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Abstract

Gastroenteropancreatic (GEP) neuroendocrine neoplasms (NENs) are increasing in both incidence and prevalence. A delay in
correct diagnosis is common for these lesions. This reflects the absence of specific blood biomarkers to detect NENs.
Measurement of the neuroendocrine secretory peptide Chromogranin A (CgA) is used, but is a single value, is non-specific
and assay data are highly variable. To facilitate tumor detection, we developed a multi-transcript molecular signature for
PCR-based blood analysis. NEN transcripts were identified by computational analysis of 3 microarray datasets: NEN tissue
(n = 15), NEN peripheral blood (n = 7), and adenocarcinoma (n = 363 tumors). The candidate gene signature was examined in
130 blood samples (NENs: n = 63) and validated in two independent sets (Set 1 [n = 115, NENs: n = 72]; Set 2 [n = 120, NENs:
n = 58]). Comparison with CgA (ELISA) was undertaken in 176 samples (NENs: n = 81). 51 significantly elevated transcript
markers were identified. Gene-based classifiers detected NENs in independent sets with high sensitivity (85–98%), specificity
(93–97%), PPV (95–96%) and NPV (87–98%). The AUC for the NEN gene-based classifiers was 0.95–0.98 compared to 0.64 for
CgA (Z-statistic 6.97–11.42, p,0.0001). Overall, the gene-based classifier was significantly (x2 = 12.3, p,0.0005) more
accurate than CgA. In a sub-analysis, pancreatic NENs and gastrointestinal NENs could be identified with similar efficacy (79–
88% sensitivity, 94% specificity), as could metastases (85%). In patients with low CgA, 91% exhibited elevated transcript
markers. A panel of 51 marker genes differentiates NENs from controls with a high PPV and NPV (.90%), identifies
pancreatic and gastrointestinal NENs with similar efficacy, and confirms GEP-NENs when CgA levels are low. The panel is
significantly more accurate than the CgA assay. This reflects its utility to identify multiple diverse biological components of
NENs. Application of this sensitive and specific PCR-based blood test to NENs will allow accurate detection of disease, and
potentially define disease progress enabling monitoring of treatment efficacy.
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Introduction

Although previously considered rare, gastroenteropancreatic

neuroendocrine neoplasms (GEP-NENs) are common (incidence:

3.6/100,000), occurring as frequently as testicular tumors,

Hodgkin’s disease, gliomas and multiple myeloma [1] and are

estimated to have a prevalence of 35/100,000 [2]. They represent

a significant clinical issue since 50–70% are metastatic at diagnosis

and there is a paucity of effective therapy. Two common agents,

everolimus and sunitinib, only increase progression free survival by

,6 months, while somatostatin analogs have a marginal impact.

The lack of sensitive and robust biomarkers to establish diagnosis,

assess disease progress and monitor treatment efficacy has been

identified as key unmet needs [3].

Strategies includingstagingat surgery,pathologicalgrading,blood

Chromogranin A (CgA) measurements, detection of circulating

tumor cells (CTCs)orother products e.g. serotoninare currentlyused

[1]. Their utility is highly variable and often insensitive for small

tumors or metastasis detection, may require tissue and depends on

non-standardized tests. Despite that CgA has been proposed as a

marker of disease and tool for evaluating treatment efficacy [4], it is

not FDA-accepted as a supportable biomarker [5]. This reflects

limitations in sensitivity, specificity and reproducibility.

Identification of a peripherally accessible, molecular fingerprint

using PCR-amplification of target genes, has successfully been

undertaken in other cancers e.g., breast and colon. In the former, this

is used in prognosis, identification of metastasis and recurrence,

prediction of therapy response and metastasis-free survival for node-

negative, untreated primary cancers [6,7]; for the latter, utility has

been determined for staging [8]. We report the initial assessment of

our hypothesis that a neoplasia-associated circulating signature is

identifiable in GEP-NENs and can be used to accurately identify

disease. We have previously evaluated tissue-derived gene markers

for GEP-NENs [9–11] and demonstrated their utility for detecting

NEN malignancy [12]. In this study, we extended this strategy

developing a blood-based PCR test using REMARK (REporting of

tumor MARKer studies) criteria [13] to detect circulating mRNAs

that facilitate GEP-NEN diagnosis and management.

Materials and Methods

Detailed methods are available in the online supplement

including computational analyses, collection methodology, sam-
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pling and handling. All samples were collected and analyzed

according to an IRB protocol (Yale University School of

Medicine). The protocol was specifically approved for this study.

Written consent was obtained from all study participants.

In silico Identification of 51 Marker Genes
Human cancer and normal tissue microarray datasets were

obtained (ArrayExpress database [14]). Two GEP-NEN gene

expression datasets were analyzed (GEP-NEN-A, GEP-NEN-B).

