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Abstract

Background: Cystic echinococcosis (hydatid disease), caused by the tapeworm Echinococcus granulosus (class
Cestoda; family Taeniidae), is a neglected tropical disease that results in morbidity and mortality in millions of
humans, as well as in huge economic losses in the livestock industry globally. Proteins from the tetraspanin family
in parasites have recently become regarded as crucial molecules in interaction with hosts in parasitism and are
therefore suitable for the development of vaccines and diagnostic agents. However, no information is available to
date on E. granulosus tetraspanin.

Methods: In this study, a uroplakin-I-like tetraspanin (Eg-TSP1) of E. granulosus was cloned and expressed in E. coli.
The immunolocalization of Eg-TSP1 in different life stages of E. granulosus was determined using specific polyclonal
antibody. The antibody and cytokine profiles of mice that immunized with recombinant Eg-TSP1 (rEg-TSP1) were
measured for the immunogenicity analysis of this protein. Additionally, we use RNA interference method to explore
the biological function of Eg-TSP1 in larva of E. granulosus.

Results: Immunofluorescence analysis showed that endogenous Eg-TSP1 mainly localized in the tegument of larvae
and adults. Significantly elevated levels of antibodies IgG1 and IgG2a and of cytokines IFN-γ and IL-12 were observed in
the sera of mice after immunization with rEg-TSP1, suggesting a typical T helper (Th)1-mediated immune response
elicited by rEg-TSP1. On further probing the role of Eg-TSP1 in E. granulosus by RNA interference, we found that a
thinner tegmental distal cytoplasm was induced in protoscoleces treated with siRNA-132 compared to controls.

Conclusions: This is the first report characterizing a tetraspanin from the tapeworm E. granulosus. Our results suggest
that Eg-TSP1 is associated with biogenesis of the tegument and maintenance of structural integrity of E. granulosus and
could therefore be a candidate intervention target for control of hydatid disease.
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Background
Tetraspanins (TSPs) are a superfamily of plasma mem-
brane associated proteins, also known as the trans-
membrane-4-superfamily (TM4SF), which can be
classified into four major subfamilies, including: the CD
family (CD9, CD81, CD 151, etc.); the CD63 family
(CD63, TSPAN31, etc.); the uroplakin family (UPK 1A/
1B); and the retinal degeneration slow (RDS) family
(RDS-ROM) [1]. These proteins usually consist of four
conserved transmembrane domains, cytoplasmic tails at
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the N- and C-termini, a small extracellular loop, and a
large extracellular loop (LEL) containing a Cys-Cys-Gly
motif plus 2–6 additional cysteines [2]. These LELs
have been proven to play a central role in interactions
with several molecules, including the LELs of other tet-
raspanin, which is known as the “tetraspanin web” [3].
Tetraspanins participate in a broad spectrum of cellular
activities, such as cell differentiation, adhesion, motility,
aggregation, cell signaling and sperm-egg fusion [4–6],
and are involved in many pathological processes, in-
cluding cancer metastasis and infections caused by
pathogenic organisms [7–10].
In spite of the importance of tetraspanins, only a small

number have been studied to date [11]. In parasites,
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recent studies show that tetraspanins are associated with
the development, maturation and stability of the tegu-
ment of trematodes, and are involved in the immune
evasion of schistosome [12–16]. Of note, some members
of the tetraspanin family have been targeted as candidate
vaccines against schistosomiasis [17–20], clonorchiasis
[21], alveolar echinococcosis [22–25], and filariasis [26].
For example, inoculation with the LELs of two tetraspa-
nins of S. mansoni (Sm-TSP-1 and Sm-TSP-2) was con-
firmed to significantly decrease the adult worm burdens
and liver egg burdens in experimentally infected mice
[20]. Moreover, a Taenia solium tetraspanin (T24) was
found to be a potential diagnostic candidate, which ex-
hibited excellent sensitivity and specificity in detecting
cases of cysticercosis with two or more viable cysts [27].
Echinococcus granulosus is a causative pathogen of hu-

man and domestic animal hydatid disease, infects ~3 mil-
lion people globally and causes annual losses of US$2
billion in livestock [28, 29]. E. granulosus has recently
been reported to have more tetraspanin genes (30) than
Caenorhabditis elegans (20) and other parasitic nematodes
(≤20) [1, 30]. However, there are no further reports about
the potential roles of tetraspanins in E. granulosus to date.
In this study, we characterized a tetraspanin, Eg-TSP1,

