the 𝐶 × 𝐹1 testing
sample first, and then they are selectively added with a type of
distortion used in the training phase; finally, their predictive
values outputted by the DNN are aggregated by the average
rule (for the sake of simplicity). Note that only one 𝐶 × 𝐹2
subseries is extracted and tested by the DNN in “simple
prediction.”

2.6. Simple Average. Simple Average [27] is employed to fuse
two DNNs in this paper: given M-class data, the predicted
class𝑚 is determined by

𝑚 = argmax
1≤𝑖≤2

{
{
{

1

2

2

∑
𝑗=1

𝑃 (𝑦 = 𝑖 | 𝑐
𝑗
)
}
}
}

, (1)

where 𝑃(𝑦 = 𝑖 | 𝑐
𝑗
), 𝑗 = 1, 2, is the probability value

predicted on the 𝑖th class by the DNN 𝑐
𝑗
. Of course, we can

use other fusion methods, such as Weighted Average [27],
Dempster-Shafer Combination Rules [28], and Second-Level
Trainable Combiners [30].

3. Experimental Setup

In this study, we apply the proposed ensemble method to one
biomedical application, that is, classification of normal and

Local view 2

Local view 1

Distorted view

Deep neural network

Deep neural network

Deep neural network

A
ve

ra
ge

 ru
le

Bi
om

ed
ic

al
 ti

m
e s

er
ie

s

.

.

.

.

.

.

Local view n

Figure 4: Diagram of subview prediction.

abnormal electrocardiogram (ECG) recordings with short
duration. It is useful for telemedicine centers where abnormal
recordings are delivered to physicians for further interpreta-
tion after computer-assisted ECG analysis algorithms filter
out normal ones, so that the diagnostic efficiency will be
greatly increased [47]. However, this classification task is
rather hard due to wild variations in ECG characteristics
among different individuals. Many traditional methods do
not perform well for this subject [48, 49]. In the research
work [6], “low-pass filtering” and “downsampling (from
original 500Hz to 200Hz)” are successively applied to ECG
recordings first, and then one MCNN model is obtained
by “explicit training.” By testing 151,274 recordings from
the Chinese Cardiovascular Disease Database (CCDD) [50],



6 Computational Intelligence and Neuroscience

it achieved the best results up to now. To ensure a fair
comparison, the same ECG dataset is used to evaluate the
performance of the newly proposed method.

3.1. ECG Dataset. The CCDD database consists of 179,130
standard 12-lead ECG recordings with sampling frequency
of 500Hz. After throwing away exception data, we choose
175,943 recordings for the numerical experiments where
the numbers of training samples, validation samples, and
testing samples (nine groups obtained fromdifferent sources)
are 12320, 560, and 163063, respectively. Note that training
samples and validation samples will be combined together
in “implicit training.” These recordings are first processed
using a digit filter, and then a downsampling operation
(from original 500Hz to 200Hz) is conducted. Finally, 8 ×
1900 sampling points are available for each recording. The
Appendix shows the details of the process [6].

3.2. Individual Classifier. To ensure a fair comparison, all
ensemble methods in the numerical experiments employ
MCNNs as individual classifiers. In this study, two different
network architectures, namely, MCNN[A] and MCNN[B],
are used for different purposes. The first one is a 3-stage
MCNN whose parameters are set as follows: the number of
the neurons in the input layer is 8 × 1700 (1 × 1700); the sizes
of three convolution kernels are 1 × 21, 1 × 13, and 1 × 9 (1
denotes the size in the vertical direction; 21 denotes the size
in the horizontal direction), respectively; the sizes of three
subsampling steps are 1 × 7, 1 × 6, and 1 × 6, respectively; the
numbers of three feature maps are 6, 7, and 5, respectively;
the numbers of the neurons in the FC layer and the LR layer
are 50 and 1, respectively. The second one is also a 3-stage
MCNN, whose parameters are set as follows: the number of
the neurons in the input layer is 1 × 1900; the sizes of three
convolution kernels are 1 × 18, 1 × 12, and 1 × 8, respectively;
the sizes of three subsampling steps are 1 × 7, 1 × 6, and 1 × 6,
respectively; the numbers of three featuremaps are 6, 7, and 5,
respectively; the numbers of the neurons in the FC layer and
the LR layer are 50 and 1, respectively.

The local view transformation can be used forMCNN[A],
but it cannot be used for MCNN[B] since the number of
sampling points of an ECG recording is 1 × 1900. As for
the distorted view transformation, it can be used for both
MCNN[A] and MCNN[B]. In this study, random data with
low amplitude (the maximal amplitude is lower than 0.15) is
added to ECG recordings during the training phase, and this
operation (e.g., the distorted view transformation) is ignored
in the testing phase for the sake of simplicity.

Using MCNN[A], 8 × 1700 local segments which start
from the 1st sampling point are extracted (from validation
samples in “explicit training” and from training samples in
“implicit training”) to evaluate the obtainedmodel during the
training phase. And in the testing phase, nine 8 × 1700 local
segmentswhich start from the 1st, 26th, 51st, 76th, 101st, 126th,
151st, 176th, and 201st sampling points are extract froma given
ECG recording if “subview prediction” is used; otherwise,
only one 8 × 1700 local segment which starts from the 1st

sampling point is extracted. Using MCNN[B], we can train
and test neural networks in a traditional manner.

We only employ the BP algorithm of inertia moment
and variable step [51] in supervised learning and its related
parameters are set as follows: the initial step size is 0.02, the
step decay is 0.01 except for the 2nd epoch and the 3rd epoch
(set as 0.0505), PMax is 560, and the maximal number of
training epochs is 500. The experimental platform is based
on an Intel Core i7-3770 CPU @3.4GHz, 8.0G RAM, 64-
bit Window 7 operating system, and the theano-0.6rc [52]
implementation is used.