The former included small intestinal tissue (n = 3; macroscopically

normal mucosa collected at surgery), primary GEP-NENs (n = 6),

and metastatic GEP-NENs (n = 3) [15]; the latter, normal ileal

mucosa (n = 6), primary midgut NENs (n = 3), and liver metastases

(n = 3) [16]. Additionally, a compendium of public cancer

microarray datasets (three hepatocellular carcinoma (HCC)

datasets [Alcohol-HCC (n = 65 arrays), Viral-HCC (n = 124

arrays), and Progression-HCC (n = 75 arrays)]; breast (n = 86

arrays, colon (n = 47 arrays, and prostate (n = 154 arrays) cancer

profiles and normal human tissue arrays (n = 158 arrays)] were

analyzed (Table S1).

Thereafter, we examined gene expression in peripheral blood.

For this, fourteen samples (controls: n = 7; GEP-NENs: n = 7) were

examined. Samples were processed using the Applied Biosystems

Tempus Spin RNA Isolation t Kit (RNA quality .1.8 A260:280

ratio, RIN.7.0). RNA was hybridized on Affymetrix platforms

[11,12] and analysis performed as described previously [17].

Details of the microarray analyses and gene identification

including normalization using Robust Multi-array Average (RMA)

[18], identifying probes and mapping to Ensembl gene identifiers,

assessment of gene co-expression network inferences, network

partitioning and functional enrichment analyses [19] are included

in the Supplemental methods. This computational approach

(Figure 1, Figure S2) resulted in the identification of 75

candidate genes. Preliminary screening detected 51 marker genes

which were then included in the current study.

RNA Isolation and cDNA Synthesis from Peripheral Blood
Training set: Transcripts (mRNA) were isolated from 130 blood

samples (controls: n = 67; GEP-NENs: n = 63) using the mini blood

kit (Qiagen: RNA quality .1.8 A260:280 ratio, RIN.5.0) with

cDNA produced using the High Capacity Reverse transcriptase kit

(Applied Biosystems: cDNA production 2000–2500ng/ul).

Independent Validation sets: Two sets were used: the first included

115 samples (controls: n = 43; GEP-NENs: n = 72), and the second,

120 samples (controls: n = 49; GEP-NENs: n = 71) (Table 1). The

clinical characteristics are included in Table 2. Small intestinal

and pancreatic tumors (67–86%) were predominant, lesions were

grade 1 and 2 (Ki67#20%) (76–89%) and metastases (73–85%)

were prevalent. Patients were older than controls, and sex-

matching was not undertaken.

Real-time PCR Analysis of Peripheral Blood Gene
Expression

Real-time PCR was performed using Applied Biosystems

products (details in Supplemental Methods). PCR values were

normalized to ALG9 (DDCT) [15], using the control group as the

population control (calibrator sample).

Chromogranin A Measurement
CgA was measured using the DAKO ELISA kit (K0025,

DAKO North America, Inc., Carpinteria, CA) [20] in a set of 176

samples (controls: n = 95; GEP-NENs: n = 81). A cut-off of 19

Units/L (DAKO) was used as the upper limit of normal.

Classification Algorithms
Expression values were log-transformed and mapped to the

range (1–100). GEP-NEN classifiers were built and optimized on

the training set (n = 67 controls, n = 63 GEP-NENs) using 10-fold

cross-validation design. In the internal training set, differentially

expressed genes (control versus tumor) were calculated by a t-test.

Four different learning algorithms [support vector machine

(SVM), linear discrimination analysis (LDA), K-Nearest Neighbor

(KNN), and Naive Bayes (Bayes)] were trained on the internal

training set using the up-regulated features (uncorrected p,0.05).

To control for over-fitting, the classifier was verified in 2 validation

sets. A consensus labeling of ‘‘control’’ or ‘‘GEP-NEN’’ was

generated by a ‘‘majority vote’’ approach [21], whereby a sample

with ,2 ‘‘control’’ predictions was designated as ‘‘GEP-NEN’’.

Detailed description of all classification algorithms is in Supple-
mentary Methods.

All analyses were carried out using MATLAB’s Statistics and

Bioinformatics toolboxes (2009a, The MathWorks, Natick, MA).

Results

Pipeline for Identifying and Defining Candidate Genes in
GEP-NENs

1. Gene co-expression network inference in GEP-

NENs. We hypothesized that comparison of co-expression

networks between GEP-NEN and other cancer datasets would

provide additional biological insight. We utilized two independent

GEP-NEN microarray datasets [15,16] and compared them with

well-characterized cancer datasets chosen for prevalence and

represented by comprehensive microarray collections. Additional-

ly, an independent normal human tissue dataset (79 different

healthy tissues and cell types [2 replicates/tissue/cell type

including liver, brain and heart, totaling 158 arrays] was included

to eliminate co-expressions that may occur due to healthy tissue in

malignant biopsies (Table S1).