from E. granulosus and investigated its locations in dif-
ferent life cycle stages. The immune mechanism in mice
immunized with the recombinant LEL region of Eg-
TSP1 (rEg-TSP1) was also evaluated by measuring the
levels of IgG and IgG subclasses (IgG1 and IgG2a), and
of cytokines interleukin (IL)-4, IL-10, IL-12 and inter-
feron (IFN-γ). In addition, to further explore the poten-
tial role of Eg-TSP1 in E. granulosus, RNA interference
(RNAi) was employed to suppress the endogenous gene
expression in its larvae (protoscoleces, PSCs) in vitro.
To our knowledge, this is the first report that focuses on
the functional genomics of E. granulosus by means of
RNAi, and the results will provide the foundation for fu-
ture research into prevention and control of hydatid
disease.

Methods
Ethics statement
This study was reviewed and approved by the National
Institute of Animal Health Animal Care and Use Com-
mittee at Sichuan Agricultural University (Ya’an, China;
approval no. 2013–028). All animal experiments were
conducted in accordance with the Regulations for the
Administration of Affairs Concerning Experimental Ani-
mals (approved by the State Council of the People’s Re-
public of China).

Animals
Six- to eight-week-old female specific pathogen free (SPF)
ICR mice were purchased from the Laboratory Animal
Center of Sichuan University (Chengdu, China). A 15-
week-old male New Zealand white rabbit and a 5-month-
old dog of mixed breed were obtained from the Labora-
tory Animal Center of Sichuan Agricultural University.

Parasites
Cysts of E. granulosus were collected from an infected
sheep at a local slaughterhouse in Xining, Qinghai
Province, China. PSCs and cyst wall (including lami-
nated layer and germinal layer) were separated under
sterile conditions and washed in phosphate-buffered sa-
line (PBS). Fresh PSCs were diluted to a concentration
of 2,000 mL−1 and then cultured in complete RPMI 1640
medium (Hyclone) containing 10 % fetal calf serum
(Hyclone), 100 U.mL−1 penicillin G and 100 μg.mL−1

streptomycin (Sigma) at 37 °C in an atmosphere contain-
ing 5 % CO2. Adult worms were collected from a dog
35 days post-infection with 20,000 PSCs.

Bioinformatic analysis
Genome-wide tetraspanins of E. granulosus were down-
load from GeneDB (http://www.genedb.org/) according
to the summary by Tsai et al. [30], and were aligned and
employed for phylogenetic analysis by MEGA software
(version 5.05). Full length E. granulosus TSP1 nucleotide
sequence [GenBank: FJ384717] was downloaded from
GeneDB [31] based on sequence homology with E.
multilocularis TSP1 [GenBank: FJ384717]. Open Read-
ing Frame Finder (http://www.ncbi.nlm.nih.gov/gorf/
gorf.html) and MEGA software were used to analyze
the open reading frame (ORF) and deduce the amino
acid sequence. To find other tetraspanins, the amino
acid sequence of Eg-TSP1 was used for BLAST against
the National Center for Biotechnology Information
(NCBI) database. Multiple sequence alignment was per-
formed using the DNAStar program (Madison WI, USA),
and the aligned full-length amino acid sequences were
employed to build a phylogenetic tree using Mrbayes ver-
sion 3.1.2 [32]. The hypervariable region of the tetraspa-
nins was compared using the Clustal W2 online service.
The molecular weight and transmembrane regions were
predicted using ProtParam (http://web.expasy.org/prot-
param/) and DAS Transmembrane Prediction server
(http://www.sbc.su.se/~miklos/DAS/), respectively.

Cloning, expression and purification of the LEL region of
Eg-TSP1
The total RNA of PSCs was isolated using Trizol reagent
(Invitrogen, Carlsbad, CA, USA) and then reverse tran-
scribed into cDNA using the ThermoScript™ RT-PCR
System for First-strand cDNA Synthesis Kit (Invitrogen).
The nucleotide sequence encoding the LEL domain of
Eg-TSP1 was amplified from cDNA using a sense primer
(5′-CGCGGATCCCCTGATAACCTAAACAAAGC-3′)

http://www.genedb.org/
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containing a BamHI site (underlined) and an antisense
primer (5′-CCCAAGCTTGAGGGTTTTGTTCTCTGC
CAA-3′) containing a HindIII site (underlined). The
PCR products were ligated into the pET32a(+) plasmid
(Novagen, Madison, WI, USA). The recombinant plas-
mid with correct sequence was transformed into Escheri-
chia coli BL21 (DE3) cells (Invitrogen) and subsequently
grown at 37 °C in Luria-Bertani broth containing
50 μg.mL−1 ampicillin. When the OD600nm value of bac-
teria reached 0.6, 1 mM isopropyl-β-D-thiogalactopyran-
oside (IPTG) was added for 5 h induction at 37 °C. The
recombinant protein was harvested from E. coli lysates,
followed by purification with a Ni2+ affinity column
(Bio-Rad, USA) under denaturing conditions in 8 M
urea. The purified protein was refolded by dialysis
against PBS and concentrated using an Amicon Ultra-15
10,000 MWCO centrifugal filters (Millipore, USA), and
then analyzed by SDS-PAGE.