3.3. Ensemble Method. Bagging [7] and AdaBoost [8] are two
of the most popular and effective ensemble-learning meth-
ods, and they work especially well for unstable learning
algorithms (i.e., small changes in the training data lead to
large changes in the individual classifiers), such as neural
networks and decision tress [53]. In addition, Ye et al.
[54] proposed an ensemble method for multilead ECG that
has excellent classification performance. To demonstrate the
effectiveness of our proposed method, we compare it with
these three ensemble methods. Next, we will provide their
configuration parameters in detail:

(1) ViewEL (e.g., our proposed method): filtering views
A and B in Figure 2 are set as “low-pass filtering”
and “band-pass filtering with passband of 0.5–40Hz”
[55], respectively. Note that there is no problem if
we exchange “low-pass filtering” for “band-pass fil-
tering,” since an effective measure for homogeneous
ensemble learning is to make input data different.
Here, we just make the 1st path consistent with the
research work [6].

(2) AdaBoost: the filtering view is set as “low-pass fil-
tering.” In the training phase, we utilize the explicit
method to train two MCNN[A] models based on
the framework of AdaBoost. In the testing phase, we
apply “subview prediction” to individual classifiers
independently and fuse them afterwards.

(3) Bagging: most of the configuration parameters are the
same as those of AdaBoost. The only difference is that
two MCNN[A] models are obtained based on the
framework of Bagging.

(4) YeC: the filtering view is set as “low-pass filter-
ing.” We utilize the explicit method to train one
MCNN[A] model for each lead, so there are a total
of 8 MCNN[A] models since the incoming ECG
recording contains 8 leads. In the testing phase, we
first apply “subview prediction” to each individual
classifier and then employ the Bayesian approach
(product rule) to fuse them [54].

(5) YeCRaw: most of the configuration parameters are
the same as those of YeC. The only difference is that
we replace MCNN[A] with MCNN[B]. Note that
neither the local view transformation nor “subview
prediction” can be used in this method.



Computational Intelligence and Neuroscience 7

Table 1: Contribution of subview prediction (explicit training).

Dataset Method Sp (%) Se (%) GMean (%) Acc (%) AUC NPV = 95%
TPR (%) FPR (%)

DS1 Simple [6] 88.84 76.95 82.68 85.41 0.9034 63.322 8.217
Subview 89.85 76.81 83.07 86.09 0.9123 71.111 9.227

DS2 Simple [6] 88.63 79.55 83.97 85.99 0.9174 74.389 9.558
Subview 89.92 80.05 84.84 87.05 0.9272 78.879 10.135

DS3 Simple [6] 86.58 77.69 82.01 84.03 0.8972 65.597 8.599
Subview 87.81 78.03 82.77 85.01 0.9074 72.506 9.505

DS4 Simple [6] 82.75 84.81 83.77 83.91 0.9096 0.091 0.011
Subview 83.67 85.09 84.38 84.47 0.9153 0.051 0.004

DS5 Simple [6] 79.52 86.20 82.79 83.23 0.9084 0∗ 0∗

Subview 80.70 86.64 83.62 84.00 0.9144 0 0

DS6 Simple [6] 81.98 84.90 83.43 83.57 0.9101 0.025 0.003
Subview 82.80 85.49 84.13 84.26 0.9169 0 0

DS7 Simple [6] 77.81 84.71 81.19 81.28 0.8905 0.010 0.001
Subview 78.60 85.17 81.82 81.90 0.8964 0 0

DS8 Simple [6] 78.31 84.74 81.47 81.71 0.8913 0 0
Subview 79.46 85.23 82.30 82.51 0.8976 0.020 0.003

DS9 Simple [6] 83.97 75.40 79.57 81.48 0.8661 1.196 0.159
Subview 84.62 76.04 80.22 82.13 0.8778 52.160 6.722

∗We can change the discrimination threshold from 0 to 1 and calculate the corresponding values of Se, Sp, and NPV. As for “0,” it means that the condition of
NPV being equal to 95% cannot be satisfied.

3.4. Performance Metrics. We utilize the following metrics
[56] to evaluate algorithms: specificity (Sp), sensitivity (Se),
geometric mean (GMean), accuracy (Acc), and negative
predictive value (NPV), given by

Sp = TN
TN + FP

,

Se = TP
TP + FN

,

GMean = √Sp × Se,

Acc = TP + TN
TP + TN + FP + FN

,

NPV =
TN

TN + FN
,

(2)

where TN and TP are the number of normal and abnormal
samples correctly classified, respectively, FN is the number of
abnormal samples that are classified as normal, and FP is the
number of normal samples that are classified as abnormal. In
addition, we also utilize related metrics of the ROC (receiver
operating characteristic) curve, including AUC (area under
the ROC curve), TPR (the vertical axis of the ROC curve, e.g.,
“Sp” in this study), and FPR (the horizontal axis of the ROC
curve, e.g., “1-Se” in this study).

4. Results

In this section, we report experimental results on the CCDD
database. There are nine groups of testing samples with

different sources, namely, DS1∼DS9. Besides presenting the
testing results of each group, we will summarize the averages
and the standard deviations of performance metrics for each
algorithm. The metrics GMean takes into consideration the
classification results on both positive and negative classes
[57], while the key technology of the classification of normal
and abnormal ECG recordings with short duration is tomake
TPR under the condition ofNPV being equal to 95% (TPR95)
as high as possible [58]. Therefore, we perform theWilcoxon
signed ranks test [59] to investigate whether the difference
in GMean and TPR95 achieved by different algorithms is
statistically significant. Generally speaking, a 𝑝 value that is
less than 0.05 indicates the difference is significant, and the
smaller the 𝑝 value is, the more significant the difference is.