Gene co-expression networks were constructed for all micro-

array datasets by linking genes whose expression correlated above

a predefined PCC threshold (Supplementary Methods,

Figure S1). Subsequently, the inference of a GEP-NEN network

consisted of: 1) retaining co-expression pairs that recurred in both

GEP-NEN datasets; 2) eliminating genes and co-expressions

present in other cancer and normal tissue gene networks from

the consensus GEP-NEN network; and 3) eliminating genes from

the consensus GEP-NEN network that exhibited divergent

changes in GEP-NEN-A and GEP-NEN-B datasets (Figure 1,

Figure S2). This analysis produced 2892 genes and 30444 co-

expressions. We focused on the largest connected component of

this network (2545 genes and 30249 links), which contained 99%

of all co-expressions (Figure 2A). It is important to note that a

gene co-expression network does not attempt to identify ‘‘direct

gene interactions’’ but rather contain ‘‘gene neighborhood

relations’’ that are usually overlooked in conventional microarray

analysis [22] and is used to identify genes that play distinct roles in

a common pathway or biological process [23]. Therefore,

functional characterization of a co-expression network should be

regarded as a descriptive analysis aimed to generate additional

testable hypotheses.

2. Functional analysis of GEP-NEN gene co-expression

network. To provide insight into molecular pathways captured

by the GEP-NEN network, the DAVID functional enrichment

tool was used to identify over-represented Biocarta, KEGG, and

Reactome pathways (see Supplemental Methods). The most

abundant pathways were Reactome pathways including ‘‘Integra-

tion of energy metabolism’’ (n = 58 genes, p = 4.261025) and the

Blood PCR Analysis and GEP-NENs
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‘‘Diabetes pathway’’ (n = 68, p = 2.761024), and KEGG pathways

like ‘‘Pathways in cancer’’ (n = 72, p = 0.003) (Table S2). Other

pathways included genes involved in immune responses, nervous

system development, and metabolism. An important characteristic

of most biological networks is that they tend to naturally organize

into modules. We used the Louvain algorithm, a ‘‘greedy’’ method

for iterative grouping of nodes into communities through

modularity maximization [24], to partition the GEP-NEN

network into 62 clusters with 800 and 3 genes in the largest and

smallest clusters respectively (Figure 2A). Enrichment for over-

represented GO-BP terms in clusters with .20 genes, revealed

presence of processes including ‘‘Apoptosis’’ (p = 2.9610226,

Cluster 1), ‘‘Oxidation reduction’’ (p = 2.3610236, Cluster 2),

and ‘‘Nervous system development’’ (p = 7610220, Cluster 4)

(Figure 2B). These processes are consistent with the known

biology of GEP-NENs [25].

3. Marker gene selection. We generated three panels of

putative marker genes that were further examined by RT-PCR: 1)

tissue-based panel, 2) peripheral blood-based panel and, 3)

literature-curated panel. A detailed description of the methods is

in Supplementary Methods.

To generate the tissue-based gene panel, we identified

significantly (false discovery rate [FDR] adjusted p,0.025) up-

regulated genes in both GEP-NEN-A and GEP-NEN-B datasets

and retained only genes that were also present in the GEP-NEN

gene co-expression network. Subsequently, we retained genes with

high network clustering coefficient ($0.25), based upon their

increased likelihood of an association with tumorigenesis [26].

Finally, we examined a set of 369 genes that passed our filtering

threshold using a manual literature-curated search. Our search

criteria involved implication in: a) neuroendocrine axis, b) tumor

formation, or c) metastasis. Using these constraints, 21 of the 369

‘‘putative’’ marker genes were selected for PCR validation.

To derive a peripheral blood-based ‘‘putative’’ marker gene

panel, we generated a transcriptome consisting of 14 peripheral

blood samples (n = 7 controls, n = 7 GEP-NENs). There were 1382

significantly up-regulated (unadjusted p,0.05, FC.0) genes in

GEP-NENs (details in Supplemental Methods). All genes with

expression values in the lower 25th quantile were excluded and

Figure 1. Computational pipeline used to derive a set of 51 markers that identify GEP-NEN disease. Step 1: Gene co-expression
networks inferred from GEP-NEN-A and GEP-NEN-B datasets are intersected, producing the GEP-NEN network. Step 2: Co-expression networks from
neoplastic and normal tissue microarray datasets are combined to produce the normal and neoplastic networks. Step 3: Links present in normal and
neoplastic networks are subtracted from the GEP-NEN network. Step 4: Concordantly regulated genes in GEP-NEN-A and GEP-NEN-B networks are
retained; other genes are eliminated from the GEP-NEN network, producing the Consensus GEP-NEN network. Step 5: Upregulated genes in both the
GEP-NEN-A and GEP-NEN-B dataset are mapped to the Consensus GEP-NEN network. Step 6: Topological filtering, expression profiling, and
literature-curation of putative tissue-based markers, yielding 21 putative genes further examined by RT-PCR. Step 7: Identification of mutually up-
regulated genes in GEP-NEN blood transcriptome and GEP-NEN-A and GEP-NEN-B datasets, yielding 32 putative genes further examined by RT-PCR.
Step 8: Literature-curation and cancer mutation database search, yielding a panel of 22 putative marker genes for further RT-PCR analysis.
doi:10.1371/journal.pone.0063364.g001
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only those genes with positive FC in both tissue datasets (GEP-

NEN-A/B) were retained. This analysis produced 306 ‘‘putative’’

marker genes. A manual literature-curated search focusing on

relevance to neuroendocrine biology/neoplasia identified 32/306

as putative targets for PCR validation.