Sera
Mouse anti-PSC sera was produced as described previ-
ously [33] and used for immunoblot analysis. Briefly,
each mouse was inoculated intraperitoneally with
200 μL of a suspension containing 2,000 viable protosco-
leces, and then serum was acquired 9 month later. For
immunolocalization, a rabbit was immunized with a sub-
cutaneous injection of 50 μg.mL−1 of rEg-TSP1 purified
as described above mixed with Freund’s complete adju-
vant (FCA; Sigma, St. Louis, MO, USA), followed by two
booster immunizations (2 weeks apart) using the same
route and dose in Freund’s incomplete adjuvant (FIA;
Sigma). The rabbit was bled 2 weeks after the second
booster immunization. The polyclonal antisera were col-
lected, purified by Protein A affinity chromatography
(Bio-Rad, USA), and stored at −80 °C until use.

Immunoblotting and immunolocalization
For immunoblotting, rEg-TSP1 was run on 12 % SDS-
PAGE and then transferred onto a nitrocellulose mem-
brane. After blocking, the membrane was incubated with
mouse anti-PSC sera (1:200), followed by goat anti-
mouse IgG (H+L) HRP conjugate (1:2,000) (Bio-Rad).
Nitroblue tetrazolium and 5-bromo-4-chloro-3-indolyl
phosphate (NBT/BCIP; USA, Cleveland, OH) were used
as substrates to develop the color reaction. The serum of
non-infected mice was used as a control. The specificity
and sensitivity of rabbit anti-rEg-TSP1 IgG were deter-
mined by western blotting against crude extracts from
PSCs and rEg-TSP1 as described above.
To determine the location of Eg-TSP1, fresh PSCs, cyst

wall (including the laminated layer and germinal layer),
and adult worms were fixed in 4 % paraformaldehyde-
phosphate buffer for 36 h and then embedded in paraffin
after dehydration. Sections were deparaffinated and
rehydrated, and subsequently treated with 0.01 M citrate
buffer (pH 6.0) in a microwave at 700 W for 10 min for
antigen exposure, followed by blocking with 3 % H2O2.
Then these sections were washed and incubated with
purified IgG fractions (diluted 1:200 in PBS) at 4 °C over-
night. The sections were washed and incubated with fluor-
escein isothiocyanate (FITC)-conjugated goat anti-rabbit
IgG (H+L) (Bethyl Laboratories) at 37 °C for 1 h in dark-
ness. After four washes with PBS, sections were examined
under a fluorescence microscope (Nikon, Japan). Antibody
from pre-immunized rabbit was used as negative control.

Immunization experiment
In the immunized group, eight mice were subcutane-
ously injected with rEg-TSP1 (25 μg per animal) mixed
with FCA (Sigma), followed by three boosters separately
performed on days 14, 28 and 42 using the same route
and dose in FIA (Sigma). In the control group, eight mice
were treated in the same way as immunized group with
the replacement of rEg-TSP1 into PBS. Sera were col-
lected for antibody analysis at days 0 (pre-immunization),
14, 28, 42 and 56. Two weeks after the final immunization,
all mice were sacrificed and the spleens were removed
aseptically for cytokine assays.

Antibody assays
The levels of antibodies including IgG, IgM, IgE, and
IgG subclasses against rEg-TSP1 were measured by
ELISA. In brief, 96-well plates were coated with rEg-
TSP1 (2 μg.mL−1) using 100 μL reaction volume at 4 °C
for 14–16 h. After three washes, the plates were blocked
with PBS containing 5 % skimmed milk for 1 h at 37 °C.
The mouse antisera (1: 200) was subsequently added
and incubated for 1 h at 37 °C, followed by HRP-
conjugated goat anti-mouse IgG (1:500), IgM (1:5,000),
IgE (1:5,000), or IgG subclass (IgG1, IgG2a; 1:5,000)
antibodies (Bethyl Laboratories). Antibody binding was
detected at 37 °C with 100 μL of 3,3′,5,5′-tetramethyl-
benzidine (TMB; Tiangen, China) and the reaction was
stopped by adding 100 μL of 2 M H2SO4. ELISA OD
values were measured at 450 nm using a microplate
reader (Thermo Scientific, USA). All samples were run
in triplicate.