4.1. Effectiveness Evaluation. We first investigate the con-
tribution of “subview prediction.” From the testing results
presented in Tables 1 and 2, we can see that most of the
performance metrics are increased and the classification
performance is improved regardless of “explicit training” and
“implicit training.” From the results of statistical analysis
summarized in Tables 3 and 4, we know that “subview
prediction” significantly outperforms “simple prediction” in
terms of GMean, no matter which training method we use.
In addition, we also find that both “explicit training” and
“implicit training” have advantages and disadvantages: the
former has higher Se while the latter has higher Sp. From
the perspective of ensemble learning, these two classifiers are
exactly what we want. Next, we present their fusion results in
Tables 5 and 6.



8 Computational Intelligence and Neuroscience

Table 2: Contribution of subview prediction (implicit training).

Dataset Method Sp (%) Se (%) GMean (%) Acc (%) AUC NPV = 95%
TPR (%) FPR (%)

DS1 Simple 91.74 73.25 81.97 86.40 0.9047 64.482 8.368
Subview 92.58 73.52 82.50 87.08 0.9149 71.202 9.239

DS2 Simple 91.73 76.51 83.77 87.30 0.9228 75.336 9.680
Subview 92.45 76.40 84.04 87.78 0.9318 80.983 10.405

DS3 Simple 89.30 74.65 81.64 85.10 0.9030 70.424 9.232
Subview 90.23 74.88 82.20 85.84 0.9112 74.256 9.735

DS4 Simple 87.31 82.30 84.77 84.49 0.9131 0 0
Subview 88.15 82.30 85.18 84.85 0.9192 0 0

DS5 Simple 85.80 82.18 83.97 83.79 0.9067 0 0
Subview 86.78 82.34 84.53 84.31 0.9135 0 0

DS6 Simple 86.98 81.30 84.09 83.90 0.9098 0 0
Subview 88.21 81.60 84.84 84.62 0.9168 0 0

DS7 Simple 83.71 80.09 81.88 81.89 0.8872 0.045 0.012
Subview 84.19 80.46 82.30 82.31 0.8943 0 0

DS8 Simple 83.53 80.40 81.95 81.87 0.8891 0.101 0.013
Subview 84.79 80.97 82.86 82.77 0.8962 0.032 0.004

DS9 Simple 87.07 71.34 78.81 82.51 0.8635 0 0
Subview 87.24 70.91 78.65 82.51 0.8733 0 0

Table 3: Statistical results of different testing methods (explicit training).

Method Sp (%) Se (%) GMean (%) 𝑝 value Acc (%) AUC NPV = 95%
𝑝 value

TPR (%) FPR (%)
Simple [6] 83.16 ± 4.20 81.66 ± 4.20 82.32 ± 1.42 0.0039 83.40 ± 1.68 0.8993 ± 0.02 22.74 ± 33.90 2.95 ± 4.40 0.1953
Subview 84.16 ± 4.28 82.06 ± 4.27 83.02 ± 1.44 — 84.16 ± 1.76 0.9073 ± 0.01 30.53 ± 36.86 3.96 ± 4.78 —

Table 4: Statistical results of different testing methods (implicit training).

Method Sp (%) Se (%) GMean (%) 𝑝 value Acc (%) AUC NPV = 5%
𝑝 value

TPR (%) FPR (%)
Simple 87.46 ± 3.01 78.00 ± 4.15 82.54 ± 1.83 0.0078 84.14 ± 1.91 0.9000 ± 0.02 23.38 ± 35.13 3.03 ± 4.56 0.3125
Subview 88.29 ± 3.00 78.15 ± 4.30 83.01 ± 2.00 — 84.68 ± 1.96 0.9079 ± 0.02 25.16 ± 37.82 3.26 ± 4.90 —

It is observed from the testing results presented in Table 5
that the fusion model always has the highest AUC. From the
statistical results summarized in Table 6, we can see that the
fusion model significantly outperforms the explicit [6] and
implicit (the classification models are obtained by “explicit
training” and “implicit training,” resp., and the results are
based on subview prediction) models in terms of GMean
and all other models in terms of TPR95. All these findings
illustrate the effectiveness of our newly developed generation
and fusion strategies.

4.2. Comparison with Other Methods. We compare the per-
formance of the proposed method (e.g., ViewEL) with that of
YeCRaw,YeC,Bagging, andAdaBoost. From the testing results
presented in Table 7, we can see that ViewEL produced the
best results in many of the performance metrics. From the
results of statistical analysis summarized in Table 8, we know

that ViewEL significantly outperforms YeCRaw and Bagging
in terms of both GMean and TPR95 and YeC in terms of
GMean. Although we cannot say that ViewEL significantly
outperforms AdaBoost in terms of GMean, the 𝑝value is a
little greater than 0.05.

The essential difference between YeC and YeCRaw is
whether the local view transformation and “subview predic-
tion” are used. Table 7 shows that YeC increases almost all the
metrics except Sp and significantly outperforms YeCRaw in
terms of both GMean and TPR95 (the 𝑝 values are 0.0039
and 0.0156, resp.). Likewise, the performance of Bagging and
AdaBoost will be degraded if we remove the view transfor-
mations and “subview prediction” from them, respectively. Of
course, their performance could be improved if the number
of DNN models is increased. For ViewEL, we can also train
multiple individual classifiers to enhance performance using
different validation samples, such as time subseries starting
from other positions and time subseries extracted from some



Computational Intelligence and Neuroscience 9

Table 5: Performance comparison of different classification models.