The literature-curated panel consisted of 22 genes. Thirteen

marker genes previously associated with GEP-NENs, either in our

studies [11,12] or in others [16,27], were identified using queries of

the Catalogue of Somatic Mutations in Cancer (COSMIC v60)

database [28]. The additional 9 genes were included given their

association with tumor initiation and metastasis.

Thus, based upon these analyses, 75 ‘‘putative’’ marker genes

were selected for PCR analysis (Figure 1, Figure S2).

Validation of GEP-NEN Marker Gene Panel in Test Set and
Independent Sets

To validate a ‘‘putative’’ marker panel, transcript levels of

mRNA isolated from a subset of the training set (controls: n = 49

and GEP-NENs: n = 28) was measured. This identified that 51 of

the 75 candidate markers produced detectable product (CT,40

cycles) in blood. The 51 gene panel is listed (Table 3, Table S3).
1. Utility of the 51 marker panel to identify GEP-

NENs. The GEP-NEN classifiers were built on a training set

(controls: n = 67, GEP-NENs: n = 63) and significantly up-regulat-

ed features between control and tumor cases were calculated by t-

test (n = 27, p,0.05, Figure 3A). Four classification algorithms

(SVM, LDA, KNN, and Bayes) and a 10-fold cross-validation

design were used to build a classifier for the diagnosis of GEP-

NENs. The average accuracy of the SVM, LDA, KNN, and Bayes

algorithms to distinguish GEP-NEN from control samples using 27

genes was comparable –0.89 (0.85–1.0), 0.89 (0.86–0.93), 0.88

(0.85–0.93), and 0.86 (0.85–0.93) respectively. The ‘‘majority

voting’’ combination of the four classifiers achieved an accuracy of

0.88 (Figure 3B). To control for over-fitting and to evaluate

classifier performance, we examined two validation sets (see

Methods). The ‘‘majority vote’’ classification was used to

generate final predictions. In these validation sets, the performance

metrics for differentiating GEP-NENs from controls exhibited

sensitivities of 85–98% with specificities of 93–97%, PPVs of 95–

96% and NPVs of 87–98%. The AUC for the diagnostic test in

first and second validation sets were 0.98 and 0.95 respectively

(Figure 3C). These results indicate the signature was effective at

distinguishing between GEP-NENs and controls.

2. Comparison of the 51 marker panel with

Chromogranin A for GEP-NEN identification. To examine

the utility of the peripheral blood PCR signature, we compared it

to measurements of CgA in a set (n = 176 samples). Levels of CgA

were elevated (p,0.002) in GEP-NENs compared to controls

(Figure 4A). Using the DAKO cut-off of 19 Units/L as the ULN,

a total of 26 (32%) of 81 GEP-NENs were positive compared to 1

(1.0%) of 94 controls for performance metrics of 32% (sensitivity),

99% (specificity), 96% (PPV) and 63% (NPV). The correct call rate

was 68%. A direct comparison of the molecular test and CgA

ELISA identified that the PCR-based method had a significantly

more accurate call rate compared to CgA levels (x2 = 12.3,

p,0.0005) (Figure 4B). The specificities were similar for

detecting a GEP-NEN (94% versus 99%) but the sensitivity of

the PCR test was significantly higher than for CgA (85% versus

32%).

Additional Utility of GEP-NEN Marker Gene Panel
To further evaluate the potential utility of this marker panel, we

undertook a sub-analysis of the data to examine whether there

were any differences in sensitivity or specificity for detecting P-

NENs versus GI-NENs and whether non-metastatic tumors could

be detected. In addition, we wanted to determine how well the test

performed in the patients with low CgA expression. We examined

each of the validation sets (independent set 1 and 2) individually as

well as the combination of the two sets.

The performance metrics for identifying P-NENs were:

sensitivity 64–100% and specificity 92–95%; overall 79% of the

43 pancreas NETs (in both sets) were positive by the test

(specificity: 94%) (Figure 5A). For GI-NENs, this was 74–98%

and 92–95%, respectively. Overall, 88% of the 95 GI-NENs (both

sets) were positive (specificity: 94%). There was no significant

difference (Chi-square = 1, p = 0.31, 2-tailed) indicating that the

PCR test could identify these two tumor types with a similar

efficacy.

Assessment of tumors with metastases identified an overall

sensitivity and specificity of 85% (specificity: 94%) while 91% of

the 11 documented patients with no metastases were positive

(specificity: 94%). The PCR test therefore identified patients

equally well irrespective of metastases (Figure 5B).

Using the 176 sample dataset for CgA and the DAKO cut-off of

19U/L, 55 patients were identified with low circulating levels of

CgA. The PCR score in these patients was .2 in 50 (91%). For

the 26 patients with elevated CgA, the PCR score was elevated in

22 (85%). Using diagnosis of GEP-NEN as a ‘‘standard’’, the PCR

score significantly outperformed measurements of CgA (Chi-

square: .50, p,10213) for the identification of the disease

(Figure 5C).