Cytokine assays
The cytokine profiles (IL-4, IL-10, IL-12 and IFN-γ) of
immunized mice were measured using quantitative PCR
(qPCR). The amplification primer pairs are shown in
Additional file 1. For amplification, total RNA was iso-
lated from mouse spleens, and first-strand cDNA was
synthesized as described above. All real-time PCR ampli-
fications were carried out in a MiniOpticon thermal cy-
cler (Bio-Rad) in a total volume of 12.5 μL, containing
1 μL of cDNA, 6.25 μL of SYBR® Premix Ex Taq™ II
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(Takara, China), 0.5 μM of each primer, and nuclease
free water. The amplification steps included initial de-
naturation at 95 °C for 30s, followed by 40 cycles of
amplification, each including denaturation at 95 °C for
30 s, annealing at 55.0–59.7 °C for 30 s, and extension at
72 °C for 30 s. The reactions were performed in tripli-
cate, with negative controls. Dissociation curves were
analyzed for each sample to confirm the specific amplifi-
cation. The relative gene expression levels were calcu-
lated using the comparative 2-ΔΔCt method [34] and
normalized with the hypoxanthine phosphoribosyl trans-
ferase (HPRT) gene.
RNAi and qPCR
To further investigate the role of Eg-TSP1 protein in the
larval stage of E. granulosus, we knocked down the expres-
sion level using small interfering RNA (siRNA). Three
specific siRNAs were designed to target different CDS re-
gions of Eg-TSP1 (Additional file 2) and were chemically
synthesized by GenePharma Co., Ltd. (Shanghai, China);
and an irrelevant siRNA, that was non-specific to any se-
quence of E. granulosus, was also synthesized as negative
control. For delivery of siRNAs, PSCs were treated with
10 μL of transfection reagent (Engreen Biosystem, China)
plus siRNA at a final concentration of 200 μM in 2.5 mL
culture medium at days 0 and 2. Medium was changed
daily.
To confirm the knockdown effect of RNAi in PSCs,

the transcription level of Eg-TSP1 was determined by
qPCR. Approximately 2,000 PSCs were collected for
total RNA isolation and cDNA synthesis 24 h after the
final siRNA delivery. The qPCR primer pairs of Eg-TSP1
and elongation factor 1 alpha (EF1α, an optimized
housekeeping gene in Echinococcus spp. [35]) were given
in Additional file 1. All amplifications were performed as
described above, except for the annealing temperatures:
53.2 °C for Eg-TSP1 and 57.8 °C for EF1α. qPCR was
conducted in triplicate and Eg-TSP1 transcript levels
were calculated by 2-ΔΔCt analysis.
TEM analysis
For transmission electron microscope (TEM) analysis,
PSCs were treated with Eg-TSP1-specific and irrelevant
siRNAs for 4 days at 37 °C in an atmosphere containing
5 % CO2. Then, PSCs were fixed with 3 % glutaraldehyde
in 0.1 M PBS for 48 h at 4 °C, followed by post-fixing
using 2 % OsO4. Fixed PSCs were dehydrated in graded
acetones (50–100 %) and embedded in Epon Resin (ProS-
ciTech, Australia). Sections (60 nm) were mounted onto
copper grids, stained with uranyl acetate and lead citrate,
and observed using a TEM (Rigaku, Japan) operated at
75 kV. This experiment was performed in triplicate.
Statistical analysis
All data are presented as mean ± SD. Statistical analyses
were performed with Student’s t-test for comparison be-
tween groups using the software package GraphPad
Prism (www.graphpad.com).

Results
General characteristics of Eg-TSP1
The full-length 792 bp CDS of Eg-TSP1 encoded 263 resi-
dues including the four typical transmembrane regions
(9–32 aa; 70–92 aa; 100–123 aa; and 236–255 aa), the
small extracellular loop (33–69 aa), and the crucial LEL
located in amino acids 124–235. Alignment of the hyper-
variable regions in the LEL of parasite and human tetra-
spanins showed different cysteine distributions (Fig. 1a).
Most of the sequences contained four or six cysteine resi-
dues, while only Sj-TSP1 and Sj-TSP6 had ≥8 cysteine res-
idues. Eg-TSP1 had a six-cysteine motif: CCG…DF…
PXXCC…C…GC. Notably, the residues CCG, the first C
of PXXCC, and GC in this motif were highly conserved.
On searching against the conserved domain database