Dataset Model Sp (%) Se (%) GMean (%) Acc (%) AUC NPV = 95%
TPR (%) FPR (%)

DS1

Explicit [6] 88.84 76.95 82.68 85.41 0.9034 63.322 8.217
Explicit[a] 89.85 76.81 83.07 86.09 0.9123 71.111 9.227
Implicit[a] 92.58 73.52 82.50 87.08 0.9149 71.202 9.239
Fusion 91.81 74.96 82.96 86.95 0.9172 74.063 9.611

DS2

Explicit [6] 88.63 79.55 83.97 85.99 0.9174 74.389 9.558
Explicit[a] 89.92 80.05 84.84 87.05 0.9272 78.879 10.135
Implicit[a] 92.45 76.40 84.04 87.78 0.9318 80.983 10.405
Fusion 91.47 78.27 84.61 87.64 0.9324 81.468 10.468

DS3

Explicit [6] 86.58 77.69 82.01 84.03 0.8972 65.597 8.599
Explicit[a] 87.81 78.03 82.77 85.01 0.9074 72.506 9.505
Implicit[a] 90.23 74.88 82.20 85.84 0.9112 74.256 9.735
Fusion 89.57 76.29 82.66 85.76 0.9122 74.819 9.809

DS4

Explicit [6] 82.75 84.81 83.77 83.91 0.9096 0.091 0.011
Explicit[a] 83.67 85.09 84.38 84.47 0.9153 0.051 0.004
Implicit[a] 88.15 82.30 85.18 84.85 0.9192 0 0
Fusion 86.64 84.18 85.40 85.25 0.9215 0.020 0.005

DS5

Explicit [6] 79.52 86.20 82.79 83.23 0.9084 0 0
Explicit[a] 80.70 86.64 83.62 84.00 0.9144 0 0
Implicit[a] 86.78 82.34 84.53 84.31 0.9135 0 0
Fusion 84.69 84.82 84.76 84.76 0.9187 0 0

DS6

Explicit [6] 81.98 84.90 83.43 83.57 0.9101 0.025 0.003
Explicit[a] 82.80 85.49 84.13 84.26 0.9169 0 0
Implicit[a] 88.21 81.60 84.84 84.62 0.9168 0 0
Fusion 86.31 83.81 85.05 84.96 0.9213 19.835 0.882

DS7

Explicit [6] 77.81 84.71 81.19 81.28 0.8905 0.010 0.001
Explicit[a] 78.60 85.17 81.82 81.90 0.8964 0 0
Implicit[a] 84.19 80.46 82.30 82.31 0.8943 0 0
Fusion 82.08 83.02 82.55 82.55 0.9000 10.769 0.561

DS8

Explicit [6] 78.31 84.74 81.47 81.71 0.8913 0 0
Explicit[a] 79.46 85.23 82.30 82.51 0.8976 0.020 0.003
Implicit[a] 84.79 80.97 82.86 82.77 0.8962 0.032 0.004
Fusion 82.69 83.32 83.00 83.02 0.9011 10.889 0.514

DS9

Explicit [6] 83.97 75.40 79.57 81.48 0.8661 1.196 0.159
Explicit[a] 84.62 76.04 80.22 82.13 0.8778 52.160 6.722
Implicit[a] 87.24 70.91 78.65 82.51 0.8733 0 0
Fusion 86.46 73.37 79.64 82.66 0.8806 53.151 6.850

[a]The classification models are obtained by “explicit training” and “implicit training,” respectively, and the results are based on subview prediction.

Table 6: Statistical results of different classification models.

Model Sp (%) Se (%) GMean (%) 𝑝 value Acc (%) AUC NPV = 95%
𝑝 value

TPR (%) FPR (%)
Explicit [6] 83.16 ± 4.20 81.66 ± 4.20 82.32 ± 1.42 0.0039 83.40 ± 1.68 0.8993 ± 0.02 22.74 ± 33.90 2.95 ± 4.40 0.0156
Explicit[a] 84.16 ± 4.28 82.06 ± 4.27 83.02 ± 1.44 0.1641 84.16 ± 1.76 0.9073 ± 0.01 30.53 ± 36.86 3.96 ± 4.78 0.0156
Implicit[a] 88.29 ± 3.00 78.15 ± 4.30 83.01 ± 2.00 0.0039 84.68 ± 1.96 0.9079 ± 0.02 25.16 ± 37.82 3.26 ± 4.90 0.0078
Fusion 86.86 ± 3.51 80.23 ± 4.49 83.40 ± 1.80 — 84.84 ± 1.82 0.9117 ± 0.02 36.11 ± 34.34 4.30 ± 4.74 —
[a]The classification models are obtained by “explicit training” and “implicit training,” respectively, and the results are based on subview prediction.



10 Computational Intelligence and Neuroscience

Table 7: Performance comparison of different ensemble methods.

Dataset Method Sp (%) Se (%) GMean (%) Acc (%) AUC NPV = 95%
TPR (%) FPR (%)

DS1

YeCRaw 95.61 56.11 73.25 84.21 0.8882 52.663 6.834
YeC 91.44 69.05 79.46 84.98 0.8965 63.302 8.215

Bagging 91.68 73.90 82.31 86.55 0.9081 67.005 8.694
AdaBoost 90.75 75.93 83.01 86.47 0.9116 72.031 9.347
ViewEL 91.81 74.96 82.96 86.95 0.9172 74.063 9.611

DS2

YeCRaw 95.35 58.84 74.91 84.74 0.9010 65.363 8.399
YeC 90.84 70.48 80.01 84.92 0.9028 67.815 8.715

Bagging 91.11 77.31 83.93 87.10 0.9252 77.739 9.988
AdaBoost 90.62 79.01 84.62 87.25 0.9255 79.503 10.215
ViewEL 91.47 78.27 84.61 87.64 0.9324 81.468 10.468

DS3

YeCRaw 94.22 56.82 73.17 83.51 0.8829 55.944 7.349
YeC 89.65 69.59 78.99 83.91 0.8962 67.103 8.797