Discussion

We have developed and validated a PCR-based, blood-derived,

molecular signature test that is based on 51 genes and identifies

Table 1. Characteristics of patient and controls (training and
independent sets).

Characteristic Cases Controls p-Value

TRAINING SET (N = 130)

Mean age (range) (years)& 56 (18–80) 38.2 (20–75) ,0.0001

Sex (M:F)& 33:30 40:27 ns

Treatment Naı̈ve: Treated* 28:35 – –

Gut: Pancreatic NENs 22:3
$ – –

INDEPENDENT VALIDATION SET 1 (N = 115)

Mean age (range) (years)& 50.4 (27–69) 38 (28–52) ,0.001

Sex (M:F)& 44:28 26:17 ns

Treatment Naı̈ve: Treated* 16:56 – –

Gut: Pancreatic NENs 54:18 – –

INDEPENDENT VALIDATION SET 2 (N = 110)

Mean age (range) (years)& 63.8 (40–83) 45.8 (24–75) ,0.0001

Sex (M:F)& 42:29 25:24 ns

Treatment Naı̈ve: Treated* 9:64 – –

Gut:Pancreatic NENs 40:25
$$ – –

*Treated includes surgical (hemicolectomy, ablation, liver resection) and
chemotherapeutic/biological (sandostatin, temodar, RAD001, everolimus)
therapies.
$
3 patients were bronchopulmonary NENs.

$$
6 patients categorized as ‘‘carcinoids of unknown primary’’.

&Age2/sex-matching was not undertaken.
The majority .95% of patients were Caucasian.
doi:10.1371/journal.pone.0063364.t001
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Table 2. Clinical characteristics of patients (test and independent sets).

Study Set Primary Location

TEST SET (N = 63)% Lung Stomach Pancreas
$ SI Appendix Colorectal CUP

3 (5%) 4 (6%) 3 (5%) 39 (62%) 8 (13%) 6 (9%) 0 (0%)

Grade*

G1 G2 G3 ND

30 (48%) 18 (28%) 2 (3%) 13 (21%)

Metastases**

NO YES ND

12 (19%) 46 (73%) 5 (8%)

Study Set Primary Location&

INDEPENDENT VALIDATION SET 1
(N = 72)%

Lung Stomach Pancreas
$ SI Appendix Colorectal CUP

0 (0%) 0 (0%) 18 (25%) 46 (64%) 3 (4%) 5 (7%) 0 (0%)

Grade*

G1 G2 G3 ND

44 (61%) 20 (28%) 0 (0%) 8 (11%)

Metastases**

NO YES ND

10 (14%) 61 (85%) 1 (1%)

Study Set Primary Location&

INDEPENDENT VALIDATION SET 2
(N = 71)%

Lung Stomach Pancreas
$ SI Appendix Colorectal CUP

0 (0%) 2 (3%) 25 (35%) 36 (51%) 0 (0%) 2 (3%) 6 (8%)

Grade*

G1 G2 G3 ND

30 (42%) 9 (13%) 2 (4%) 30 (42%)

Metastases**#

NO YES ND

1 (1%) 60 (85%) 10 (14%)

CUP = carcinoid of unknown primary, ND = no data available, SI = small intestine.
*Grade: based on Ki67 or mitotic index (from WHO201029).
**Metastases: any tumor disease identified in lymph nodes, mesentery, liver, lung, bone, ovary (or any combination thereof). Methodologies including octreoscan,
identification at surgery, identification at pathology e.g. positive lymph nodes, etc.
&p,0.05 vs. Test set (Chi-square). This reflects the higher proportion (25–35%) of Pancreatic NENs included in the validation sets.
#p,0.05 vs. Test and Validation set 1 (Chi-square). This reflects the higher proportion ,10% of patients with no metastases.
%A comparison of these clinical sets with the spectrum of disease included in the Surveillance Epidemiology and End Results (SEER) database for GEP-NENs32,33 identifies
no significant differences. Patient characteristics also provide a reasonable reflection of the clinical spectrum of disease that is pari passu for NEN patients.
Details regarding Age and Sex for patients are included in Table 1.
$
Forty six of the samples were collected from pancreas, with the following break-down: ACTH (n = 1), gastrinoma (n = 2), glucagonoma (n = 1), insulinoma (n = 4), VIP

(n = 3), Functional (no characterization of hormone, n = 8), non-functional (n = 27).
doi:10.1371/journal.pone.0063364.t002
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GEP-NENs with a high specificity and sensitivity. This test

significantly outperforms the current CgA blood test that is used to

confirm the clinical suspicion of a NEN. Since the blood PCR

signature comprises 51 NEN-based transcripts that cover a wide

biological spectrum, it is also more effective than a single peptide-

based ELISA that identifies a secretory peptide unrelated to tumor

cell proliferation and not produced by ,25% of NENs [29,30].