of NCBI using the amino acid sequence of Eg-TSP1, we
found that there was high homology between Eg-TSP1
and uroplakin-I-like family (Accession: cd03156; E-value:
2.64e-06). Additionally, our Bayesian analysis (Fig. 1b)
showed three distinct branches, including members of
the CD family, uroplakins, and the CD63 family. E.
granulosus Eg-TSP1 belonged to the same clade as Sj-
TSP2/4/5, Em-TSP1 and Sm25. Further, all tetraspanins
of E. granulosus could also be classified into three parts,
and Eg-TSP1 (GeneDB ID: EgrG_000355800.1) together
with a single paralogue (GeneDB ID: EgrG_000355900.1)
(equal to LophDB Cluster ID: EGC00290, http://www.
nematodes.org/NeglectedGenomes/Lopho/; and showed
absence of ESTs in transcriptome data of PSCs [36]) con-
sist of a independent branch belonged to uroplakin family
(see Additional file 3).

Expression, purification and recognition of rEg-TSP1
A 330 bp fragment encoding the LEL of Eg-TSP1 was
amplified from PSCs and this fragment was expressed in E.
coli as a His6-tagged fusion protein with an expected size
of ~32 kDa (Fig. 2). Minus a ~20 kDa epitope tag fusion
peptide, rEg-TSP1 had an approximate molecular mass of
12 kDa, which was similar to the MW of the LEL predicted
in silico. Immunoblotting using sera from mice experimen-
tally infected with E. granulosus showed a single ~32 kDa
band (Fig. 2), indicating that rEg-TSP1 can be recognized
by the mouse specific IgG against E. granulosus.

Localization of Eg-TSP1 in different life cycle stages of E.
granulosus
The localizations of native Eg-TSP1 in PSCs (Fig. 3a, b),
cyst wall germinal layer (Fig. 3c, d), and adult worms
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Fig. 1 Phylogenetic analysis and the cysteine pattern in Eg-TSP1. a The hypervariable region of tetraspanins was aligned and they were grouped
according to their cysteine patterns. The conserved cysteine-motif is summarized and the canonical topologies of disulfide bonds are shown
above the alignment. b A phylogenetic tree was constructed based on the amino acid sequences of parasite and human tetraspanins using the
Bayesian method. Three major monophyletic subfamilies were detected, including the CD family, the CD63 family, and the Uroplakin family. Eg, E.
granulosus; Em, E. multilocularis; Sm, S. mansoni; Sj, S. japonicum; Sh, S. haematobium; Ts, T. solium; Hs, Homo species. GenBank accession numbers:
Em-TSP 1–7 [FJ384717, FJ384718, FJ384719, FJ384720, FJ384721, FJ384722 and FJ384716, respectively]; Sj-TSP 1–6 [AAW26928, AAW24822,
AAW24863, AAP05954, AAW27174 and AAW26326, respectively]; Sm-TSP-1 [AF521093]; Sm-TSP-2 [AF521091]; Sm23 [M34453]; Sj23 [M63706]; Sh23
[U23771]; Sm25 [AF028730]; Sj25 [U77941]; Ts-T24 [AY211879] and Human-TSP1 [NP_005718.2]

Fig. 2 Immune recognition of recombinant and native Eg-TSP1 by
Western blot. Lane 1, SDS-PAGE of purified rEg-TSP1 after dialysis
and concentration; Lane 2 and lane 3, immune recognition of
rEg-TSP1 using sera from E. granulosus infected mice (Lane 2) and
healthy control (Lane 3); Lane 4 and lane 5, western blot analysis
using recombinant Eg-TSP1 (Lane 4) and crude extracts of protoscolexes
(Lane 5) against the purified rabbit anti-rEg-TSP1 IgG. A single band was
detected in each lane with molecular weight of ~32 kDa for
recombinant Eg-TSP1 (partial sequence plus ~20 kDa fusion
peptide) and ~29 kDa for native Eg-TSP1, respectively
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(Fig. 3e, f ) were determined by immunofluorescence
using specific polyclonal antibodies against rEg-TSP1
(Fig. 2). The Eg-TSP1 was located only in the tegument
and invaginated sucker of PSCs. No signals were de-
tected in the germinal layer of cyst walls, or in the non-
cell structural laminated layer (data not shown).
Antibody profiles
To evaluate the levels of specific IgG, IgM, IgE and IgG
subclass (including IgG1 and IgG2a) antibodies to rEg-
TSP1, sera from eight immunized mice were measured
at 0, 14, 28, 42 and 56 days after first vaccination. Com-
pared with the PBS control group, significant IgG re-
sponses were observed after the first immunization in
the group immunized with rEg-TSP1, and the peak was
detected 56 days post-vaccination (Fig. 4a). We did not
find any significant differences in rEg-TSP1-specific IgM
and IgE levels at any time points we studied (data not
shown). To evaluate the IgG isotype profiles induced by
rEg-TSP1, specific IgG1 and IgG2a antibody levels were
measured. Both IgG1 and IgG2a levels were significantly
increased at 14, 28, 42 and 56 days post-immunization
compared to the controls. The IgG2a level was lower
than the IgG1 level at all time points but, interestingly,
the IgG1/IgG2a ratio declined at days 28, 42, and 56 due
to a fast increase in IgG2a (Fig. 4b), suggesting a Th1-
type response tendency.



