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The Burkholderia cepacia complex (Bcc) is a collection of closely related, genetically
distinct, ecologically diverse species known to cause life-threatening infections in
cystic fibrosis (CF) patients. By virtue of a flexible genomic structure and diverse
metabolic activity, Bcc bacteria employ a wide array of virulence factors for pathogenesis
in CF patients and have developed resistance to most of the commonly used
antibiotics. However, the mechanism of pathogenesis and antibiotic resistance is still
not fully understood. This mini review discusses the established and potential virulence
determinants of Bcc and some of the contemporary strategies including transcriptomics
and proteomics used to identify these traits. We also propose the application of metabolic
profiling, a cost-effective modern-day approach to achieve new insights.
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Burkholderia cepacia Complex in Cystic Fibrosis

Burkholderia cepacia complex (Bcc) is a group of at least 17 Gram-negative β-proteobacteria that
are phenotypically related but genetically discrete (Mahenthiralingam et al., 2005; Vanlaere et al.,
2008, 2009). This complex of bacteria is resistant to many commonly used antibiotics and has a
widespread distribution in nature existing in soil, water, plants, animals, and humans. During the last
few decades B. cepacia complex bacteria have emerged as life threatening opportunistic pathogens
especially in patients with cystic fibrosis (CF), the most common lethal inherited genetic disease
among Caucasians (Isles et al., 1984). CF is caused by mutations in the gene encoding cystic fibrosis
transmembrane regulator (CFTR), a transmembrane chloride ion channel (Kerem et al., 1989). The
mutation in CFTR allows several opportunistic pathogens such as Pseudomonas aeruginosa and the
Burkholderia cepacia complex, to colonize the lungs in CF patients leading to chronic infections. The
Bcc bacteria are particularly troublesome because they can cause “Cepacia Syndrome,” a necrotizing
pneumonia leading to a rapid deterioration of lung function, bacteremia and increased mortality
(Isles et al., 1984). All 17 of the Bcc have been isolated from infected CF patients, however, the
frequency and distribution of the Bcc in CF infections vary amongst the species (LiPuma, 1998;
Mahenthiralingam et al., 2005).

Bacteria have to colonize the hostmucosal or epithelial surfaces after entering the respiratory tract.
Defective CFTR proteins in the CF lungs tends to dehydrate themucus layer, which provides an ideal
environment for biofilm formation (Matsui et al., 2006; Boucher, 2007). Several surface structures of
the Bcc including adhesin, flagella and pili play crucial roles in motility and adherence to host cells
(Urban et al., 2005). Secretion of extracellular proteins like lipases aid in invading epithelial cells
(Mullen et al., 2007) whereas proteases aid in the proteolysis of the extracellular matrix, allowing the
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TABLE 1 | Bcc physiologic and virulence traits identified by classical screening approaches.

Technique Identified phenotypes

Signature tagged mutagenesis DNA replication and repair, global regulation, cellular metabolism and synthesis of cell surface proteins and
polysaccharide (Hunt et al., 2004).

Plasposon mediated random mutagenesis Cepacian, an exopolysaccharide required for biofilm formation, persistent infection and inhibition of host immune system
(Cunha et al., 2003, 2004; Sousa et al., 2010).

Insertion mutagenesis Hfq, an RNA chaperone regulator required for survival of the pathogen in CF patients (Sousa et al., 2010).
Insertion mutagenesis and computational
techniques

Non-coding sRNAs interacting with Hfq chaperone (Ramos et al., 2011).

Screening infection model with mutant
library

An acyl carrier protein (ACP) essential for colonization and metabolism of the pathogen in CF patients (Sousa et al.,
2008).
Pbr, a protein that plays a major role in bacterial stress tolerance and virulence mechanism (Ramos et al., 2010). In
non-mammalian infection models CepR (the quorum sensing regulator), other regulatory and metabolic genes were
isolated (Schwager et al., 2013).

bacteria to colonize the lungs (McClean and Callaghan, 2009).
Siderophore secretion allows bacteria to compete for iron with
the host iron-binding proteins to support bacterial pathogenesis
(Agnoli et al., 2006; Chu et al., 2010; Vogel, 2012). Burkholderia
pathogens are known to use quorum sensing circuits for the
regulation of various virulence factors including toxins, proteases,
lipases and siderophores as well as for swarming motility and
biofilm formation (Venturi et al., 2004; Eberl, 2006). Although
there is no direct evidence of in vivo biofilm formation by Bcc
bacteria in CF lung infections, isolates from a number of the
different Burkholderia species have been shown to form biofilms
in vitro (Conway et al., 2002). Interestingly, researchers have
observed that Bcc produces mixed biofilms in cultures with P.
aeruginosa, another prevalent CF pathogen (Riedel et al., 2001;
Tomlin et al., 2001; Bragonzi et al., 2012). P. aeruginosa is
frequently found with the Bcc in CF polymicrobial infections
(Zemanick et al., 2011). Table 1 lists a number of classical
screening approaches taken to identify a wide range of traits
from the Bcc, involved in the physiology of the cells or virulence
determinants.