Bagging 88.91 75.55 81.96 85.09 0.9033 69.965 9.172
AdaBoost 88.13 76.84 82.29 84.90 0.9025 71.536 9.378
ViewEL 89.57 76.29 82.66 85.76 0.9122 74.819 9.809

DS4

YeCRaw 92.51 71.35 81.24 80.57 0.9054 0 0
YeC 86.87 80.21 83.47 83.11 0.9072 0 0

Bagging 85.83 83.60 84.70 84.57 0.9140 0 0
AdaBoost 84.32 84.98 84.65 84.69 0.9172 0.362 0.015
ViewEL 86.64 84.18 85.40 85.25 0.9215 0.020 0.005

DS5

YeCRaw 91.03 73.22 81.64 81.13 0.9039 0 0
YeC 84.29 82.58 83.43 83.34 0.9071 0.184 0.008

Bagging 83.16 84.57 83.86 83.94 0.9106 0 0
AdaBoost 81.58 86.10 83.81 84.09 0.9143 0.149 0.007
ViewEL 84.69 84.82 84.76 84.76 0.9187 0 0

DS6

YeCRaw 92.53 70.79 80.93 80.72 0.9052 0 0
YeC 86.75 80.09 83.35 83.13 0.9069 0 0

Bagging 85.26 83.32 84.29 84.21 0.9134 0.074 0.006
AdaBoost 83.51 85.10 84.30 84.37 0.9158 0.108 0.007
ViewEL 86.31 83.81 85.05 84.96 0.9213 19.835 0.882

DS7

YeCRaw 89.00 71.57 79.81 80.23 0.8885 0 0
YeC 81.93 81.52 81.72 81.72 0.8944 16.324 0.850

Bagging 80.77 82.62 81.69 81.70 0.8916 0 0
AdaBoost 79.46 84.81 82.09 82.15 0.8956 0 0
ViewEL 82.08 83.02 82.55 82.55 0.9000 10.769 0.561

DS8

YeCRaw 89.14 70.49 79.27 79.29 0.8879 0 0
YeC 83.27 80.21 81.72 81.65 0.8910 1.989 0.098

Bagging 81.28 83.02 82.15 82.20 0.8916 8.551 0.410
AdaBoost 80.21 84.72 82.44 82.59 0.8954 0.014 0.001
ViewEL 82.69 83.32 83.00 83.02 0.9011 10.889 0.514

DS9

YeCRaw 92.57 64.06 77.01 84.31 0.8789 49.524 6.382
YeC 86.02 76.90 81.33 83.37 0.8849 54.494 7.039

Bagging 87.42 72.30 79.50 83.03 0.8804 56.669 7.302
AdaBoost 85.71 74.22 79.76 82.38 0.8825 59.061 7.611
ViewEL 86.46 73.37 79.64 82.66 0.8806 53.151 6.850



Computational Intelligence and Neuroscience 11

Table 8: Statistical results of different ensemble methods.

Method Sp (%) Se (%) GMean (%) 𝑝 value Acc (%) AUC NPV = 95%
𝑝 value

TPR (%) FPR (%)
YeCRaw 92.44 ± 2.41 65.92 ± 7.00 77.91 ± 3.42 0.0039 82.08 ± 2.09 0.8936 ± 0.01 24.83 ± 29.75 3.22 ± 3.85 0.0078
YeC 86.78 ± 3.34 76.73 ± 5.50 81.50 ± 1.73 0.0273 83.35 ± 1.18 0.8985 ± 0.01 30.13 ± 31.97 3.75 ± 4.25 0.1289
Bagging 86.16 ± 3.98 79.58 ± 4.78 82.71 ± 1.65 0.0039 84.26 ± 1.82 0.9042 ± 0.01 31.11 ± 35.36 3.95 ± 4.64 0.0391
AdaBoost 84.92 ± 4.23 81.30 ± 4.73 83.00 ± 1.57 0.0547 84.32 ± 1.77 0.9067 ± 0.01 31.42 ± 37.47 4.06 ± 4.86 0.1289
ViewEL 86.86 ± 3.51 80.23 ± 4.49 83.40 ± 1.80 — 84.84 ± 1.82 0.9117 ± 0.02 36.11 ± 34.34 4.30 ± 4.74 —

Table 9: Data distribution.

Dataset Normal Abnormal Total Source
The training samples data944–25693 8800 3520 12320 Shanghai, District #1
The validation samples data944–25693 280 280 560 Shanghai, District #1
The testing samples (DS1) data944–25693 8387 3402 11789 Shanghai, District #1
The testing samples (DS4) data25694–37082 4911 6352 11263 Shanghai, District #2
The testing samples (DS2) data37083–72607 25020 10249 35269 Shanghai, District #3
The testing samples (DS3) data72608–95829 16210 6508 22718 Shanghai, District #4
The testing samples (DS5) data95830–119551 10351 12948 23299 Shanghai, District #5
The testing samples (DS6) data119552–141104 9703 11529 21232 Shanghai, District #6
The testing samples (DS7) data141105–160913 9713 9831 19544 Shanghai, District #7
The testing samples (DS8) data160914–175871 6944 7781 14725 Shanghai, District #8
The testing samples (DS9) data175872–179130 2289 935 3224 Suzhou, District #1

part of training samples in “implicit training.” However,
besides classification performance, we should also take into
consideration the computational efficiency since the DNN
is a model with high complexity. In practical applications
(telemedicine centers), an effective ensemble method with
less number of individual classifiers is needed.

5. Conclusion

The current work proposes a novel DNN-based ensemble
method that uses multiple view-related strategies, such as the
view transformations, “implicit training,” and “subview pre-
diction.” Experiment results on the CCDD database demon-
strate that the proposed method is effective for biomedical
time series classification. Furthermore, we compare it with
some well-known methods for the classification of nor-
mal and abnormal ECG recordings. Our proposed method
achieves comparable or better classification results than those
by the others.