Fig. 3 Immunolocalization of Eg-TSP1 in the larval and adult stages of E. granulosus. Eg-TSP1 in the protoscolexes (a, b), germinal layer (c, d) and
adult (e, f) was immunofluorescently labeled using specific anti-rEg-TSP1 IgG (a, c and e), or control pre-immune serum (b, d and f), followed by
FITC-conjugated anti-rabbit IgG. Fluorescence-labeled regions are marked with arrows. Teg: tegument; H: hooks

Fig. 4 Serum antibody profiles induced by rEg-TSP1 in mice. Eight mice per group were subcutaneously vaccinated four times with rEg-TSP1 or
PBS mixed with FCA/FIA at 14 day intervals and serum samples were collected via the tail vein for ELISA tests after each vaccination. a Serum IgG
levels of mice vaccinated with rEg-TSP1. Vaccination times are marked with arrows. b Serum IgG subclass levels of mice vaccinated with rEg-TSP1.
The ratio of IgG1/IgG2a were given above the bars. Asterisks indicate statistically significant differences between the rEg-TSP1 and control groups
(P < 0.0001). NS represent not significant. Error bars represent SD
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Fig. 6 Suppression of Eg-TSP1 transcripts in E. granulosus protoscoleces
using different siRNAs. siRNAs were transferred twice to E. granulosus
protoscoleces by soaking. An irrelevant siRNA was used as the control
and three Eg-TSP1-specific siRNAs (siRNA-132, −480 and −540,
respectively) were the experimental samples. Eg-TSP1 transcript
levels were measured by qRT-PCR and normalized using Eg-EF1α
transcripts. Data are presented as the mean ± SD of triplicate
experiments. Statistically significant differences between the
control group and the Eg-TSP1-specific siRNA groups were
determined by Student’s t-test (* P < 0.01; ** P < 0.0001)
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Cytokine response induced by rEg-TSP1
Mouse spleens were used for the detection of cytokine
expression profiles 56 days after vaccination with rEg-
TSP1 or PBS. From the qPCR data (Fig. 5), we clearly
found that the levels of IFN-γ and IL-12 (cytokines of
Th1 cell response) were highly elevated, while IL-4 (a
typical cytokine of Th2 immune response) showed no
difference compared to the control group (P > 0.05).
These observations suggested a Th1 immune response
induced by rEg-TSP1 vaccination. However, a high level
of IL-10 (a Th2 cytokine) was also detected (Fig. 5).

SiRNA mediated knockdown of Eg-TSP1 transcript
SiRNAs (siRNA-132, −480 and −540) were introduced
into PSCs to mediate gene knockdown using two trans-
fections, and caused 64.30 % (P = 0.0001), 46.03 % (P =
0.0028) and 44.93 % (P < 0.0001) decreases in mRNA
transcripts compared to the negative control group, re-
spectively (Fig. 6). The results showed that siRNA-132
was the most efficient siRNA and that the effect of in-
hibition by siRNA was sequence-dependent.

Structural changes in parasites caused by RNAi
To investigate the effect of inhibition of Eg-TSP1 expres-
sion in E. granulosus in vitro, PSCs that were treated
with the most efficient siRNA (siRNA-132) or irrelevant
siRNA were observed by TEM. The tegument structure
of PSCs that were exposed to Eg-TSP1-specific siRNA
was significantly different from that of the control group
soaked in the irrelevant siRNA (Fig. 7). The tegumental
Fig. 5 Relative expression levels of cytokines determined in mice
post-immunization with rEg-TSP1 or PBS. Spleens were isolated at
day 56 from mice subcutaneously immunized with rEg-TSP1 or PBS.
Total RNAs were extracted and then cDNAs were synthesized for
qRT-PCR analysis. *P < 0.001. Boxes represent the interquartile range,
i.e. the middle 50 %, of observations. The dotted line represents the
median gene expression. Whiskers represent the minimum and
maximum observations
distal cytoplasm of PSCs treated with siRNA-132 was
much thinner than that of the controls, with less vesicles
inside.