Such a multi-transcript approach is generally more effective than

single parameter analyses [31,32].

A key limitation of CgA measurement is that it only measures

one variable of NENs namely a secretory peptide and the ELISA

technique used is based on a number of different antibodies used

by various commercial laboratories (e.g. Cisbio, DAKO or

Eurodiagnostica). Measurements are thus not only mono-dimen-

sional but not readily comparable if different assays utilizing

different antibodies are used [29,30,33]. To ensure a broader

biological coverage and diminish reliance on a single variable, we

developed a multiple parameter PCR test.

A compendium of tissue-based and peripheral blood transcrip-

tomes was used to develop a signature which exhibited GEP-NEN

specificity and was biologically related to GEP-NENs. To generate

a rational basis for integrating multiple transcripts a series of

mathematical algorithms were utilized to derive the marker

signature, namely the GEP-NEN classifier. These included gene

co-expression network profiling and functional gene community

detection, all robust methods previously used in the development

of gene-based molecular protocols [34]. Experimental artifact was

minimized and robustness amplified through the use of two

independent GEP-NEN microarray datasets and seven normal

and neoplastic tissue transcriptomes (total 551 arrays). To further

assure the biological relevance of the analysis functional enrich-

ment of genes associated with GEP-NENs (inclusion of GO-BP

terms such as ‘‘Chromatin organization’’, ‘‘Negative regulation of

Figure 2. GEP-NEN gene co-expression network. A) Visualization of the GEP-NEN gene co-expression network (2545 genes, 30249 edges). Each
node represents a gene, while a link represents a GEP-NEN-specific co-expression. Nodes that localized to the same network community are marked
in the same color. The community structure of the GEP-NEN network is further visualized in the 3 dimensional inset, whereby each node represents a
community while edges are drawn between communities that contain co-expressed genes. Larger nodes indicate bigger gene communities. B)
Heatmap visualizing enrichment for over-represented Gene Ontology (GO) Biological Process (BP) terms assigned to the 10 largest clusters (.20
genes). Heatmap colors represent the significance of the enrichment.
doi:10.1371/journal.pone.0063364.g002
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Table 3. List of 51 marker genes.

ID Gene Name

AKAP8L A kinase (PRKA) anchor protein 8-like

APLP2 amyloid beta (A4) precursor-like protein 2

ARAF v-raf murine sarcoma 3611 viral oncogene homolog

ARHGEF40 Rho guanine nucleotide exchange factor (GEF) 40

ATP6V1H ATPase, H+ transporting, lysosomal 50/57kDa, V1 subunit H

BNIP3L BCL2/adenovirus E1B 19kDa interacting protein 3-like

BRAF v-raf murine sarcoma viral oncogene homolog B1

C21orf7 chromosome 21 open reading frame 7

CD59 CD59 molecule, complement regulatory protein

COMMD9 COMM domain containing 9

CTGF connective tissue growth factor

ENPP4 ectonucleotide pyrophosphatase/phosphodiesterase 4 (putative function)

FAM131A family with sequence similarity 131, member A

FZD7 frizzled homolog 7 (Drosophila)

GLT8D1 glycosyltransferase 8 domain containing 1

HDAC9 histone deacetylase 9

HSF2 heat shock transcription factor 2

KRAS v-Ki-ras2 Kirsten rat sarcoma viral oncogene homolog

LEO1 Replicative senescence down-regulated leo1-like protein

MKI67 antigen identified by monoclonal antibody Ki-67

MORF4L2 mortality factor 4 like 2

NAP1L1 nucleosome assembly protein 1-like 1

NOL3 nucleolar protein 3 (apoptosis repressor with CARD domain)

NUDT3 nudix (nucleoside diphosphate linked moiety X)-type motif 3

OAZ2 ornithine decarboxylase antizyme 2

PANK2 pantothenate kinase 2

PHF21A PHD finger protein 21A

PKD1 polycystic kidney disease 1 (autosomal dominant)

PLD3 phospholipase D family, member 3

PNMA2 paraneoplastic antigen MA2

PQBP1 polyglutamine binding protein 1

RAF1 v-raf-1 murine leukemia viral oncogene homolog 1

RNF41 ring finger protein 41

RSF1 remodeling and spacing factor 1

RTN2 reticulon 2

SLC18A1 solute carrier family 18 (vesicular monoamine), member 1

SLC18A2 solute carrier family 18 (vesicular monoamine), member 2

SMARCD3 SWI/SNF related, matrix associated, actin dependent regulator of chromatin, subfamily d, member 3

SPATA7 spermatogenesis associated 7

SSTR1 somatostatin receptor 1

SSTR3 somatostatin receptor 3

SSTR4 somatostatin receptor 4

SSTR5 somatostatin receptor 5

TECPR2 tectonin beta-propeller repeat containing 2

TPH1 tryptophan hydroxylase 1

TRMT112 tRNA methyltransferase 11-2 homolog (S. cerevisiae); similar to CG12975

VPS13C vacuolar protein sorting 13 homolog C (S. cerevisiae)

WDFY3 WD repeat and FYVE domain containing 3

ZFHX3 zinc finger homeobox 3; hypothetical LOC100132068
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gene expression’’, and ‘‘Cell surface receptor linked signal

transduction’’ [25] [e.g., chromogranin A/B (CHGA/CHGB:

secretion], glutamate decarboxylase 1 [GAD1: GABA production]

[25] and Aurora kinase B [AURKB: mitosis] [35] was undertaken.