It is worth noting that this study just presents a new
research idea for ensemble learning, and we can incorporate
more strategies into Figure 2, such as wavelet-transformation
views, compressive sensing view, class-switching technology,
andmisclassification cost.Those are all research tasks we will
do in the future.

Appendix

Each ECG recording in the Chinese Cardiovascular Dis-
ease Database is approximately 10∼20 seconds in duration
and contains 12 leads, namely, I, II, III, aVR, aVL, aVF,

V1, V2, V3, V4, V5, and V6, where II, III, V1, V2, V3,
V4, V5, and V6 are orthogonal, while the remaining four
can be linearly derived from them. We obtained these
data from different hospitals (i.e., real clinical environ-
ment) in Shanghai and Suzhou successively. Cardiologists
gave the diagnostic conclusion of each recording, which
may contain more than one disease type. We used hex-
adecimal coding (form of “0xdddddd”) to encode disease
types which are divided into three grades, including 12
one-level types (e.g., invalid, normal, sinus rhythm, atrial
arrhythmia, junctional rhythm, ventricular arrhythmia, con-
duction block, atrial hypertrophy, ventricular hypertrophy,
myocardial infarction, ST-T change, and other abnormities),
72 two-level types, and 297 three-level types. More details
can be seen on our website (http://58.210.56.164:88/ccdd or
http://58.210.56.164:66/ccdd).

In numerical experiments, we first throw away the invalid
ECG recordings and the ones whose duration is less than
9.625 seconds. Then, a data segment of 9.5 s seconds that
only contains eight orthogonal leads is extracted from an
ECG recording after ignoring the first 0.125 s. Finally, each
recording has 8 × 1900 sampling points at the sampling
frequency of 200Hz. We regard a recording as normal if the
diagnostic conclusion is “0 × 020101” or “0 × 020102” or “0 ×
01”; otherwise, it is regarded as abnormal. Table 9 summarizes
the detail information.

The recordings from “data 944–25693” used as training
samples are as follows: 4520–4584, 4586–4613, 4615– 4652,
4654–4761, 4763–4967, 4969–4972, 4975–5146, 5148, 5151–
5279, 5281–5300, 5302–5348, 5350–5540, 5542–5568, 5570–
5713, 5715–5777, 5779, 5781–5792, 5794–5974, 5976–6074,
6076–6118, 6120–6127, 6129–6134, 6136–6206, 6208–6281,



12 Computational Intelligence and Neuroscience

6283–6441, 6443–6502, 6504–6538, 6540–6654, 6656–6997,
6999–7005, 7007–7012, 7014– 7060, 7062–7451, 7453–7506,
7508–7531, 7533–7594, 7596–7642, 7644–7732, 7734–7739,
7741–7829, 7831–7887, 7889–7939, 7941–7946, 7948–7956,
7980–8064, 8066–8108, 16556–17045, 17047–17128, 17407–
17422, 17424–17454, 17456–17928, 17930–17933, 17935–17955,
17957–18093, 18095–18258, 18260–18441, 18443–18538, 18540–
18562, 18565–18642, 18644–18814, 18816–18817, 18819–18984,
18986–19327, 19329–19439, 19441– 19647, 19649–19657, 19659–
19852, 19854–20173, 20175–20700, 20702–20881, 20883–
21252, 21254–21301, 21303–21586, 21588–21815, 21817–21865,
21867–21889, 21891–21986, 21988–22149, 22151–22226, 22228–
22462, 22464–22623, 22625–22793, 22795–22935, 22937–
23032, 23034–23038, 23040–23043, 23045–23067, 23069–
23268, 23270–23587, 23589–23611, 23613–23973, 23975–
24108, 24110–24646, 24648, 24650–24775, 24777–24820,
24822–24962, 24964–25201, 25203–25282, 25284–25301,
25303–25330, 25332–25457, 25459– 25495, 25497–25606, and
25608–25691.

The recordings from “data 944–25693” used as validation
samples are as follows: 4176–4278, 4362–4413, 4415–4519,
7957–7979, 17129–17389, and 17391–17406.

There are nine groups of testing samples, namely, DS1∼
DS9, which were obtained from hospitals located at different
districts in Shanghai and Suzhou. DS1 consists of the remain-
ing recordings from “data 944–25693,” while other groups
contain all the valid recordings from the corresponding
dataset, respectively.

Competing Interests

The authors declare that there are no competing interests
regarding the publication of this paper.

References

[1] G. E. Hinton and R. R. Salakhutdinov, “Reducing the dimen-
sionality of data with neural networks,” Science, vol. 313, no.
5786, pp. 504–507, 2006.

[2] Y. Bengio, “Learning deep architectures for AI,” Foundations
and Trends in Machine Learning, vol. 2, no. 1, pp. 1–27, 2009.

[3] Z. H. Zhou, “Ensemble Learning,” in Encyclopedia of Biometrics,
pp. 270–273, Springer, Berlin, Germany, 2009.

[4] L.K.Hansen andP. Salamon, “Neural network ensembles,” IEEE
Transactions on Pattern Analysis and Machine Intelligence, vol.
12, no. 10, pp. 993–1001, 1990.

[5] R. E. Schapire, “The strength of weak learnability,” Machine
Learning, vol. 5, no. 2, pp. 197–227, 1990.

[6] L. P. Jin and J. Dong, “Deep learning research on clinical electro-
cardiogram analysis,” Science China Information Sciences, vol.
45, no. 3, pp. 398–416, 2015.

[7] L. Breiman, “Bagging predictors,”Machine Learning, vol. 24, no.
2, pp. 123–140, 1996.

[8] Y. Freund and R. E. Schapire, “A decision-theoretic generaliza-
tion of on-line learning and an application to boosting,” Journal
of Computer and System Sciences, vol. 55, no. 1, part 2, pp. 119–
139, 1997.