Discussion
Tetraspanins are transmembrane proteins widely distrib-
uted in eukaryotic organisms [37], involved in many cell
biological processes [38, 39], and that interact with im-
mune molecules from hosts [40], especially specific mol-
ecules such as the major histocompatibility complex
(MHC) II [41, 42]. These interactions tend to downregu-
late host immune responses so that parasites can mask
their nonself status to escape host detection and success-
fully establish infection in the host. Thus, targeting tetra-
spanins via various methods such as monoclonal
antibodies, soluble large-loop proteins or RNAi technol-
ogy, should be therapeutically valuable [43]. Recent stud-
ies on parasite tetraspanins as vaccine candidates have
made great progress and given this protein family an im-
portant status. However, there were no experimental
data about tetraspanins in the zoonotic platyhelminth
pathogen, E. granulosus. In this study, we first character-
ized a uroplakin-I-like tetraspanin on the surface of E.
granulosus and found that it plays a crucial role in the
tegument formation of this parasite.
In this study, the amino acid sequence of Eg-TSP1

showed the classical “CCG” pattern of tetraspanins and
shared high similarity with uroplakin-I-like Sj-TSP2/4/5
[44], suggesting that Eg-TSP1 is another uroplakin-I-like
tetraspanin in platyhelminths and enriches the spectrum



Fig. 7 Ultrastructure of the tegument of E. granulosus protoscoleces treated with Eg-TSP1 siRNA. g: glycocalyx; v: vesicle; dc: distal cytoplasm; C:
parenchyma cell. a The distal cytoplasm in the somal regions of protoscoleces treated with siRNA-132 is observed to be thinner than that in
(b) protoscoleces treated with irrelevant siRNA. Analysis was by transmission electron microscopy (magnifications 10000×)
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of this protein family. Uroplakins Ia and Ib (special tet-
raspanins) specifically bind with their associated (non-
tetraspanin) uroplakins II and IIIa, and together form
two dimensional crystals of 16 nm particles, known as
urothelial plaques, which cover almost the entire apical
surface of the mammalian bladder urothelium, modulat-
ing the urothelial permeability barrier [45, 46], and are
involved in urinary tract infection [47]. However, E.
granulosus is a tapeworm without a bladder and urinary
tract; thus, we can speculate that mammals and cestodes
belong to distinct animal lineages and their tetraspanins
diverged with the divergence of the groups, coming to
be expressed in different tissues and played different
roles [46]. Hence, further exploration of the structure
and function of Eg-TSP1 was required.
We confirmed the localization of Eg-TSP1 in the larval

and adult stages of E. granulosus by immunofluores-
cence, and the results showed that Eg-TSP1 was mostly
present in the tegument. As mentioned previously, E.
granulosus is a cestode devoid of a gut, and the tegu-
ment with microvilli or microtriches constitutes the
principal site of absorption of nutrients and elimination
of waste materials, similar to the gut of animals turned
inside out [48]. Thus, many proteins located on the
tegument of E. granulosus should be contributed to
parasite nutrition. Given the primary function of uropla-
kin in mammals is to regulate cell permeability, we can
speculate that Eg-TSP1 may have a role in managing
flow of materials in and out of the parasite. However, in
this study, we have not excluded the possibility that Eg-
TSP1 is expressed in the ducts of the excretory system
of the parasites, so further detailed analysis should be
done. We did not detect the expression of Eg-TSP1 on
the germinal layer of cyst walls, in contrast to its
homologue TSP1 in E. multilocularis [23]. However,
this result was supported by transcriptome data for E.
granulosus [36], where reads of Eg-TSP1 (LophDB
Cluster ID: EGC00446; http://www.nematodes.org/
NeglectedGenomes/Lopho/) in the cyst wall were also
not detectable. Considering that rEg-TSP1 could be
recognized by the mouse-anti-PSCs serum, it seems
like that Eg-TSP1 interact with host immune system
in the context of secondary infection, when E. granu-
losus cysts were broken.
Dang et al. [23] evaluated protective effects of seven E.