Since a key component of accuracy was dependent on accurate

and reproducible mathematical analysis we utilized supervised

learning methods, SVM, LDA, KNN, and Bayes to build the

GEP-NEN classifier. These strategies have previously been used as

broad applications in two-class classification problems in biomed-

icine. SVM has been utilized to predict grading in astrocytomas

[36] (.90% accuracy), and prostatic carcinomas (74–80%

accuracy) [37]. LDA can detect non-small cell lung cancer in

Table 3. Cont.

ID Gene Name

ZXDC ZXD family zinc finger C

ZZZ3 zinc finger, ZZ-type containing 3

doi:10.1371/journal.pone.0063364.t003

Figure 3. Utility of the 51 marker gene signature for identification of GEP-NEN disease. A) Unsupervised hierarchical clustering of the 130
samples in the training set (n = 67 controls, n = 63 GEP-NENs). Tree was generated with an average agglomeration method and 1-(sample correlation)
was used as a measure of dissimilarity. Unique colors under the dendrogram represent sample cluster assignments, computed by cutting the
hierarchical tree at height = 0.99 (black line), 0.85 (blue line), or 0.50 (red line) using a dynamic tree cutting approach [77]. B) Prediction accuracy of
each classifier using sequential addition of 27 significantly up-regulated genes (p,0.05) in the GEP-NEN samples obtained using results of the 10-fold
cross validation. C) Receiver operating characteristic (ROC) curves for ‘‘majority vote’’ classifier applied to validation sets 1 (AUC = 0.98, p,0.0001) and
2 (AUC = 0.95, p,0.0001) compared to ROC curve for utility of the plasma CgA values (AUC = 0.64, p,0.002). Direct comparisons of AUCs between set
1 or set 2 and CgA identified estimated Z-scores of 10.57 and 11.42 respectively, confirming the significant differences between the two detection
systems (calculations detailed in Supplementary Methods).
doi:10.1371/journal.pone.0063364.g003
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peripheral blood [38], while KNN models have been used to

predict outcome in neuroblastoma [39]. The Bayes classifier has

been used to predict prostate cancer recurrence [40]. Each

therefore has utility for identifying individual or multi-variable

alterations in neoplasia. Combining these techniques with a

‘‘majority vote’’ strategy in two independent validation cohorts,

the PCR-based test exhibited correct call rates of 91–97% with

sensitivities and specificities of 85–98% and 93–97% respectively

for the identification of GEP-NENs. These performance metrics

are comparable to similar algorithms that were successfully used

clinically to detect CTCs e.g. cutaneous T-cell lymphoma (90%)

[41].

To assess the efficacy of this signature index, we then compared

it to CgA which is the current NEN marker used to establish

diagnosis and disease status [30,42–46]. CgA elevations are

considered a sensitive, ,60–85% accurate marker for GEP-NENs

[1]. Measurements are, however, non-specific (10–35%) since CgA

is elevated in a wide variety of diverse conditions [30,33,43]. These

include non endocrine neoplasia (pancreatic and prostate) and a

wide variety of cardiac, endocrine and inflammatory diseases [47],

as well as in patients undergoing acid suppressive therapy with the

proton pump inhibitor (PPI) class of drugs [48] and in renal failure

[49]. CgA is constitutive component of neuroendocrine secretion,

not proliferation, and therefore its use as a surrogate marker for

tumor growth has obvious limitations [1]. In the current study we

compared the PCR test with a widely available commercial CgA

kit (DAKO: K0025) [30,33]. Values were, as expected, elevated in

GEP-NENs but exhibited a significant overlap with controls with

an accuracy of 60% and sensitivity of 32%. It is likely that use of

other kits to measure CgA would generate similar numbers given

their published concordance (,40–70%) [30,33]. In comparison,

the PCR-based test exhibited a sensitivity of .85% with a correct

call rate of .90%. Evaluation of the ROCs was similarly

significantly effective for the PCR-based test, which exhibited an

AUC of 0.95–0.98 compared to 0.64 for the CgA. AUCs for CgA

have ranged as high as 0.8–0.9 in other studies [50,51], but this is

Figure 4. Comparison of the 51 marker gene signature with Chromogranin A (CgA) for detecting GEP-NENs. A) CgA levels were
significantly elevated in the GEP-NEN group (n = 176; *p,0.002) but an overlap with normal values was identified. B) Comparison of the PCR-based
approach with CgA protein measurement identified that call rates were significantly higher for the PCR-based test (*p,0.0005, x2 = 12.3). The PCR
blood test was significantly more accurate than measurement of CgA levels to detect GEP-NENs. ULN = upper limit of normal (19U/L – DAKO).
doi:10.1371/journal.pone.0063364.g004