One of the major concerns about Bcc pathogens is their
intrinsic resistance to many commonly used antibiotics. The
complex is resistant to a number of antibiotic classes including
polymyxins, aminoglycosides, trimethoprim, chloramphenicol,
quinolones, and β-lactams as well as to the host antimicrobial
peptides (Nzula et al., 2002; Leitao et al., 2008; Sousa et al., 2011).
The intrinsic multidrug resistance of Bcc bacteria is thought to
occur due to the presence of various efflux pumps and enzymes
that efficiently remove antibiotics from the cell, decreased contact
of antibiotics with the bacterial cell surface due to their ability
to form biofilms, and changes in the cell envelope that reduce
the permeability of the membrane to the antibiotic (Buroni et al.,
2009; Sousa et al., 2011; Rushton et al., 2013). It is also significant
to note that biofilms produced by the Bcc are more resistant to
antibiotics when compared to P. aeruginosa biofilms (Desai et al.,
1998; Caraher et al., 2007; Dales et al., 2009). The multidrug
resistance makes it extremely difficult to treat CF patients
who are chronically infected with Bcc (George et al., 2009).
Even though extensive knowledge has been accumulated on the
virulence mechanisms and antibiotic resistance of P. aeruginosa,
less is known about those mechanisms in Bcc. Profiling the
metabolome of the Bcc, both extracellularly and intracellularly

using a combination of high-resolution techniques likeNMR,GC-
MS, and LC-MS (Tang, 2011) can increase our understanding of
these mechanisms.

Potential of Metabolomics in the Study
of BCC Pathogenesis

Metabolites incorporate the range of substances produced by
cellular metabolism and signaling processes within an organism
under any given physiological condition. A comprehensive
understanding of the biological state can be achieved by studying
the global metabolic response of any organism under natural
or artificial environmental conditions (Tang, 2011). Improved
application of analytical techniques such as nuclear magnetic
resonance (NMR) and mass spectrometry (MS) combined
with gas chromatography (GC) or liquid chromatography (LC)
has enabled the synchronized detection and comparison of a
wide range of metabolites in biological systems (Fiehn, 2002).
Metabolic profiling has been applied to microbes for a wide range
of studies including genome annotation and pathway mapping,
host-microbe interactions, infectious disease research, drug
metabolism, heavymetal resistance aswell asmany environmental
and ecological analyses (Chen et al., 2007; Halouska et al.,
2007; May et al., 2008; Parisi et al., 2009; Slupsky et al., 2009;
Kwon et al., 2010; Booth et al., 2011; Donovan et al., 2012;
Ye et al., 2012; Mickiewicz et al., 2013, 2014; Xie et al., 2013).
For instance Fang et al. (2011) have used gene annotation and
bioinformatics to construct a genome scale metabolic network for
B. cenocepacia J2315. Bartell et al. (2014) using a similar approach
have compared the metabolic networks of B. cenocepacia to B.
multivorans, the twoBurkholderia speciesmost frequently isolated
from CF patients. However, what is now needed is a systematic
approach to examine the metabolome of both B. cenocepacia
and B. multivorans under conditions that mimic the CF lung
environment, such as growth in a defined synthetic media as was
used for P. aeruginosa (Kozlowska et al., 2013).

Metabolites from biofluids (blood, plasma, urine etc.) of
patients or model organisms are analyzed to detect significant
metabolites that could be used as an indicator of the infection.
For instance, by applying a 1H NMR metabolomics approach
researchers have been able to identify biomarkers that could be
useful for early detection of sepsis, a life threating infectious
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disease (Mickiewicz et al., 2013, 2014). Moreover, metabolic
profiling has successfully distinguished mice with Gram-positive
bacterial infection from those with Gram-negative infection
(Hoerr et al., 2012). Clearly, metabolomics is gaining notable
popularity in the studies of infectious pathogens as well as the
resulting disease conditions.