multilocularis tetraspanins on the murine-alveolar echi-
nococcosis model; the recombinant LEL of Em-TSP1 in-
duced the highest cyst lesion reduction rate (87.9 %).
However, a lower cyst lesion reduction rate was detected
when using another immunization strategy [24]. Here,
we measured the levels of antibodies in mice immunized
with rEg-TSP1 and found an increasing rEg-TSP1-
specific IgG level after the second immunization. More-
over, analysis of the IgG1/IgG2a ratio showed a tendency
towards a protective Th1 type of immune response in-
duced by rEg-TSP1. This was confirmed by the signifi-
cantly upregulated levels of splenic IL-12 and IFN-γ and
an unchanged level of IL-4 in the cytokine profile. Of
note, IL-12 is a key cytokine in the development of Th1
immunity and can facilitate Th1 response by enhancing
the secretion of IFN-γ by T cells and NK cells, but plays
an antagonist role in the production of IL-4. Further-
more, IFN-γ is important in protective immune response
against parasite infections since it enhances the secretion
of IgG2a from B lymphocytes [49], thus resulting in a
decrease of the IgG1/IgG2a ratio and triggering the Th1
response. In the case of cystic echinococcosis, IFN-γ was
involved in activation of macrophages for production of
nitric oxide synthase that can induce host defense
against E. granulosus [50]. In addition, a high level of IL-
10 is a hallmark of chronic E. granulosus infection [51].
Here, we detected high-level IL-10 production in mice
after immunization with rEg-TSP1, so we hypothesize
that this cytokine might be involved in the regulation of

http://www.nematodes.org/NeglectedGenomes/Lopho/
http://www.nematodes.org/NeglectedGenomes/Lopho/
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Th2 response and the prevention of a highly polarized
Th1 response in which hosts might tolerate the parasite
infection [52, 53]. Further confirmation of the protective
effect of rEg-TSP1 may require a challenge experiment
in the mouse model.
RNAi has been widely used to knockdown genes in

nematodes and trematodes (reviewed by Maule et al.
[54] and Geldhof et al. [55], respectively), but there are
few reports of RNAi in cestodes except Moniezia
expansa [56] and E. multilocularis [57, 58]. Mizukami
et al. [57] successfully knocked down E. multilocularis
PSC 14-3-3 and elp gene expressions to 21.8 % and
35.5 %, respectively, and demonstrated that the gene
knockdown happened only on siRNA delivery by electro-
poration and not by soaking in siRNA with transfection
reagent. However, in this study, PSCs of E. granulosus
soaked with Eg-TSP1-specific siRNA in transfection re-
agent showed a statistically significant decrease in Eg-
TSP1 gene expression that led to malformation of the
worm tegument, compared to samples treated with an ir-
relevant siRNA. These results suggested a role for Eg-
TSP1 in biogenesis of the tegumental distal cytoplasm and
maintenance of structural integrity. Importantly, they also
demonstrate that soaking is a viable approach, with fewer
cell lesions than electroporation, when transferring siRNA
to PSCs of E. granulosus. The use of RNAi in functional
genomic analysis of E. granulosus will facilitate the decod-
ing of functions of many important genes and contribute
to prevention and control of human and domestic animal
hydatid disease [59].

Conclusion
In conclusion, more and more attention is being paid to
the proteins of the tetraspanin superfamily because of
their wide distribution and crucial biological roles in vari-
ous organisms. In this study, a uroplakin like Eg-TSP1 in
E. granulosus was characterized and exhibited induction
of a notable Th1 type immune response in a mouse
model. Endogenous Eg-TSP1 was mainly expressed on the
tegument of E. granulosus and was involved in mainten-
ance of tegument structural integrity. These results sug-
gest that Eg-TSP1 could be used as an intervention target
for therapy, prevention and control of hydatid disease.

Additional files

Additional file 1: Table S1. Real-time PCR primers involved in this
study.

Additional file 2: Table S2. Sequences of siRNAs.

Additional file 3: Figure S1. Genome-wide phylogenetic analysis of E.
granulosus tetraspanins. All tetraspanins from the genome of E.
granulosus were employed to construct a phylogenetic tree using
neighbor-joining method by MEGA software (version 5.05). The name of
each tetraspanin is the accessing numbers of the gene in GeneDB
(http://www.genedb.org/). The tetraspanins could be classified into 3
distinct branches represent the CD63 family, CD family and Uroplakin
family, respectively. This phylogenetic tree was rooted by the Human-
TSP1 (GenBank ID: NP_005718.2). Note: A total of 30 tetraspanin genes
were reported in E. granulosus genome, but we can not find
“EgrG_001021800.1” throughout the whole genome database.
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