Figure 5. Utility of the 51 marker gene signature for detecting P-NENs, metastases and in patients with low Chromogranin A (CgA).
A) The sensitivity and specificity of the test to detect GI-NENs (90%, 94%) and P-NENs (80%, 94%) was similar. B) The PCR-based approach could
detect patients with no metastases as well as patients with metastases. C) The PCR-based test could accurately identify GEP-NENs even when plasma
CgA were low (,19U/L). Overall, the PCR blood test was significantly more accurate than measurement of CgA levels to detect GEP-NENs (*p,10213,
x2.50).
doi:10.1371/journal.pone.0063364.g005
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dependent both on the kits used, the patient inclusion criteria e.g.,

undergoing treatment or type of GEP-NEN, but most importantly,

the cut-off chosen, which is often population-dependent [30]. In

comparison to other molecular-based tests, the performance

metrics for the NEN-PCR-based test are substantially higher than

for prostate (PSA or PMSA (0.75, both single target test) [52] or

colon cancer (0.51–0.72, a two target PCR test) [53]. Given the

utility of these latter cancer tests in clinical management [54], it is

probable that application of this PCR multi-transcript measure-

ment strategy to GEP-NENs will be similarly effective.

It has been noted that the majority of biomarker studies may not

translate into clinically relevant tests [55]. For example, peripheral

blood screens for colorectal cancer are not routine practice [56].

This is paradoxically associated with the sensitivity of PCR per se.

Substantial differences in final yield can occur if there are minor

variations in reaction components and thermal cycling conditions

and/or mispriming events during PCR [57–61]. To minimize

these potential issues, we have chosen to use a TAQMAN

approach. In other studies, this has been demonstrated to have a

low variability between runs ranging between 0–5% [62], have

small coefficient of variations (CVs) for the cycling threshold (CT)

of 1–3% [63] and results in acceptable CVs for normalized data

between 10–24% [64,65]. A consistent protocol for RNA isolation,

cDNA synthesis and real-time PCR is considered appropriate to

provide a stable platform for target and housekeeping gene

analyses [57,62,63,66,67]. Stringent quality control [68], stan-

dardization of sample acquisition [69] and processing [70]

therefore are a prerequisite for use of this molecular tool which

makes it likely that any PCR approach will require dedicated,

specialized facilities.

Irrespective of the potential limitations, our study identifies that

a PCR-based test is significantly more sensitive than that currently

utilized, namely CgA measurements, and can detect the majority

(,95%) of patients with disease irrespective of the location, extent,

grade or metastasis. It is therefore likely that the test would be

useful in a number of areas, following appropriate study. One is as

a ‘‘rule-out’’ diagnostic test (to confirm absence of a GEP-NEN or

residual disease). The low incidence of GEP-NENs in the

population makes it unlikely to be cost-effective as a screening

tool for tumor detection. The high sensitivity of the PCR test, in

contrast, renders it a more effective tool to rule out a diagnosis.

This will eliminate the relatively large number of ‘‘borderline’’

abnormal CgA results, particularly when different types of kits are

used. Any future studies, should, in addition, assess whether

medications or conditions associated with non-specific elevations

in neuroendocrine cell numbers, e.g., PPIs, increase transcript

expression. Given the similarities in biology (i.e., expression of

receptors, pathways involved in secretion, molecular pathways

e.g., MEN-I) [71–73] between GEP-NENs and other NENs e.g.,

pheochromytomas or medullary thyroid cancers, it would be

useful to assess whether the PCR test can accurately identify these

lesions. The existence of tumors with a significant neuroendocrine

component e.g., prostate tumors [74] or colorectal cancers

[75,76], provides additional clinical samples in which to evaluate

the efficacy of the PCR test.

Currently, CgA is used to evaluate treatment protocols [4,46] as

expression levels are considered to relate to tumor burden [46].

However, issues remain with the use of different measurement

protocols as well as how to accurately assess CgA in monitoring

disease if values are low or within the normal range. Given the

high rate of detection even when plasma CgA levels are low (91%

of these samples could be accurately identified by the PCR test),

we anticipate that the PCR test can potentially be used as a

prognostic. Future studies examining whether the PCR test results

alter in response to therapy e.g., debulking or targeted therapy,

would answer this possible indication.

In conclusion, using computational and machine learning

approaches, including analysis and integration of tumor tissue

and circulating peripheral blood transcripts, we identified a panel

of 51 marker genes selectively associated with GEP-NENs. The

test can differentiate between GEP-NENs and controls and has a

high PPV and NPV (.90%). It is more accurate than the currently

used clinical standard CgA assay, which identifies a single peptide

related only to tumor secretion. The PCR-based signature

measures multiple transcripts which reflect the diverse biological

profile of a proliferating NEN and may, with further examination

in appropriate studies, be tested as a measure of tumor

responsiveness and, potentially, as a prognostic.
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