We envision that the human airway epithelial cell line A549
could be an option for in vitro metabolomics experiments.
Although A549 is not a CF cell line, it has been used to measure
invasion of B. cepacia in an antibiotic protection assay and the
results showed correspondence with another invasion study in
a mouse agar bead infection model (Burns et al., 1996; Cieri
et al., 2002). The mouse model will be preferable for in vivo
experiments as Cftr−/− knockout mice (Cftrm1HGU or Cftrm1UNC)
mice are a widely used infection model for CF studies however,
considering the rapid clearance of the Bcc bacteria from mice
lungs, this model can only be used to study short-term but not
chronic infections (Davidson et al., 1995; Sajjan et al., 2001). One
of the most useful models for chronic CF infection is the agar
bead model, in which Bcc bacteria persist in the lungs for as long
as 21 days. In this infection model Bcc bacteria fixed into agar
beads are injected into mice or rats (Cieri et al., 2002; Subsin et al.,
2007). We propose initially using A549 cells and looking at the
metabolome of invasive Burkholderia cepacia in tissue culture as
compared to cells grown in a richmedia. Schoen et al. (2014) used
a similar approach on invasive Neisseria meningitidis and showed
howmeningococcalmetabolism is linked to pathogenesis (Schoen
et al., 2014). The research could then progress to animal models
and eventually to human infections. For human infections we
propose using Bronchoalveolar lavage samples from CF patients
withBurkholderia infections to determine themetabolomics of the
bacterial lung population. A number of technical hurdles would
have to be overcome but such an approach has been applied on
lavage samples from HIV infected patients (Cribbs et al., 2014).

In the context of the Bcc, only a few studies using metabolomic
approaches have been carried out to date. In one of these studies
the researchers employed metabolic profiling to compare the
mechanisms of osmotic tolerance among five closely related
isolates of B. cenocepacia, a clinically and environmentally
significant member of B. cepacia complex (Behrends et al.,
2011). Five strains of B. cenocepacia namely C1394, CEP0511,
J2315, J415, and K56-2 are grown in rich medium with a
sodium chloride (NaCl) concentration similar to that of seawater,
resulting in severe osmotic stress leading to impaired growth
for all the strains. Although each strain grows in identical salt
concentration, the extent of osmotic tolerance varies; J415 and
K56-2 exhibit more resistance than C1394, CEP0511, and J2315.
In order to get an insight into the differential effect of osmotic
stress on the strains the intracellular metabolites have been
profiled usingNMR spectroscopy. Five potential osmo-responsive
metabolites: alanine, phenylalanine, glutamate, trehalose, and
glycine-betaine have been detected. Relative quantification of
these five metabolites indicated that the semi osmo-tolerant
strain K56-2 has increased levels of all the five osmoprotectants,
the three less tolerant strains C1394, CEP0511, and J2315 do
not exhibit a significant increase in trehalose and glycine-
betaine levels, and the other semi-tolerant strain J415 show only

slightly induced trehalose level under osmotic stress. This study
demonstrates that metabolomics could help identify the different
strategies of osmotic tolerance amongst isolates of the same
species and even the same lineage (Behrends et al., 2011).We are in
agreement with these authors that future metabolic experiments
should look at physiological concentrations of NaCl, which would
have more relevance to CF lung infections. Again this approach
could also be applied to B. multivorans and perhaps to other
members of the Bcc that infect CF patients.

Although evidence of metabolomics studies on pathogenesis
of Bcc are somewhat scarce, some successful transcriptomics and
proteomics based studies have been reported. The group of Yoder-
Himes has compared the gene expression of a CF isolate of B.
cenocepacia and its environmental counterpart. In spite of a high
genomic sequence resemblance between the isolates, the study
identified 458 strain-specific genes, 126 clinical-isolate-specific,
and at least four species-specific genes that are stimulated in the
CF pathogen suggesting the potential of these genes to serve as
novel drug targets (Yoder-Himes et al., 2009, 2010). Comparative
transcriptomics has been applied to isolates of the same B.
cenocepacia strain recovered fromCFpatients at different stages of
chronic infection and almost 1000 genes involved in translation,
iron acquisition, efflux of drugs and adhesion to respiratory
epithelial surface are found to be induced in the course of long-
term infection (Mira et al., 2011). Finally, the proteomic profile
of a B. cenocepacia isolate that exhibits prolonged persistence
in CF patients has been compared with that of another isolate
from the same species showing rapid clearance from the host; the
study suggests that higher expression of flagellin protein in the
persistent strain provides enhanced mobility to support survival
in CF patients (Chung and Speert, 2007). As metabolite levels
reflect the ultimate response of any biological system, integration
of metabolomics to these “-omics” approaches would enrich
the current understanding of Bcc pathogenesis. For instance,
comparative metabolic profiling of the pathogenic strain of B.
cenocepacia and its environmental counterpart in conditions that
would mimic the CF lung environment and soil would confirm
and extend the findings of Yoder-Himes (Yoder-Himes et al., 2009,
2010). Similarly, application of metabolic profiling to Bcc strains
having different persistent capacities or collected at different
stages of infection as done by Chung and Speert (2007) and
Mira et al. (2011) respectively, would add insight to which type
of metabolism each isolate was using during chronic infection.
Such a metabolic analysis would also reveal any adaptation of the
metabolism of the bacteria during an infection.