[9] H. Drucker, C. Cortes, L. D. Jackel, Y. LeCun, and V. Vapnik,
“Boosting and other ensemble methods,” Neural Computation,
vol. 6, no. 6, pp. 1289–1301, 1994.

[10] R. E. Schapire, “A brief introduction to boosting,” in Proceedings
of the 16th International Joint Conference onArtificial Intelligence
(IJCAI ’99), pp. 1401–1406, Stockholm, Sweden, August 1999.

[11] B. Parmanto, P.W.Munro, andH. R. Doyle, “Reducing variance
of committee prediction with resampling techniques,” Connec-
tion Science, vol. 8, no. 3-4, pp. 405–426, 1996.

[12] E. Bauer and R. Kohavi, “An empirical comparison of vot-
ing classification algorithms: bagging, boosting, and variants,”
Machine Learning, vol. 36, no. 1, pp. 105–139, 1999.

[13] L. Breiman, “Prediction games and arcing classifiers,” Neural
Computation, vol. 11, no. 7, pp. 1493–1517, 1999.

[14] T. K. Ho, “The random subspace method for constructing
decision forests,” IEEE Transactions on Pattern Analysis and
Machine Intelligence, vol. 20, no. 8, pp. 832–844, 1998.

[15] K. Tumer and N. C. Oza, “Input decimated ensembles,” Pattern
Analysis & Applications, vol. 6, no. 1, pp. 65–77, 2003.

[16] J. J. Rodŕıguez, L. I. Kuncheva, and C. J. Alonso, “Rotation
forest: a new classifier ensemble method,” IEEE Transactions on
Pattern Analysis and Machine Intelligence, vol. 28, no. 10, pp.
1619–1630, 2006.

[17] E. Pekalska, M. Skurichina, and R. P. W. Duin, “Combining
fisher linear discriminants for dissimilarity representations,”
in Multiple Classifier Systems, vol. 1857 of Lecture Notes in
Computer Science, pp. 117–126, Springer, Berlin, Germany, 2000.

[18] L. I. Kuncheva, “Using diversity measures for generating error-
correcting output codes in classifier ensembles,” Pattern Recog-
nition Letters, vol. 26, no. 1, pp. 83–90, 2005.

[19] R. Anand, K. Mehrotra, C. K. Mohan, and S. Ranka, “Efficient
classification for multiclass problems using modular neural
networks,” IEEE Transactions on Neural Networks, vol. 6, no. 1,
pp. 117–124, 1995.

[20] T. Hastie and R. Tibshirani, “Classification by pairwise cou-
pling,”The Annals of Statistics, vol. 26, no. 2, pp. 451–471, 1998.

[21] L. Breiman, “Randomizing outputs to increase prediction accu-
racy,”Machine Learning, vol. 40, no. 3, pp. 229–242, 2000.

[22] G. Mart́ınez-Muñoz, A. Sánchez-Mart́ınez, D. Hernández-
Lobato, and A. Suárez, “Class-switching neural network ensem-
bles,” Neurocomputing, vol. 71, no. 13–15, pp. 2521–2528, 2008.

[23] J. F. Kolen and J. B. Pollack, “Back propagation is sensitiveto
initial conditions,” in Proceedings of the Conference on Advances
in Neural Information Processing Systems (NIPS ’91), pp. 860–
867, San Francisco, Calif, USA, 1991.

[24] K. M. Ali and M. J. Pazzani, “Error reduction through learning
multiple descriptions,”Machine Learning, vol. 24, no. 3, pp. 173–
202, 1996.

[25] L. Breiman, “Random forests,”Machine Learning, vol. 45, no. 1,
pp. 5–32, 2001.

[26] L. LamandC. Y. Suen, “Application ofmajority voting to pattern
recognition: an analysis of its behavior and performance,” IEEE
Transactions on Systems, Man, and Cybernetics Part A:Systems
and Humans, vol. 27, no. 5, pp. 553–568, 1997.

[27] G. Fumera and F. Roli, “A theoretical and experimental analysis
of linear combiners for multiple classifier systems,” IEEE Trans-
actions on Pattern Analysis and Machine Intelligence, vol. 27, no.
6, pp. 942–956, 2005.

[28] G. Rogova, “Combining the results of several neural network
classifiers,” Neural Networks, vol. 7, no. 5, pp. 777–781, 1994.

[29] D. H. Wolpert, “Stacked generalization,” Neural Networks, vol.
5, no. 2, pp. 241–259, 1992.



Computational Intelligence and Neuroscience 13

[30] R. P. W. Duin and D. M. J. Tax, “Experiments with classifier
combining rules,” in Multiple Classifier Systems, vol. 1857 of
Lecture Notes in Computer Science, pp. 16–29, Springer, 2000.

[31] L. Deng and J. C. Platt, “Ensemble deep learning for speech
recognition,” in Proceedings of the 15th Annual Conference of
the International Speech Communication Association (INTER-
SPEECH ’14), pp. 1915–1919, Singapore, September 2014.

[32] J. J. Xie, B. Xu, and Z. Chuang, “Horizontal and vertical ensem-
ble with deep representation for classification,” in Proceedings of
the International Conference on Machine Learning Workshop on
Representation Learning (ICML ’13), Atlanta, Ga, USA, 2013.

[33] C.-X. Zhang, J.-S. Zhang, N.-N. Ji, and G. Guo, “Learning
ensemble classifiers via restricted Boltzmann machines,” Pat-
tern Recognition Letters, vol. 36, no. 1, pp. 161–170, 2014.

[34] X. H. Qiu, L. Zhang, Y. Ren et al., “Ensemble deep learning
for regression and time series forecasting,” in Proceedings of
the IEEE Symposium on Computational Intelligence in Ensemble
Learning (CIEL ’14), Orlando, Fla, USA, 2014.