Metabolite profiling has recently been applied to study the
virulence of P. aeruginosa in CF lung infections. As the Bcc and
P. aeruginosa share similar biology, the studies on P. aeruginosa
could essentially guide the study of metabolic profile underlying
the virulence and antibiotic resistance of B. cepacia complex.
Using clinical isolates and mutant libraries researchers have
been able to characterize the metabolites involved in metabolic
adaptation, biofilm formation and antibiotic resistance of P.
aeruginosa in CF patients (Behrends et al., 2013a,b; Borgos
et al., 2014). In one study the research group of Behrends
assessed the metabolic alteration of P. aeruginosa during chronic
infection using NMR spectroscopy (Behrends et al., 2013b).
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They isolated 179 strains from 18 chronic CF patients with
infection periods ranging from 4 to 24 years so that the strains
epitomize clonal lineages from these individual patients. They
compared clonal sequential isolates grown in rich LB media
for 24 h, profiled the extracellular metabolites and detected
eight significant compounds involved in metabolic adaptation.
Six amino acids—phenylalanine, tryptophan, tyrosine, valine,
lysine and serine and the metabolic intermediate acetate have
demonstrated negative correlation with length of the infection.
On the other hand, the secretion of osmoprotectant trehalose
escalated with the duration of infection (Behrends et al., 2013b).
The same group later studied the extracellular metabolites of
eighty-six single-gene mutant strains of P. aeruginosa grown
in nutritional conditions that mimicked CF sputum (Behrends
et al., 2013a). One remarkable finding of this NMR study is
that discharge of excessive amounts of gluconate by a number of
mutant strains correlates with reduced susceptibility to antibiotics
tobramycin, ciprofloxacin, aztreonam and imipenem, indicating
a direct relevance of gluconate accumulation with antibiotic
resistance of many pathogenic P. aeruginosa strains (Behrends
et al., 2013a). Recently another research group has applied
high resolution MS fingerprinting to study the metabolic profile
underlying P. aeruginosa biofilm formation during opportunistic
infection (Borgos et al., 2014). Extracellular biofilm compounds
analyzed from in vitro cultures of four different P. aeruginosa
strains at different time points have revealed strain and time
dependent changes in the metabolic profiles. The interesting
outcomes from the metabolic studies of P. aeruginosa, and
the close link between these species during opportunistic CF
infection, suggest that carrying out similar experiments on the
Bcc could lead to important findings on virulence and antibiotic
resistance of these pathogens in CF infection. To support these
studies Bcc mutants in metabolism genes have been reported
by many labs some of which are outlined in Table 1. However,
transposon or plasposon mutagenesis could also be used to

generate additional mutants (Dennis and Zylstra, 1998; Winson
et al., 1998). In this case the mutants could be compared to the
parental strain in terms of changes inmetabolites. Finally, asmany
intermediate and end products of central metabolism remain
inside the cell, analysis of intracellular along with the extracellular
metabolites would provide a more comprehensive insight into the
metabolic changes in the Bcc.

Conclusion

During the past few decades Bcc has emerged as a group of
deadly pathogens particularly to CF patients. Tolerance to most
of the commonly used antibiotics remains a challenge to combat
this opportunistic pathogen. Improved techniques for gene
identification, access to a plethora of genomic information and
the development of multiple useful in vivo and in vitro infection
models have formed a good foundation toward understanding the
virulence of these bacteria; however, a clearer understanding is
needed to acquire comprehensive insights into the pathogenesis
and antibiotic resistance of the Bcc species. Metabolomics,
along with other systems biology techniques and conventional
approaches should be adopted to study the global view on the
virulence mechanisms of Bcc. As metabolites reflect the ultimate
interactions between the organism and its environment, the
metabolic profile of the Bcc could aid in revealing an overall state
of the bacteria in the context of virulence in CF lungs, as well
as its tolerance to different antibiotic treatments. Ultimately these
approaches could reveal new information, which might be useful
for the design of novel drugs against chronic CF infections.
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