[35] X. H. Zhang, D. Povey, and S. Khudanpur, “A diversity-
penalizing ensemble training method for deep learning,” in
Proceedings of the 16th Annual Conference of International
Speech Communication Association, Dresden, Germany, 2015.

[36] W. Huang, H. Hong, K. G. Bian, X. Zhou, G. Song, and
K. Xie, “Improving deep neural network ensembles using
reconstruction error,” in Proceedings of the International Joint
Conference on Neural Networks (IJCNN ’15), pp. 1–7, Killarney,
Ireland, July 2015.

[37] L. Romaszko, “A deep learning approach with an ensemble-
based neural network classifier for black box ICML 2013
contest,” inProceedings of the IEEE 12th International Conference
on Data Mining Workshops, pp. 865–868, Brussels, Belgium,
2012.

[38] I. Hwang, H. Park, and J. Chang, “Ensemble of deep neural
networks using acoustic environment classification for statisti-
cal model-based voice activity detection,” Computer Speech &
Language, vol. 38, pp. 1–12, 2016.

[39] X. Zhou, L. Xie, P. Zhang, and Y. Zhang, “An ensemble of
deep neural networks for object tracking,” in Proceedings of the
IEEE International Conference on Image Processing (ICIP ’14),
pp. 843–847, IEEE, Paris, France, October 2014.

[40] M. Barghash, “An effective and novel neural network ensemble
for shift pattern detection in control charts,” Computational
Intelligence and Neuroscience, vol. 2015, Article ID 939248, 9
pages, 2015.

[41] A. J. C. Sharkey, “On combining artificial neural nets,” Connec-
tion Science, vol. 8, no. 3-4, pp. 299–314, 1996.

[42] Y. LeCun, L. Bottou, Y. Bengio et al., “Gradient-based learning
applied to document recognition,” in Proceedings of the IEEE,
pp. 2278–2324, New York, NY, USA, November 1998.

[43] G. E. Hinton, S. Osindero, and Y.-W. Teh, “A fast learning
algorithm for deep belief nets,”Neural Computation, vol. 18, no.
7, pp. 1527–1554, 2006.

[44] Y. Bengio, P. Lamblin, D. Popovici et al., “Greedy layer-wise
training of deep networks,” in Proceedings of the Advances in
Neural Information Processing Systems (NIPS ’06), pp. 153–160,
Vancouver, Canada.

[45] R. F. Zhang, C. P. Li, and D. Y. Jia, “A new multi-channels
sequence recognition framework using deep convolutional
neural network,” Procedia Computer Science, vol. 53, pp. 383–
390, 2015.

[46] Y. Zheng, Q. Liu, E. Chen, Y. Ge, and J. L. Zhao, “Time series
classification using multi-channels deep convolutional neural
networks,” inWeb-Age InformationManagement, F. Li, G. Li, S.-
W.Hwang, B. Yao, and Z. Zhang, Eds., vol. 8485 of Lecture Notes
in Computer Science, pp. 298–310, 2014.

[47] J. Dong, J. W. Zhang, H. H. Zhu, L. P. Wang, X. Liu, and Z. J.
Li, “Wearable ECG monitors and its remote diagnosis service
platform,” IEEE Intelligent Systems, vol. 27, no. 6, pp. 36–43, 2012.

[48] H. H. Zhu, Research on ECG Recognition Critical Methods
and Development on Remote Multi Body Characteristic Signal
Monitoring System, University of Chinese Academy of Sciences,
Beijing, China, 2013.

[49] L. P. Wang, Study on Approach of ECG Classification with
Domain Knowledge, East China Normal University, Shanghai,
China, 2013.

[50] J.-W. Zhang, X. Liu, and J. Dong, “CCDD: an enhanced
standard ecg database with its management and annotation
tools,” International Journal on Artificial Intelligence Tools, vol.
21, no. 5, Article ID 1240020, 26 pages, 2012.

[51] T. P. Vogl, J. K. Mangis, A. K. Rigler, W. T. Zink, and D. L.
Alkon, “Accelerating the convergence of the back-propagation
method,” Biological Cybernetics, vol. 59, no. 4-5, pp. 257–263,
1988.

[52] Theano documentation [EB/OL], http://deeplearning.net/
software/theano/.

[53] T. Evgeniou, M. Pontil, and A. Elisseeff, “Leave one out error,
stability, and generalization of voting combinations of classi-
fiers,”Machine Learning, vol. 55, no. 1, pp. 71–97, 2004.

[54] C. Ye, B. V. K. Vijaya Kumar, and M. T. Coimbra, “Heartbeat
classification using morphological and dynamic features of
ECG signals,” IEEE Transactions on Biomedical Engineering, vol.
59, no. 10, pp. 2930–2941, 2012.

[55] N. V. Thakor, J. G. Webster, and W. J. Tompkins, “Estimation of
QRS complex power spectra for design of a QRS filter,” IEEE
Transactions on Biomedical Engineering, vol. 31, no. 11, pp. 702–
706, 1984.

[56] X. H. Zhou, N. A. Obuchowski, and D. K. McClish, Statistical
Methods in Diagnostic Medicine, JohnWiley & Sons, New York,
NY, USA, 2nd edition, 2011.

[57] M. Wu and J. Ye, “A small sphere and large margin approach
for novelty detection using training data with outliers,” IEEE
Transactions on Pattern Analysis and Machine Intelligence, vol.
31, no. 11, pp. 2088–2092, 2009.

[58] X. Liu, Atlas of Classical Electrocardiograms, Shanghai Science
and Technology Press, Shanghai, China, 1st edition, 2011.

[59] J. Demsar, “Statistical comparisons of classifiers over multiple
data sets,” Journal of Machine Learning Research, vol. 7, pp. 1–30,
2006.


